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ABSTRACT 

 

Synchronization of brain activity fluctuations is believed to represent communication between spatially distant 

neural processes. These inter-areal functional interactions develop in the background of a complex network of 

axonal connections linking cortical and sub-cortical neurons, termed the human “structural connectome”. 

Theoretical considerations and experimental evidence support the view that the human brain can be modeled as 

a system operating at a critical point between ordered (sub-critical) and disordered (super-critical) phases. Here, 

we explore the hypothesis that pathologies resulting from brain injury of different etiology are related to the 

model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural 

connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an 

empirical weighted network of human structural connections with a conceptual model of critical dynamics, we 

show that lesions located at highly transited connections progressively displace the model towards the sub-

critical regime. The topological properties of the nodes and links are of less importance when considered 

independently of their weight in the network. We observe that damage to midline hubs such as the middle and 

posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect 

can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent 

amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected 

areas and that inter- subject variability could obscure lesions located at non-hub regions. Finally, we discuss the 

predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative 

disorders. 
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I. INTRODUCTION 

 

The human brain is never at rest, but constantly presents complex spatio-temporal patterns of coordinated 

activity instead (Raichle, 2006). The flexible and adaptive character of brain dynamics is required to cope with 

the environmental challenges of survival and reproduction, and most likely arises from evolutionary pressure 

(Cocchi et al, 2013). For instance, conscious perception of sensory information requires the brain to produce a 

widespread and temporally sustained response from the activation of a small number of cells in primary sensory 

cortices (Dehaene and Naccache, 2001). This extreme sensitivity to small perturbations can only arise if brain 

dynamics are intrinsically unstable. At the same time, however, brain dynamics cannot be characterized as fully 

random, since ordered patterns emerge in the way cortical regions interact with each other to support human 

cognition (Sporns, 2011). 

 This balance between unpredictability, instability and organized information processing can be modeled as a 

physical system posed at a critical point (Chialvo, 2010). The theory of phase transitions distinguishes different 

types of dynamics in physical systems undergoing a second order phase transition: super-critical dynamics are 

disordered, random and unpredictable, whereas sub-critical dynamics are ordered, regular and predictable. At 

the transition between both phases, a critical point exists at which dynamics present characteristics of both 

super-critical and sub-critical regimes (Chialvo, 2010). These features include an optimal exploration of 

transiently stable (metastable) states (Werner, 2007), the emergence of long-range coordinated activity 

fluctuations (Fraiman and Chialvo, 2012; Haimovici et al, 2013), a maximal sensitivity to external perturbations 

(maximal susceptibility) (Tagliazucchi et al, 2015a), and self-similarity which is manifest in the scale-free 

distribution of activity bursts (scale-free avalanches) (Beggs and Plenz, 2003). The critical point naturally 

accounts for synchronized activity without need of a hard-wired excitation/inhibition balance for the prevention 

of a massively over-sychronized state (Haimovici et al, 2013). 

 These properties are advantageous to the human brain and have been hypothesized to underlie its flexible and 

adaptive information processing capabilities (Chialvo, 2010). For instance, the maximal susceptibility at the 

critical point can account for the example provided in the first paragraph, i.e. a widespread response to a 

relatively small sensory perturbation. Brain states characterized by over-activation and over-synchronization 

(such as epileptic seizures) (Engel et al, 1982; Bartolomei et al, 2014) or by diminished activity/glucose 

metabolism (such as coma or the vegetative state) (Laureys et al, 2004) are pathological and depart from healthy 

conscious wakefulness, a state endowed with excitation/inhibition and correlation/anti-correlation according to 

the model of critical brain dynamics (Chialvo, 2010). It is natural to postulate that if the brain can be modeled as 

a critical system during health, injury and disease could be modeled  as  a displacement from such critical point.  

 While experimental evidence is compatible with the model of critical brain dynamics (Chialvo 2010, 

Tagliazucchi and Chialvo 2011), relatively few studies have addressed the hypothesis that brain injury can be 

modeled as  a displacement from the critical point. This highlights the need of a modeling effort able to provide 

testable predictions for future experiments, as well as to explain available data in the light of this hypothesis. In 

the present work we filled this gap by constructing a conceptual large-scale model of critical brain dynamics 

unfolding on realistic anatomical or structural connectivity, and by using it to predict how several metrics 

related to different aspects of critical dynamics behave when the aforementioned network of structural 

connections (“connectome”) (Hagmann et al, 2008) is damaged.   
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Previous computational modeling studies have attempted to link damage at the level of structural connections 

with functional impairments (Honey and Sporns, 2008; Alstott et al, 2009; Vása et al, 2015; Kraft et al, 2012). 

However, such studies have not investigated the connection between features predicted by critical models of the 

brain and structural damage, nor have they evaluated the consequences of lesions by focusing on brain-wide 

signatures of “healthy” flexible and adaptive dynamics (as opposed to investigating local changes in functional 

connectivity or activity). By virtue of the universality observed in critical dynamics (Chialvo, 2010) it could be 

possible to obtain general results independent of the microscopic details of previously investigated models. 

