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Abstract

Conscious perception relies on interactions between spatially and functionally distinct modules of the brain at
various spatiotemporal scales. These interactions are altered by anesthesia, an intervention that leads to fading
consciousness. Relatively little is known about brain functional connectivity and its anesthetic modulation at a
fine spatial scale. Here, we used functional imaging to examine propofol-induced changes in functional connec-
tivity in brain networks defined at a fine-grained parcellation based on a combination of anatomical and func-
tional features. Fifteen healthy volunteers underwent resting-state functional imaging in wakeful baseline,
mild sedation, deep sedation, and recovery of consciousness. Compared with wakeful baseline, propofol pro-
duced widespread, dose-dependent functional connectivity changes that scaled with the extent to which con-
sciousness was altered. The dominant changes in connectivity were associated with the frontal lobes. By
examining node pairs that demonstrated a trend of functional connectivity change between wakefulness and
deep sedation, quadratic discriminant analysis differentiated the states of consciousness in individual participants
more accurately at a fine-grained parcellation (e.g., 2000 nodes) than at a coarse-grained parcellation (e.g., 116
anatomical nodes). Our study suggests that defining brain networks at a high granularity may provide a superior
imaging-based distinction of the graded effect of anesthesia on consciousness.
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Introduction

Consciousness has been a target of scientific inquiry in
anesthetized subjects, patients in unresponsive wakeful-

ness, and various neuropsychological conditions. Conscious-
ness is best defined as a subjective experience, which implies
its phenomenal nature (Chalmers, 1998). In clinical sciences,
the presence of consciousness is generally defined by the pres-
ervation of purposeful behavioral responsiveness, although it
may also be implied by a covert volitional response (Monti
et al., 2010). In this work, we adopt the clinical behavioral
definition that a purposeful response implies the subject’s
ability to consciously access information, not withstanding
that the converse does not negate the possibility of phenom-
enal experience.

Current theories postulate that the neuronal mechanism of
consciousness involves the functional interaction of brain re-

gions in a global workspace that allows the integration of infor-
mation processed by different modalities (Baars, 2002, 2005;
Dehaene et al., 2003; Tononi, 2012). General anesthesia may
suppress consciousness by disrupting information integra-
tion (Alkire et al., 2008), essentially ‘‘unbinding’’ the pieces
of information processed by various components of the global
workspace (Mashour, 2013). This model implies that an under-
standing of the mechanisms of anesthetic suppression of con-
sciousness requires an analysis of functional connections
across the association networks of the entire brain.

Mapping the brain as a connected network requires the
subdivision (parcellation) of major brain regions into smaller,
structurally, and functionally connected regions, which are
also called network nodes (de Reus and van den Heuvel,
2013). The current imaging-based brain parcellation ap-
proaches are based on predefined anatomical templates (Fischl
et al., 2004; Tzourio-Mazoyer et al., 2002), randomly generated
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templates (van den Heuvel and Sporns, 2011), selected puta-
tive functional areas (Power et al., 2011), and recently, mul-
timodal gradient-based areal maps (Glasser et al., 2016).
Evidence also indicates that defining brain networks at a
higher granularity of parcellation allows a more prominent
display of topological features of the brain (Hayasaka and
Laurienti, 2010; Zalesky et al., 2010). In one of our former
studies, the granularity of parcellation of brain networks was
increased by dividing each anatomical region into smaller sub-
regions based on voxel-wise functional connectivity (Liu
et al., 2014). This parcellation scheme allowed us to detect
whether a power-law node-degree distribution emerged in in-
dividual vegetative-state patients in comparison to healthy in-
dividuals in a state of unconsciousness during anesthetic
sedation. However, such a detection capability was not possi-
ble with a coarse-grained anatomical template alone.