Also, while most previous studies focused on the functional alterations elicited by attacks targeted at nodes with 

special topological properties (for instance, hubs, i.e. nodes of high degree), it is currently unknown if similar 

alterations can be produced by removing a number of links equivalent to those lost when the hubs are removed. 

We investigate here this issue, which is crucial to evaluate the recent hypothesis that brain disorders 

preferentially target structural hubs (Crossley et al, 2014), and also for the interpretation of experimental reports 

linking lesions located at hubs with a variety of brain disorders (Buckner et al, 2009; Achard et al, 2012; Agosta 

et al, 2013; Rubinov and Bullmore, 2013; Baggio et al, 2014; Liu et al, 2014). 

 

II. MATERIALS AND METHODS 

 

A. Computational Model 

 

The computational model was adapted from previous work (Haimovici et al, 2013) and consists of a variation 

of the Greenberg-Hastings cellular automaton (Greenberg and Hastings, 1978). Connections in the model are 

given by the anatomical connectivity matrix (connectome). For a detailed description of the structural 

connectome and its derivation from diffusion spectrum imaging data see the work of Hagmann et al, 2008. 

Briefly, each of the 998 network nodes corresponds to a cortical region of approximately 2 cm2 and the 

weighted links represent the density of white matter fiber tracts joining each pair of regions (measured with 

diffusion spectrum imaging (Hagmann et al, 2008).  

Figure 1A shows the connectome embedded in anatomical space (left) as well as its weighted adjacency 

matrix (right), noted here by Wij. The dynamical rules of the model are illustrated in Figure 1B. Each node may 

be in one of three possible states: inactve (I), active (A) or in a refractory state (R). The sequence of states 

followed by each node is dictated by three transition rules: (1) I →   A with a small fixed probability !" = 10&'  , 

or if the sum of the connection weights with the active first neighbours is higher than a threshold T (i.e. node i 

becomes active if !"##,%&'"() > +  ), otherwise I→  I (2) A→  R always, and (3) R→  I with a small probability  

!" = 0.2  , delaying the transition from the R to the I state for some time steps. Parameters r1 and r2 were held 

fixed and determined the time scales of self-excitation and recovery from the excited state, respectively. 

Varying T allowed the system to follow a transition between a super-critical phase consisting of sustained but 

non-coherent activity (i.e. small T facilitated propagation of activity) and a sub-critical phase alternating periods 

of activation and quiescence, where spontaneous excitation could not become self-sustained (i.e. large T 

hindered propagation of activity). Figure 1C shows examples of the three possible scenarios (super-critical, 

critical and sub-critical). Examples of the mean activity produced by the model are shown in Figure 1D. The 

super-critical state is characterized by fast and temporally uncorrelated fluctuations, presenting a flat power 
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spectrum typical of white noise (Figure 1D). The critical state presents oscillatory activity (the time scale of the 

oscillations is determined by r1 and r2) with long-range temporal correlations in their envelope. In this case the 

power spectrum has a well-defined peak and a slowly decaying tail. The sub-critical state also presents 

oscillations, but at a slower frequency and much more regular in terms of amplitude than in the critical case. 

Most of the spectral power is concentrated in the low frequencies. Previous work shows that this model best fits 

empirical fMRI data at its critical point (Haimovici et al, 2013). 

 

B. Metrics of model dynamics 

 

We explored a set of different metrics to describe the dynamics of the model and their distance to its critical 

point. These metrics were employed to assess the dynamical consequences of lesions on the structural 

connectome. Their choice was motivated by two considerations: i) they have been previously shown to behave 

differently in the super-critical, sub-critical and critical cases (either theoretically or empirically), ii) they have a 

heuristic interpretation in terms of brain activity and whether it can be considered healthy or pathological.  

 

The following metrics were investigated: 

 

• Lifetime of the sustained activity (τ) with spontaneous excitation suppressed (r1=0). Simulations 

started with 10 random nodes in the active state, and the rest of the system inactive. The lifetime was 

computed as the number of simulation steps after which the activity stopped. This is the classical order 

parameter for the Greenberg-Hastings model (Greenberg and Hastings, 1978; Copelli and Campos, 

2007).  

• The mean and standard deviation of activity fluctuations: 

 

< " > $ = &
' ((*+($),1)'

+/&              (1) 

< " >= %
& < " > (()&*+%           (2) 

! " = $
% < " > ( - < " > *%

+,$          (3) 

        

 

where N=998 is the number of nodes , M=300 is the length of the simulations and si(t) the state of node 

i at time t with three possibilities: !" # = 0,1, −1	  if the node is inactive, active and refractory, 

respectively. These metrics capture the degree of activity and whether global brain dynamics present 

temporal variability or are relatively constant over time Empirically, departures from a sufficiently high 

degree of variability have been linked to brain pathology and ageing (Garrett et al 2013).   

  

• The size of the second largest cluster (S2). Clusters consisted of neighbouring and simultaneously 

active nodes. “Neighborhood” was defined by the presence of a direct connection in the structural 

connectivity network. In contrast to the first largest cluster S1 (which grows monotonously as activity 

increases in the model), S2 peaks right before activity coalesces into a giant connected component, 
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and decreases afterwards. These two metrics are standard order parameters in percolation theory 

(Stauffer and Aharony, 1994) and have also been employed as order parameters for the Greenberg-

Hastings model (Haimovici et al, 2013). Biologically, S2 captures how close the brain is to 

experimenting a massive co-activation, similar to a neural avalanche of activity (Beggs and Plenz, 

2003; Tagliazucchi et al, 2012).  

 

• The statistics of the pairwise correlation function. Each node's time series was binarized by assigning 1 

when the node was active and 0 when it was either inactive or refractory.  For purposes of temporal 

integration, we convolved the time series of each node with a standard hemodynamic response 

function (HRF) (Buxton et al, 2004) yielding for node i a continuous signal !"($)   with mean value !"   
and standard deviation	"#  . The pairwise correlation matrix was computed as: 

 

!"# =
%('( ) -+()('- ) -+-).

/(/-
           (4) 

                

 and its mean and standard deviation as: 

 

 

< " >= %
&(&()) "+,+,,.+                                                                                                                         (5) 

! " = $
%(%'() "*+- < " > $

*,+0*           (6) 

 

   

These metrics capture global functional connectivity in the model (< " >  ) as well as the variability 

(!(#)  ) (Deco et al, 2014a) of functional connections, i.e. whether all nodes have high or low 

coupling, or both strongly and loosely coupled nodes co-exist at the same time. Note that here the 

term “functional connectivity” is always used to denote statistical covariance between model time 

series and not between empirical fMRI time series. 

    

• The linear correlation between the structural and functional connectivity matrices. We computed this in 

two ways. First, using both the weighted versions of the structural and functional connectivity 

matrices (C(F,S)w). Second, correlating the binary (thresholded) versions of the matrices (C(F,S)b). 

The structural connectome was binarized by assigning a value of 1 to all non-zero entries. The 

functional connectivity matrix was binarized by assigning a value of 1 to all entries larger than a 

certain threshold selected to fix the link density of the network. This resulted in binary versions of 

the structural connectome (Adjij) and functional connectivity matrices (Bij). We used values for the 

threshold such that the link density (!  ) was between 0.01 and 0.3 (at steps of 0.01).  The correlation 

between the binary adjacency matrices was averaged over the range of link densities. 

 

! ", $ % = '
(((*+)

+
-(.)-(/) (012- < 0 >)(!12- < ! >)162                                                    (7) 
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It has been shown that an optimal exploration of the underlying connectivity takes place near the 

critical point of different computational models (Tagliazucchi et al 2015, Deco et al, 2014b). 

Empirically, changes in anatomy-function coupling can characterize the departure from normal 

conscious wakefulness (Tagliazucchi et al, 2015a, Tagliazucchi et al 2015b; Barttfeld et al, 2014). 

 

•    Susceptibility of the system (!  ). The system was perturbed by activating 60% of the nodes at time 

t=0 (i.e. synchronously transitioning 60% of the nodes -chosen at random- towards the active state, 

regardless of their previous state and the dynamics of the model)Each node's time series was 

convolved with the HRF, and the mean response of the system was obtained by averaging the 

simulated signals from all nodes. The variance of the mean response was computed in sliding 

windows of length equal to 20 time steps.  The susceptibility was identified with the time elapsed 

until the variance decayed beyond a threshold of 10-3. Susceptibility is known to diverge for systems 

posed at criticality. The capacity of the brain to generate widespread and persistent activity in 

response to comparatively weak external perturbations (e.g. perceptual stimuli) has been postulated 

as a fundamental feature of conscious information access (Dehaene and Naccache, 2001). 

Experiments using non-invasive transcraneal magnetic stimulation (TMS) show that the elicited 

response is maximal during conscious wakefulness and is diminished in coma, vegetative and 

minimally conscious states (Casali et al, 2013). 

   

•   Inter-event time ( Δ"#$  ), defined as the mean number of time steps between two consecutive 

activations. If a node was not activated during the whole simulation, its inter-event time was set equal 

to the length of the simulation (300 time steps). The inter-event time is a local measure of the 

frequency of activations and relevant for the simulation of structural lesions, since acute brain injury is 

known the slow down the frequency of activity recorded with electroencephalography (EEG) (Tebano 

et al 1988; Thatcher et al, 2001; Machado et al, 2004; Gaetz, 2004). 

  

All results were averaged over 100 independent simulations with a total of M=300 time steps. 

 

 

C. Types of lesions 

     

    Each of the metrics defined above peaked at some intermediate point between the sub-critical and super-

critical regimes. We studied how these transitions changed after the structural connectivity network lost 

connections due to targeted attacks. In particular, we explored which topological properties of nodes and links 

were most relevant to induce alterations in the dynamics after lesions. The topological properties studied here 

and their relevance for characterizing complex networks are discussed in Rubinov and Sporns, 2010. 

  We investigated the computational model unfolding over the structural connectome and progressively damaged 

by removing: 
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• Nodes with the largest degree (number of first neighbours). 

• Nodes with largest connectivity strength (the sum of the weighted links to first neighbours). 

• Nodes with largest betweenness centrality (Freeman, 1977). The betweenness centrality of node i is 

defined as the ratio between the number of shortest paths connecting two nodes passing through i 

(!"#(%)  ) over the total number of shortest paths (!"#  ). This was calculated using both the binary 

adjacency matrix and the weighted matrix. For the weighted case, we defined the distance between 

two nodes as the inverse of the weighted link connecting them. 