Former neuroimaging studies of the effects of anesthesia on
consciousness identified diverse changes in brain functional
connectivity, including spatiotemporal configuration (Schroter
et al., 2012), global and local information processing (Monti
et al., 2013), functional integration (Schrouff et al., 2011),
breakdown of modular networks (Boveroux et al., 2010; God-
win et al., 2015), departure from criticality (Tagliazucchi
et al., 2016), temporal variability (Huang et al., 2016), as
well as various cortical and subcortical networks (Hudetz,
2012). We propose that a reason for the disparate results may
be methodological due to the varied spatial granularity at
which functional connectivity was examined. Also, most stud-
ies to date reported group average results, ignoring potentially
important subject-specific changes. In some instances, voxel-
based measures of intrinsic connectivity were used in anesthe-
tized subjects (Martuzzi et al., 2010) and in patients with
neurological and psychiatric disorders (Scheinost et al.,
2012), which yield the highest granularity of blood-oxygen
level dependent (BOLD) signal-based connectivity.

The goal of this study was to determine the benefit of de-
fining brain networks by using a fine-grained parcellation up
to 2000 network nodes in terms of differentiating states of
consciousness as modulated by the anesthetic agent propofol.
Functional imaging was performed in four states: wakeful
baseline, light sedation, deep sedation, and recovery. Brain
parcellation was based on the combination of anatomical
and functional features (Liu et al., 2014). We then used a qua-
dratic discriminant analysis to differentiate the four states
of consciousness in individual study participants based on
the extracted features of functional connectivity changes.
We anticipated that a fine-grained functional parcellation
would enable better differentiation of anesthetic sedation
level-dependent states of consciousness in individual partici-
pants than that obtained with a coarse-grained parcellation.

Materials and Methods

The experimental protocol was approved by the Institu-
tional Review Board of the Medical College of Wisconsin
(MCW).

Study participants

Fifteen healthy volunteers aged 19–35 years (nine men and
six women, mean age 26.7 years, standard deviation 4.8, body
mass index < 25) provided written informed consent to partic-
ipate in this study. Participants were native English speakers

recruited from MCW communities with no history of neuro-
logical or psychiatric conditions.

Propofol administration

The anesthetic agent, propofol, was administered with a
bolus dose followed by a target-controlled continuous infu-
sion (STANPUMP). The pharmacokinetics and pharmacody-
namics of propofol have been described in detail and
mathematically modeled (Shafer et al., 1988). Propofol is a
favored choice for the study because it is a fast-acting drug
whose effect-site concentration can be predicted and con-
trolled by controlled infusion. We targeted a plasma concen-
tration of 1 lg/ml for light sedation and 2 lg/ml for deep
sedation. The Observer’s Assessment of Alertness and Seda-
tion (OAAS) score was used to determine the participants’ be-
havioral responsiveness. The OAAS is defined on a 6-point
scale, as follows: 5, responds readily to name spoken in normal
tone; 4, lethargic response to name spoken in normal tone; 3,
responds only after name is called loudly and/or repeatedly;
2, responds only after mild prodding or shaking; 1, responds
only after painful trapezius squeeze; and 0, does not respond
to painful trapezius squeeze. The lower dose was intended to
achieve an OAAS score of 3 or 4, and the higher dose was cho-
sen to achieve an OAAS score of 1 or 2. The latter was defined
as an unconscious state. To test behavioral responsiveness with
the OAAS score, the anesthesiologist entered the scanner room
and performed the defined assessment procedures at the bed-
side of the scanner before the next scan after the propofol
reached a predicted target concentration.

Resting-state imaging acquisition

Resting-state structural and functional MRI data were ac-
quired by using a whole-body 3T Signa GE scanner (GE
Healthcare, Waukesha, Wisconsin) with a standard 32-channel
transmit-receive head coil. Functional imaging data were ac-
quired during each of four 15-minute scans in wakefulness,
light sedation, deep sedation, and recovery, respectively
(Fig. 1A), with repetition time, 2 s; total volumes, 450; echo
time, 25 ms; slice thickness, 3.5 mm; in-plane resolution,
3.5 · 3.5 mm; number of slices, 41; flip angle, 77�; field of
view, 22.4 cm; and matrix size, 64 · 64. High-resolution
three-dimensional spoiled gradient-recalled echo (SPGR)
axial images were acquired before functional scans with TE/
TR/TI, 3.2/8.2/450 ms; slice thickness, 1 mm; 150 slices; flip
angle, 12�; field of view, 24 cm; and matrix size, 256 · 256.
Cardiac and respiratory activities were recorded.

Imaging data preprocessing

Imaging data preprocessing was conducted by using a
combination of Analysis of Functional NeuroImages
(AFNI),1 Statistical Parametric Mapping (SPM),2 FMRIB
Software Library (FSL),3 and Matlab software (The Math-
Works, Natick, MA). Raw functional images first underwent
retrospective correction of physiological motion effects by
cardiac and respiratory activities (3dretroicor in AFNI).
The first five data points were discarded to reduce the initial

1http://afni.nimh.nih.gov/afni
2www.fil.ion.ucl.ac.uk/spm
3www.fmrib.ox.ac.uk/fsl
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transient effects in data acquisition. Subsequent data prepro-
cessing included slice timing correction (3dTshift in AFNI),
despiking (3dDespike in AFNI), and motion correction
(mcflirt in FSL, producing three translational and three rota-
tional parameters for each volume image). No significant dif-
ferences of head motion in displacement and rotation were
found between the four functional scan conditions, and the
absolute mean displacement and rotation remained within a
small range of values in all cases (wakefulness: mean dis-
placement 0.21 – 0.14 mm, mean rotation 0.26 – 0.26o; light
sedation: 0.23 – 0.20 mm, 0.26 – 0.32o; deep sedation:
0.31 – 0.56 mm, 0.34 – 0.54o; recovery: 0.28 – 0.25 mm,
0.3 – 0.25o). Physiological noise was estimated by using the
average BOLD fMRI signals from regions of white matter
(WM) and cerebrospinal fluid (CSF) determined in each indi-
vidual’s anatomical images. The voxel-wise BOLD fMRI sig-

nals from each run were then analyzed with a general linear
regression model (3dDeconvolve in AFNI) by using the
eight nuisance regressors representing noise artifacts from
the motion variables (i.e., the three translational and three ro-
tational motion time series), WM, and CSF, respectively.
The residual signals of the regression analysis were consid-
ered representative of the denoised voxel-wise BOLD time
series. We then applied a bandpass filter within 0.01–
0.1 Hz to preserve only the low-frequency fluctuations in
voxel-wise BOLD signals. To double check the effect of ar-
tifact suppression, additional analyses (not reported here)
were conducted by using seed-based and ICA-based methods
to evaluate the well-documented intrinsic connectivity net-
works of the brain, such as the default mode, executive con-
trol, and salience networks. All intrinsic brain networks can
be identified clearly in consistency with prior studies

FIG. 1. Illustration of the anatomical-functional brain parcellation. (A) A combination of regional hierarchical clustering
and global thresholding of dendrograms determines the spatial granularity of parcellation as shown for 300, 500, and 2000
nodes. (B) Glass-brain images of 116 anatomical regions (Tzourio-Mazoyer et al., 2002) and functional parcellations at 500
and 2000 nodes. Nodes in six major anatomical divisions are color coded. The plots are from one participant as an example.
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(Raichle, 2011). We also examined in each subject func-
tional connectivity matrices among 116 anatomical regions
of interest (ROIs) (Tzourio-Mazoyer et al., 2002) that
cover the whole brain. No abnormal motion-induced global
increases of functional connectivity among the ROIs were
identified. Each participant’s high-resolution anatomical im-
ages were then transformed to the standard MNI (Montreal
Neuroimaging Institute) space (MNI152; flirt in FSL), fol-
lowed by registering functional data (flirt in FSL) to the
MNI space with a resampling to a 3-mm cubic voxel size.