!"($) &
('-))('*&)

+,-(.)
+,-/010.             (9) 

• Nodes with the largest eigenvector centrality. As an alternative measure of centrality, the eigenvector 

centrality of node i is equivalent to the i-th element in the eigenvector corresponding to the largest 

eigenvalue of the adjacency matrix (Lohmann et al, 2010). 

•  Nodes with the largest participation coefficient. The participation coefficient measures the importance 

of a given node for connecting different modules of the network (Guimera and Amaral, 2005).  

• Links with the largest betweenness centrality.  

• Links with the heaviest weights. 

• Nodes chosen at random. 

• Links chosen at random. 

 

 

III. RESULTS 

 

      A. Lesions at the 998 nodes resolution 

 

We first investigated the behavior of all metrics as a function of the threshold T, and how this behavior 

changed when nodes were targeted by degree (up to 300 of the nodes removed in order of highest degree, 

representing up to 65% of the connections in the network).  

 Figure 2 shows the results of this analysis for the metrics introduced in the Methods section (!(#)  : 
variance of total activity fluctuations, Δ"#$'   : first derivative of the inter-event time,	"	  : susceptibility, <C>: mean 

pairwise correlation function, !(#)  : standard deviation of the pairwise correlation function, !'  : first derivative of 

the lifetime of the sustained activity, C(F,S)b: correlation between anatomical and functional connectivity 

(binary), C(F,S)w: correlation between anatomical and functional connectivity (weighted), S2 : size of the second 

largest cluster).  We observed that all metrics peaked at or near T=0.06, except	Δ#$%'    that peaked at a higher 

value of T. This threshold value was very similar to the one previously reported as corresponding to the critical 

point of the model (Haimovici et al, 2013), even though the relatively small system size precluded the 

observation of a sharp phase transition. We note this critical threshold as TC = 0.06 and identified in our model 

with that of a “healthy brain”, given that simulations are known to provide the best match with empirical fMRI 

data of healthy control subjects at TC (Haimovici et al, 2013). In all cases, removing nodes by largest degree 

displaced the curves to the left, i.e. all metrics progressively peaked at smaller values of T. This implies that for 
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a fixed value of T, damage by degree will progressively drive the system out of the critical point towards the 

sub-critical regime.  

 We then studied how the critical threshold TC was displaced for all metrics as a function of targeted damage 

following the rules presented in the “Types lesions” subsection (quantified by the % of links removed). Results 

are shown in Figure 3. Targeted attacks should be compared to random removal of nodes and links. 

Interestingly, the only lesioning rules departing from random attacks corresponded to removing links by weight 

and by weighted betweenness centrality. Note that when removing links by weighted betweenness centrality, the 

damage rose up to only 20% of the network. This was because only 20% of the links had a non-zero weighted 

betweenness centrality (the distribution of weights was heavy tailed, so all shortest paths passed through a 

relatively small subset consisting of the “heaviest” links only). 

  Thus, the main results are that: i) all metrics except inter-event time consistently peaked at or near a critical 

threshold of TC= 0.06, ii) the most relevant features to explain the dynamical consequences of structural damage 

were the weight and the weighted betweenness centrality of the removed links, iii) the effect of removing a large 

percentage of links by weight or by weighted betweenness centrality was to displace the system away from TC 

towards the sub-critical regime. 

 

   B. Lesions at coarser anatomical regions 

 

  At the level of 998 nodes it is difficult to investigate the effects of coarse lesions encompassing larger 

brain regions with well-established functional roles. To investigate this, we mapped the 998 nodes onto the 90 

cortical regions defined by the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al, 2002). 

Lesions in the AAL regions removed all connections with at least one end attached to any node within the 

region (containing a subset of the 998 nodes in the original parcellation). We note, however, that the simulations 

were still performed on the full network with 998 nodes and that the mapping onto the AAL atlas only 

determined the connections removed after lesioning the network. 

  To provide a single numerical index gauging the effect of lesioning the network, we first introduced the 

relative deviation in the value of each metric (O) with respect to its value at TC (“healthy” state, O0): 

    

∆" = $-$&
$&

∗ 100            (10) 

 

We ranked the regions according to the consequences of their removal by combining all metrics introduced 

in the “Metrics of model dynamics” subsection into a single damage index z, defined as: 

 

! = ∆$ %&              (11) 

 

Figure 4A shows how each metric deviated from its value at TC after each region in the AAL atlas was 

targeted for removal. The red dots indicate the four regions with the largest damage score z.  These regions 

correspond to the left and right precuneus (posterior cingulate cortex) and the middle cingulate cortex.  The 

analysis performed in the previous section revealed that the most important features to explain changes in the 

metrics were the weight and the weighted betweenness centrality of the removed connections. To further 
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explore this at the coarser level of anatomical regions in the AAL atlas, we studied the effects of randomly 

removing links with the constraint of preserving the sum of weights associated with the removal of each AAL 

region. In other words, we attempted to answer the following question: was there any topological property of the 

precuneus and middle cingulate cortex accounting for the dynamical consequences of removing them from the 

network, or was it possible to produce a similar damage by removing a larger number of links spread throughout 

the network, as long as their total associated weight equaled that of the aforementioned regions? The red curve 

in the bottom plot of Figure 4A shows that random attacks can cause an effect similar to targeted attacks, as 

long as the total weight of the removed links is the same.  