Combined anatomical-functional network node
parcellation scheme

The combined anatomical-functional parcellation defines an
individual node as a cluster of voxels that shares a similar he-
modynamic BOLD response profile at wakeful baseline but is
constrained by the boundaries of a single anatomical structure
(Liu et al., 2014). The parcellation consists of three steps
(Fig. 1). First, 116 anatomical structures defined by a standard
brain atlas (Tzourio-Mazoyer et al., 2002) were delineated in
each participant’s anatomical images in the MNI space. Sec-
ond, hierarchical clustering was performed with the standard-
ized BOLD time series of all voxels in each of the 116
anatomical structures separately. The hierarchical clustering
resulted in 116 dendrograms based on computing the inner
squared distances between voxel time series after normaliza-
tion to z-scores. Third, a global cut-off threshold was applied
to all 116 dendrograms to determine the number of clusters
formed within each of the 116 anatomical structures and, there-
fore, the total number of nodes (Fig. 1A). The magnitude of this
global threshold could be set flexibly at a desired spatial scale
or granularity, at which a specific number of clusters (nodes)
covering the whole brain were obtained (Fig. 1B). The mean
BOLD time series of all voxels in each node was used to rep-
resent the node time series. Pearson cross-correlation between
each node pair was computed, resulting in a symmetric matrix
for each state of consciousness. Next, cross-correlation matri-
ces of all participants were aligned to reference three-
dimensional node coordinates from a representative participant
based on a nearest-neighbor node-to-node alignment principle.
In this way, a statistical comparison of paired group t-tests
could be performed. We chose to construct brain networks at
an increasing parcellation granularity, ranging from 116 ana-
tomical nodes up to 2000 nodes.

State classification based on indices of decreased
connectivity index and increased connectivity index

For state classification, we first identified node pairs that
showed significant changes (increase and decrease) of the
correlation coefficient (CC) by contrasting wakefulness and
deep sedation by using a paired group t-test at a threshold
of p = 3.0 · 10�5 at the brain parcellation of 2000 nodes.
The p-threshold was chosen to aid the visual display of node
pairs with significant connectivity changes without an excessive
crowding of overlapping lines. The p-threshold was not cor-
rected for multiple comparisons. Bonferroni correction for mul-
tiple comparisons would require p&2.5 · 10�8, at which no
node pair would survive. Therefore, we do not claim that a par-
ticular node pair is statistically significant in its association with
alterations of consciousness. Instead, the choice of p-threshold
served to define a suitable collection of node pairs that were

used to differentiate a conscious state (wakeful baseline) from
an unconscious state (deep sedation). As would be observed
later, the choice of p-threshold did not influence the results
and conclusions of our analysis.

With the collection of node pairs showing either increased
or decreased functional connectivity between wakefulness
and deep sedation, we defined two indices, the decreased
connectivity index (DCI) and the increased connectivity
index (ICI). In each of the four states of consciousness, the
DCI was computed as the mean of the CCs of the collection
of node pairs whose functional connectivity strength de-
creased in deep sedation relative to wakeful baseline. Like-
wise, the ICI was computed in each state as the mean of
the CCs of the collection of node pairs whose functional con-
nectivity strength increased in deep sedation relative to the
wakeful baseline. We chose the contrast between wakeful-
ness and deep sedation to select the node pairs for the calcu-
lation of DCI and ICI because they represented the two
extreme states of consciousness in our experiment. We
would then determine DCI and ICI for the other two states
(light sedation and recovery) that presumably had intermedi-
ate values for the selected node pair groups.

The DCI and ICI from all study participants were plotted
in a two-dimensional feature space. The performance of DCI
and ICI to differentiate the four states of consciousness in in-
dividual participants was analyzed by quadratic discriminant
analysis and leave-one-out cross-validation test. The choice
of classifiers may be flexible. We chose a quadratic discrim-
inant classifier (classify in Matlab) because it permits un-
equal class covariances, which is the case in our results.
Leave-one-out cross-validation was used because of its rela-
tively small sample size (15) in this study. Receiver operat-
ing characteristic (ROC) curves were computed for each step
increase of the granularity of parcellation (ranging from 116
anatomical nodes to 2000 nodes) by adjusting the separating
boundaries between two classes through varying the prior
probability (the prior parameter of Matlab classify function)
from 0 to 1. For parcellations at a smaller number of nodes,
the p-threshold was chosen to generate approximately the
same number of node pairs used for computing the DCI
and ICI as those identified for brain parcellation at 2000
nodes. We quantified the overall classification performance
by using the measure of area under the ROC curve (AUC).