We also investigated the similarity between results obtained using the different metrics. To this purpose, we 

computed the correlation coefficient between the absolute values of each pair of plots in Figure 4A. The 

absolute value was taken to discard the effects of the sign in the change of each measure. In fact, the z-index 

itself does not consider the sign of each measure either. A high correlation implies that the two metrics changed 

in a similar way when each AAL region was removed, a low correlation implies that the two metrics captured 

different aspects of the dynamical consequence of network damage. The results of this analysis are shown in 

Figure 4B in the form of a 12 x 12 matrix containing all correlation coefficients. The lower left corner of this 

matrix reveals that a number of metrics were highly correlated. The susceptibility !   was the most independent 

of all metrics, but S1, mean activity (< " >  ) and the lifetime of sustained activity (!  ) were the most correlated 

with z-index, while !(#)  , ! " 	  and < " >   formed a 3 x 3 sub-matrix with high correlation values.   

 In Figure 5A we present a 3D rendering of the damage index z obtained by removing each AAL region. To 

investigate the relationship between z and the topology and weight of network connections at the coarser level 

of the AAL atlas, we considered the degree and betweenness centrality as well as their weighted counterparts 

(strength and weighted betweenness centrality). These network features were calculated on the coarser 90 x 90 

adjacency matrix derived from the finer grained 998 x 998 original matrix. The i,j entry in this matrix was 

computed as the sum of all links with one end in any node within region i and the other end in any node within 

region j. A rendering of these features onto brain anatomy is presented in Figure 5B. As expected from the 

results discussed in the previous paragraph, all network features taking into account link weight presented a 

higher correlation with z (Figure 5C). 

All analyses performed up to this point concerned global averages (i.e. how damage to a single region 

impacted the dynamics of the system as a whole). It is interesting to investigate if specific effects could be 

obtained by damaging each AAL region. To this aim we investigated the changes in inter-event time (∆"#$  ) in 

response to removing each of the 90 AAL regions. The results of this analysis are shown in Figure 6A. As 

shown in this figure, the weight of the link connecting each pair of regions predicted	∆#$%	  after removing one of 

them, especially for large  (>10-1) connection strength. 

Figure 6C shows renderings of	∆#$%   in all 90 regions after removing each of the top ten regions in terms of 

the global change of	∆#$%   (as in Figure 4A). In all cases we observed that the local lesion affected a relatively 

widespread network of regions, and that the most affected regions were anatomically close to the location of the 

lesion. Changes in ∆"#$   were always in the direction of a slowing down of activity (i.e. increases in inter-event 

time). The renderings presented in Figures 5 and 6 were visualized with BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/) (Xia et al, 2013). 
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IV. DISCUSSION 

 

Prior to the development of neuroimaging, the study of brain lesions was possibly the only way of 

systematically probing the functional role of cortical regions (Posner, 1988). The development of methods 

capable of resolving the large-scale connectivity of the human brain, together with theoretical and 

computational modeling advances, allows an exhaustive in-silico exploration of the consequences of anatomical 

lesions. While the study of behavior is not possible from simulations, they can be used to predict alterations in 

brain dynamics as a function of the topological properties of the damaged nodes. The uncontrolled nature of the 

lesions investigated in clinical studies make an exhaustive exploration of cortical lesions very difficult or even 

impossible. This exhaustive exploration is only possible through the simulation of focal structural damage in 

models of brain dynamics. 

The present study investigated the dynamical consequences of introducing lesions (i.e. removal of network 

nodes) in a simple model of whole-brain activity posed at the critical point of a phase transition. In contrast with 

previous studies using more complex and realistic models of neural dynamics (Honey and Sporns, 2008; Alstott 

et al, 2009), our approach allowed us to focus on how lesions displaced the system from such critical point, and 

how this displacement impacted on a number of metrics of “healthy” brain dynamics. Our main conclusion is 

that attacks targeted at high-weight connections disrupted the dynamics of the system by decreasing its critical 

threshold TC and thus inducing a sub-critical state. The emergence of the sub-critical state after structural 

network damage implies a decrease in the activity levels of the system and a general slowing down of its 

fluctuations, loss of functional connectivity and its variability, and diminished reactivity to external 

perturbations (susceptibility). While experimental evidence suggests that the human brain can be modeled as a 

system at criticality, (Chialvo, 2010; Tagliazucchi and Chialvo, 2011), relatively few studies have modeled the 

effects of brain lesions and disorders from this perspective. Future research efforts should focus on evaluating 

signatures of sub-critical dynamics after human brain injury, as well as other signatures accessible from invasive 

neural recordings in animal models (e.g. alterations in the scale-free distribution of neural avalanches) (Beggs 

and Plenz, 2003; Tagliazucchi et al, 2012). 