Results

Propofol induced widespread functional connectivity
changes during both light and deep sedation at p = 3.0 · 10�5

(Fig. 2A–G). Compared with wakeful baseline, the number
of node pairs with reduced functional connectivity increased
from light sedation (Fig. 2A) to deep sedation (Fig. 2B, C).
Recovery showed a greater number of node connections with
increased connectivity relative to deep sedation (Fig. 2D)
than light sedation (Fig. 2B) and wakefulness (Fig. 2C). In
comparison to wakeful baseline, light sedation, and recovery,
deep sedation was also accompanied by increased functional
connectivity, as indicated by the blue lines in Figure 2E–G,
respectively. Overall, the extent of the changes of node con-
nections showed a trend of scaling with the extent to which
consciousness was modified. The number of node connec-
tions with increased and decreased functional connectivity
for the seven comparisons are presented in Figure 2H at
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three different p-thresholds of 1.0 · 10�5, 3.0 · 10�5, and
3.0 · 10�4. In spite of the different absolute number of
node pairs at the different p-thresholds, the trends were
very similar, suggesting that the choice of p-threshold was
not critical. The distribution of node pairs with changing
connectivity in six major anatomical divisions for various
state comparisons is summarized in Table 1. The data sug-
gest a prominent involvement of the frontal lobe, which is

significantly greater than the other divisions ( p = 10�5,
repeated-measures analysis of variance and Tukey-Kramer
test of data from six independent state comparisons).

Distributions of the DCI and ICI in the two-dimensional
feature space are shown for four selected parcellations in
Figure 3A–D with 116, 300, 500, and 2000 nodes, respec-
tively. With the most coarse-grained anatomical parcellation
at 116 nodes, there was a substantial overlap among the

FIG. 2. Functional connectivity changes between various states of consciousness. (A–G) Seven state comparisons from
group paired t-test at p = 3.0 · 10�5 with panels showing decreased node functional connectivity with deepening of sedation
(red lines, A–D) and increased connectivity in deep sedation (blue lines, E–G). The contrasts between wakefulness and deep
sedation (C and F) were used to determine the collections of node pairs for computing DCI and ICI. Different dot colors
distinguish major brain divisions, as indicated in Figure 1. (H) The number of connections at three different p-thresholds
for the seven comparisons corresponding to panels (A–G). The trend of changes in the number of node pairs is similar at
the three p-thresholds. DCI, decreased connectivity index; ICI, increased connectivity index.

Table 1. Percentage Distribution of Node Pairs with Altered Functional Connectivity Defined

at P = 3 · 10�5 (Group Paired T-Test) in Six Major Anatomical Divisions

Frontal Temporal Parietal Occipital Subcortical Cerebellar

W>L 49 35 26 34 23 23
W<L 60 21 21 10 14 24
L>D 65 40 28 18 15 23
L<D 43 34 32 18 9 22
W>D 61 55 28 16 16 20
W<D 44 14 29 11 8 25
R>D 57 22 29 15 17 55
R<D 42 25 50 17 8 13

Symbols > and < indicate the comparison between states. The frontal lobe is affected more than any other region in all but one comparison.
D, deep sedation; L, light sedation; R, recovery; W, wakefulness.
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feature vectors (defined by [DCI, ICI]) of the four states of
consciousness. The feature vector cluster of wakefulness
was well separated from that of deep sedation. However,
the feature vector clusters of light sedation and recovery
failed to separate from those of wakefulness and deep seda-
tion or from each other at the 116-node parcellation. With an
increase in the granularity of parcellation to 300, 500, and
2000, both between-cluster separation and within-cluster ag-
gregation increasingly improved (Fig. 3B–D). In half of the
participants, an overlap between light sedation and recovery
remained even at the highest parcellation granularity, pre-
sumably due to an incomplete recovery from propofol seda-
tion at the time of testing because of lingering effects of
propofol, consistent with the results shown in Figure 2C.