An ongoing controversy exists concerning the role that criticality plays in human brain function. In first place, 

the concept of criticality originates from physical systems with relatively simple and well-understood rules; it is 

thus unclear whether it applies to more complex biological systems (such as the brain) or whether it is only 

useful as a model or approximation. Furthermore, critical dynamics could be dismissed as an uninteresting 

consequence of self-organized non-linear systems with many degrees of freedom (Bak et al, 1987). However, an 

important role for criticality is suggested by studies showing that slow wave sleep (Priesemann et al, 2013), 

epilepsy (Meisel et al, 2012), and anesthesia (Scott et al, 2014) can be modeled as a  departure towards sub- and 

super-critical regimes. Experimental confirmation of our prediction – modeling brain injury as a displacement 

towards the sub-critical state - would add further support to the importance of criticality. It has also been 

questioned whether the dynamics of the brain during wakeful rest can be considered critical (Beggs and Timme, 

2012), and it has been suggested that slightly sub-critical dynamics could provide a “safety margin” necessary to 
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avoid the pathological consequences of super-criticality (Priesemann et al, 2014). More generally, it has been 

argued that the widespread observation of criticality in complex systems could be biased by the inference 

methods (Mastromatteo and Marsili, 2011) and the selection of statistically relevant descriptions of the data 

(Marsili et al, 2013; Haimovici and Marsili, 2015). However, our study must be understood as a first 

approximation to the question: “What are the dynamical consequences of structural damage to a model of brain 

dynamics posed at criticality?”. Future studies must address whether the brain is really critical, slightly sub-

critical, or whether criticality in the brain is global or local, and whether the dynamical regime of the brain is 

fluctuating or in a steady state. It is important to discuss our results in the context of previous empirical and 

simulation studies. Modeling of focal damage to the human and macaque structural connectomes revealed a 

maximal impact of lesions located at midline and parietal regions, coinciding with the nodes of highest degree 

(hubs) (Honey and Sporns, 2008; Alstott et al, 2009; Cabral et al, 2012). This might follow from the observation 

that removing hubs from the connectome results in maximal structural disconnectivity, as measured with the 

small-world index (Sporns et al, 2007). Since hubs are the nodes associated with the highest number of 

connection fibers, our finding that the main predictor of the dynamical consequences of network damage is the 

number of affected fibers is consistent with these previous studies. While most previous work focuses on the 

relationship between global functional or structural network properties and the topological role of the lesioned 

nodes, the study of Váša and colleagues focuses on the consequences of damage to a simple conceptual model 

exhibiting a critical point (the Kuramoto model) (Váša et al, 2015). Their finding of increased metastability after 

damage to hubs apparently contradicts our observation of a shift towards the sub-critical regime. It is not clear, 

however, that their tuning method results in parameters corresponding to the critical point of the model (as 

measured, for instance, by the divergence of susceptibility); therefore a displacement towards sub-critical 

dynamics from a super-critical working point could increase the flexibility of the dynamics (metastability). 

The changes in the dynamics after simulated damage were consistent with empirical studies of acute brain 

injury, for instance, of traumatic brain injury and acute ischemic stroke. Metabolism is known to decrease after 

these events, and decreased glucose consumption is indicative of diminished energetic demand and neural 

activity levels (Kuhl et al, 1980; Baron et al, 1986; Vagnozzi et al, 2010). A focal slowing down of EEG 

rhythms is generally observed in the affected region and might also extend to a larger cortical network, often 

including the region contralateral to the lesion site (Tebano et al 1988; Thatcher et al, 2001; Machado et al, 

2004; Gaetz, 2004). Reactivity (e.g. reaction time) can be decreased after brain injury, suggesting a less efficient 

percolation of sensory information to the executive and motor networks of the brain (Stuss et al, 1989). 

Traumatic brain injury and stroke both reduce long-range functional communication in the brain (assessed with 

resting state fMRI) (Mayer et al, 2011; Sharp et al, 2011; Grefkes and Fink, 2014).  These empirical 

observations are consistent with the drop in activity levels (!	  and	< # >  ), frequency of activations (∆"#$  ), 

susceptibility (!  ) and pair-wise correlation (< " >   ), respectively, characterizing the displacement towards the 

sub-critical regime. It must be kept in mind that brain metabolism was not directly modeled and thus only an 

indirect link may exist between it and certain simulated variables, such as the rate of activations of a given node. 

Brain dynamics and metabolism are fundamentally altered in the extreme of damage leading to a state of 

non-responsiveness, such as coma or the persistent vegetative state. In these cases, fronto-parietal metabolism 

(Laureys et al, 2004) and functional connectivity (Vanhaudenhuyse et al, 2010) are diminished, and the power 

of slow EEG rhythms (such as delta at 1-4 Hz) is globally increased (Schiff et al, 2014). A typical EEG pattern 
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observed in comatose patients is burst suppression, consisting of periods of activity (“spikes”) alternating with 

periods of inactivity (Young, 2000). This pattern is qualitatively similar to the global average produced by our 

model in the sub-critical regime (see Figure 1D, third panel), and consistent with our observation that extensive 

structural damage leads to sub-critical dynamics in the model. A drastic reduction in the susceptibility !	  of the 

system could cause a failure of sensory stimuli to elicit the widespread brain activation postulated to underlie 

conscious access by the global workspace theory of Baars and Dehaene (Dehaene, 2001), accounting for loss of 

conscious content after severe brain injury. The bistable nature of sub-critical dynamics (periods of activity 

alternating with periods silence) presents a low degree of differentiation, understood as a highly reduced number 

of possible states. Reduced differentiation in the sub-critical regime is consistent with loss of conscious 

awareness in the context of the Information Integration Theory of consciousness put forward by Tononi 

(Tononi, 2004). 

Another consequence of structural damage to our model operating at criticality was decreased similarity 

between functional and structural networks. This prediction is valuable since alterations in the coupling between 

anatomical and functional networks remain understudied in the context of brain disorders. Research on human 

slow wave sleep and anesthesia, two brain states modeled as sub-critical (Priesemann et al, 2013; Scott et al, 

2014), reveals a regional decoupling of brain structure and function (Tagliazucchi et al, 2015a; Tagliazucchi et 

al, 2015b) supporting the prediction that brain lesions could result in a similar decoupling. 

Clinical studies reveal that the effects of localized damage (e.g. stroke) are highly variable and depend on 

the location of the insult (Damasio and Damasio, 1989). Our analyses highlighted a small set of high degree 

regions (hubs) as the most vulnerable points of brain anatomy. In particular, targeting midline regions such as 

the posterior cingulate cortex/precuneus and the middle cingulate cortex maximized the dynamical 

consequences of the lesion. This observation resonates with a recent meta-analysis showing that brain disorders 

tend to be associated with anatomical damage (quantified via voxel-based morphometry) located at structural 

hubs (Crossley et al, 2014). These regions are generally considered “higher-level” cortical areas (as opposed to 

“lower-level” primary sensory areas) and operate as converging or integrative areas in the brain. In the case of 

the posterior cingulate cortex, it is also a pivotal node in the default mode network (DMN) (Fransson and 

Marrelec, 2008) - a network of brain regions increasing its activity during rest (Raichle et al, 2001) and 

implicated in a variety of brain disorders (Whitfield-Gabrieli and Ford, 2012). The high energetic cost of hub 

regions (Liang et al, 2013) could augment their vulnerability, as they would be the first to be affected by brain 

pathologies restricting neuronal metabolism.  

One important question left unanswered by previous modeling studies is whether the removal of hubs is 

equivalent to the removal of a set of links of equivalent weight. Equivalently, do brain hubs have some special 

topological role in the connectome so that their removal has the strongest effects on dynamics, or can we obtain 

a similar result by lesioning a larger number of smaller-degree nodes? Here we demonstrate that for our model 

of brain dynamics at criticality the second alternative is correct (Figure 4A, bottom plot). This observation 

suggests a different reason why hubs are involved in such a wide spectrum of brain disorders. It is possible that 

certain brain pathologies (either acute or neurodegenerative) arise due to widespread damage amounting to a 

certain weight of structural connections. However, inter-individual variability will obscure differences that are 

not located at hubs, since many possible combinations exist to remove connectome links summing up to a 

certain total weight. On the other hand, damage to cortical hubs provides a consistent way of removing a large 
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connectivity weight from the network, and therefore these lesions will be highlighted after averaging over large 

clinical populations. This hypothesis can also explain why the default mode network appears implicated with 

such a wide spectrum of dissimilar diseases (Whitfield-Gabrieli and Ford, 2012), since it is mainly comprised 

by high-degree regions (Hagmann et al, 2008). Since it is known that individual structural connections are not 

sufficient for the prediction of the emergent functional networks (Mišić et al, 2016), future studies should focus 

on evaluating the impact of removing structural connections on the formation of coordinated large-scale 

functional networks, and whether this impact also only depends on the number of removed fibers, regardless of 

their topological role. 

Our study has a number of limitations to be addressed in the future. First, diffusion spectrum imaging is an 

imperfect technique for determining the structural connectivity of the human brain. In particular, it is known to 

under-estimate long-range and homotopic connections (Messé et al, 2014; Reveley et al, 2015). As the diffusion 

MRI techniques are improved over time, simulation studies based on the structural connectome should be 

revisited. A related limitation is the reduced number of subjects used to create this version of the structural 

connectome. While modifications in the underlying connectivity of the model could change how regions are 

ranked according to their vulnerability (Figure 4), it is unlikely that other aspects of our results will be affected; 

for instance, our result concerning the similarity between targeting hubs or an equivalent number of lower-

degree nodes. A second limitation is the lack of plasticity in our model. The human brain is known to reorganize 

and compensate for anatomical damage (Kolb and Gibb, 2007), and while a displacement towards the sub-

critical regime is predicted by our analysis, it is likely that changes in connectivity over time will revert the 

dynamics of the brain towards the critical point. It is also likely that brain injury leads to the release of 

neurotransmitters capable of globally altering brain excitation (e.g. glutamate) (Katayama et al, 1990), 

represented in our model as a shift of the threshold towards a critical value. Finally, the displacement towards 

the sub-critical regime after network lesions could be predicted from the absence of inhibitory connections, 

whose disruption could lead towards super-critical dynamics instead. However, diffusion spectrum imaging and 

related techniques cannot differentiate between long-range excitatory and inhibitory connections (Park and 

Friston, 2013). Furthermore, the majority of inhibitory connections in the brain are local and do not project over 

distant cortical areas (Freund and Kali, 2009). In our model, inhibition of local nodal dynamics was represented 

by the probability of transitioning out of the refractory period, a parameter that was held constant in all 

simulations.  