The distribution of feature vectors at different parcella-
tions resulted in consistent classification of the four states
of consciousness (Fig. 3E–H). On comparing light sedation
versus wakefulness, recovery versus wakefulness, and deep
sedation versus light sedation, the ROC curves showed that
parcellation at a higher granularity, especially at 2000 nodes,
produced a superior classification, compared with the 116
anatomical parcellation (Fig. 3E–G). The AUC scores were
0.8, 0.68, and 0.77 for the 116-anatomical-node parcellation
and 0.98, 0.97, and 0.95 for the 2000-node parcellation in
Figure 3E–G, respectively, representing a 21% increase on av-
erage. Taken together, the results suggest that a fine-grained
network parcellation provides a better separation of state-
defining feature vectors and, therefore, a better overall clas-
sification of the states of consciousness led by anesthetic
sedation in individual participants.

Discussion

We evaluated the benefit of defining functionally connected
brain networks by using fine-grained anatomical-functional par-
cellation for the differentiation of states of consciousness as al-
tered by graded propofol sedation. The extent of the changes
of node connections showed a trend of scaling with the extent
to which consciousness was altered. Previous studies suggested
that brain parcellation at a higher than conventional granularity
may provide a better delineation of topological and connectional
features of the brain (Hayasaka and Laurienti, 2010; Liu et al.,
2014; Zalesky et al., 2010). Consistent with our anticipation,
we found that parcellation at a higher granularity at or approach-
ing 2000 nodes enabled a better differentiation of the states
of consciousness in individual participants than what could be
obtained at a coarse-grained parcellation using 116 anatomically
defined brain regions. Whether such a finding can be generalized
to other quantitative measures of connectivity and/or BOLD
fMRI signals needs to be further investigated.

The improvement in classification performance at a fine-
grained network parcellation is most likely due to the capacity
of the parcellation algorithm that combines the anatomical and
functional features of each identified brain subdivision or par-
cel. As we know, macroscopic anatomical boundaries have a
general, though imperfect, relation to functional boundaries.
The proposition of a nested network organization in the central
nervous system suggests that the basic functional units of the
brain first emerge individually within each of the individual
anatomical structures (Agnati et al., 2004). Thus, defining
the network nodes as clusters of anatomically constrained vox-
els that share similar correlated BOLD fluctuations leads to in-

creased node functional specificity, compared with that at
coarse-grained anatomical parcellations (Fischl et al., 2004),
and reduced noise influence and node redundancy, as com-
pared with the voxel-based approach (Eguiluz et al., 2005;
van den Heuvel et al., 2008). It is likely that there might
exist an optimal spatial scale that would allow the best charac-
terization of topological features and network organizations of
the brain in individual applications (Hayasaka and Laurienti,
2010; Zalesky et al., 2010). Therefore, our brain parcellation
approach represents a useful extension to the existing brain
parcellation methods in the literature (de Reus and van den
Heuvel, 2013).

Another advantage of our parcellation approach is that it is
easy to use. Unlike other approaches for determining areal
maps of the brain based on multimodal imaging techniques
and complicated machine-learning algorithms (Glasser
et al., 2016), it requires no additional data acquisition of dif-
ferent imaging modalities other than BOLD fMRI and T1-
contrast-based anatomical images, which are commonly
available in nearly all reported fMRI studies. Thus, our ap-
proach can be readily extended to many available data sets.
In addition, the parcellation approach offers full flexibility
to examine the brain as a connected network at an arbitrary
spatial granularity (i.e., via adjusting the global cut-off thresh-
old), while keeping a consistent principle in defining the ana-
tomical and functional significances of each identified parcel
(or node). Meanwhile, it provides an individual-subject-based
brain parcellation scheme, offering opportunities for an indi-
vidual analysis of functional reorganization within or across
specific anatomical regions (e.g., changes in the number of
functionally distinct subdivisions/parcels in one or more ana-
tomical/functional systems across different brain states).

Alterations in the state of consciousness during anesthesia
and sedation have been linked to selective changes in func-
tional and effective connectivity in the brain (Alkire, 2008;
Alkire et al., 2008; Demertzi et al., 2013; Hudetz, 2012;
Langsjo et al., 2014; Nallasamy and Tsao, 2011). In the present
investigation, we examined long-range connectivity among
relatively large brain regions (four cortical lobes, subcortex,
and cerebellum), which was a convenient and theory-inspired
choice to evaluate the effect of parcellation on differentiating
four states of consciousness. At the chosen p-threshold, we
found a significant difference in the relative involvement of
six major anatomical divisions in node connectivity changes
across the states of consciousness. In particular, the frontal
lobe had the most prominent and consistent involvement in
node connectivity changes when contrasting the various con-
ditions. The key importance of the frontal lobe has been pos-
tulated in various theories of consciousness. Both the global
workspace theory (Baars, 2002, 2005) and the related global
neuronal workspace model (Dehaene et al., 2003) emphasize
the roles of the frontal lobe in generating conscious percep-
tion. Prior studies have also highlighted a preferential suppres-
sive effect of propofol on activity and connectivity of the
frontal lobes (Boveroux et al., 2010; Guldenmund et al.,
2016; Liu et al., 2016) and in other cases with the use of sevo-
flurane (Deshpande et al., 2010; Palanca et al., 2015). A new
finding of this study is that both the increase and the decrease
of functional connectivity during deep sedation have the stron-
gest association with the frontal lobe, suggesting that various
subregions of the frontal lobe may be associated with differen-
tial, possibly competing roles in maintaining conscious
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activities during wakeful baseline and perhaps operating on in-
ternally generated neuronal processes during deep sedation.

In addition to long-range connectivity, local connec-
tivity changes may also be linked to different states of
consciousness. Previous investigations suggested the im-
portance of both within- and between-network connectiv-
ity in anesthetic-induced unconsciousness (Boveroux et al.,
2010; Deshpande et al., 2010; Kafashan et al., 2016). Our par-
cellation methodology should lend itself to the investigation
of intra-network connectivity. Future investigations could
also focus on the connectivity of smaller regions, potentially
all the way down to the voxel level.

It may also be of interest to apply our new parcellation
method to neurological patients with brain injuries. However,
with severely deformed brains, the automated anatomical par-
titioning may be problematic, in which case one may resort to
relying mainly on functional parcellation, skipping the ana-
tomical parcellation step, or using a simplified anatomical
parcellation, for example, keeping only manual or automated
delineations of lobe boundaries. This approach may be tested
in future. A limitation of this study is that the sample size (15)
is relatively small, and we had to adopt a leave-one-out cross-
validation approach for the evaluation of the classifier’s per-
formance. Thus, the nature of classifications should be con-
sidered as more descriptive than predictive. Nevertheless,
what should be emphasized is the evident increase of separa-
tion among feature clusters of the four states of consciousness
with the increase of spatial granularity (Fig. 3A–D). The
choice of classifiers, however, is flexible (e.g., discriminant
analysis or artificial neural network models).

In summary, our study proposed a BOLD fMRI-based ap-
proach for defining brain networks at a high spatial granular-
ity. The preliminary results suggest that it may provide a
superior imaging-based distinction of the graded effect of an-
esthesia on consciousness. Despite the technical issues exist-
ing in overcoming the problem of correction for multiple
comparisons when fine-grained areal maps of the entire
brain are considered, our combined functional-anatomical
parcellation approach provides a principled way and a useful
extension to the current literature in evaluating brain func-
tions at a high spatial granularity.
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