Finally, we employed a simple and non-realistic model of brain activity. However, the universality of 

critical dynamics could guarantee that similar results will be observed for more complex and detailed 

computational models of neural dynamics, as long as they are posed at a critical point. In this sense, our simple 

model is an advantage: studying the effects of anatomical lesions by means of all known variations of neural 

models would represent a painstaking effort; however, we were able to provide generic results by focusing on 

the concept of criticality instead of addressing the microscopic details of the model. 

 

V. CONCLUSION 

 

In summary, we have combined empirical information on the network of human anatomical connections 

with the hypothesis that brain dynamics can be modeled as a critical point of a phase transition. From this 
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combination we derived a number of results consistent with existing studies, and made clear predictions for 

future experiments. The hypothesis of criticality as a plausible model for brain dynamics should not only 

attempt to explain the defining characteristics the healthy state, but also account for the consequences of 

anatomical damage. Our work represents a first step in this direction and should be followed by experiments 

designed to test its predictions, both in human subjects and animal models of brain pathology. 
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FIGURES 

 

 
Figure 1:  Computational model and the underlying connectivity network. A) Anatomical embedding of the 

structural connectome measured with diffusion spectrum imaging (left) and its adjacency matrix Wij (right). B) 

Illustration of the rules governing the transition between the three possible states of the system: inactive (I), 

active (A) and refractory (R). In the example, three active nodes and one refractory node surround an inactive 

node; activity propagates to the central node in the second time step, and finally this node reaches the refractory 

state in the third step. C) Example of super-critical (! < !#  ), critical (! = !#  ) and sub-critical (! > !#  ) 
dynamics for all 998 nodes simulated for 150 time steps. D) Examples of the average activity generated by the 

model in the super-critical, critical and sub-critical regimes. E) Power spectra (mean ± SD) of the average 

activity generated by the model in the super-critical, critical and sub-critical regimes. 

 

 



22 

0 0.05 0.15

10

15

χ

0 0.05 0.10

20

40

∆
 t’

ev

0 0.05 0.10

0.1

0.2

τ’

0 0.05 0.10

1

2 x 104

S2

Threshold

0 0.05 0.10

0.005

0.01

0.015

<C
>

0 0.05 0.10

0.05

0.1

σ
(C

)

0 0.05 0.10

0.2

0.4

C
(F

,S
) w

0 0.05 0.10

0.2

0.4

C
(F

,S
) b

0 0.05 0.10

1

2 x 104

σ
(A

)

0%65%
Damage

 
Figure 2:  Changes in the phase transition as a response to attacks targeting the highest degree nodes. We 

disconnected the nodes with largest degree, up to 300 nodes (equivalently, 65% of the connections in the 

network). For each metric, the critical point moved from its original position (thick red curve) to lower values. 

The inter-event time (∆"#$  ) presented a monotonic increase saturating at large T and vanishing for small T. 

Similarly, the lifetime of the activity (τ) saturated for small T values and vanished for large T. We therefore 

plotted the derivative of these metrics with respect to T (∆"#$' , ''  ) to obtain their critical values. 
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Figure 3:  Displacement of the critical point as a result of damage following different procedures. The critical 

point (TC) moved towards lower values when the network was damaged following all the explored criteria. We 

removed links and nodes by largest binary (BC) and weighted (wBC) betweenness centrality, largest degree, 

connectivity strength, eigenvector centrality (EVC) and participation coefficient (PC), as well as links by largest 

weight. In addition, the dotted and dashed lines show the results of randomly removing nodes and links. The 

only two criteria leading to damage significantly greater than random attacks were the removal of links by 

weight and by weighted betweenness centrality. 
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Figure 4:  Dynamical consequences of lesions at the AAL atlas resolution. A) Response of the system after 

attacking each of the 90 AAL regions. Each sub-plot shows the change in each metric relative to the un-attacked 

system (dashed line at level zero). The bottom plot shows the damage score z (Eq. 11) for each region. Red dots 

highlight the regions presenting the largest z (bilateral precuneus and middle cingulate cortex). The red curve in 

the bottom plot shows the results obtained by randomly removing links with the constraint of having a total 

weight equivalent to that of the corresponding AAL region. B:) Correlation matrix for the changes in the metrics 

across all AAL regions. 
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Figure 5:  Correlation between the damage index z and the topological features of the network. The top 

rendering (panel A) shows the values of z across all 90 AAL regions. The bottom renderings (panel B) show the 

values of strength, weighted betweenness centrality, degree and binary betweenness centrality. C) Scatter plots 

and linear fits for the damage index z vs. the topological properties illustrated in panel B. Weighted measures 

(strength and weighted betweenness centrality) show the highest correlations with z. 
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Figure 6:  Consequences of lesions on the local dynamics of AAL regions. A) Local changes in the inter-event 

time (∆"#$  ) at each AAL region (columns, “Observed") in response to removing another AAL region (rows, 

“Removed"). B) Changes in inter-event time as a function of the strength of the link joining each pair of regions. 

C) Renderings of the changes in inter-event time after removing the top 10 regions in terms of their influence 

after targeted lesions. 

 

 


