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Abstract

Radiation therapy (RT) is a critical treatment modality for patients with brain tumors, although it can cause ad-
verse effects. Recent data suggest that brain RT is associated with dose-dependent cortical atrophy, which could
disrupt neocortical networks. This study examines whether brain RT affects structural network properties in brain
tumor patients. We applied graph theory to MRI-derived cortical thickness estimates of 54 brain tumor patients
before and after RT. Cortical surfaces were parcellated into 68 regions and correlation matrices were created for
patients pre- and post-RT. Significant changes in graph network properties were tested using nonparametric per-
mutation tests. Linear regressions were conducted to measure the association between dose and changes in nodal
network connectivity. Increases in transitivity, modularity, and global efficiency (n = 54, p < 0.0001) were all ob-
served in patients post-RT. Decreases in local efficiency (n = 54, p = 0.007) and clustering coefficient (n = 54,
p = 0.005) were seen in regions receiving higher RT doses, including the inferior parietal lobule and rostral an-
terior cingulate. These findings demonstrate alterations in global and local network topology following RT, char-
acterized by increased segregation of brain regions critical to cognition. These pathological network changes
may contribute to the late delayed cognitive impairments observed in many patients following brain RT.

Keywords: graph theory; radiotherapy; brain tumor; structural network connectivity; magnetic resonance imaging

Introduction

Radiation therapy (RT) is a mainstay in the treatment
of brain tumors. As outcomes for patients with primary

brain tumors improve, a major concern becomes managing
long-term complications, including neurocognitive decline.
An unfortunate side effect of brain RT, based on incidental
irradiation of normal brain tissue and likely mediated by
radiation-induced injury, is subacute and late cognitive de-
cline (DeAngelis et al., 1989; Laack and Brown, 2004;
Makale et al., 2016; Patchell et al., 1998).

Previous research has focused on the adverse effects of RT
on white matter (Connor, 2016; Steen et al., 2001) and the hip-
pocampus (Karunamuni et al., 2016; Khuntia et al., 2006).
However, less attention has been given to neocortical atrophy;
until recently, the neocortex was thought to be radioresistant.
Recent research has shown widespread RT-induced atrophy
to association cortex (Karunamuni et al., 2016; Kim et al.,
2004), and there is emerging evidence that cortical atrophy

is dose dependent and most pronounced in temporo-limbic
and parietal regions (Karunamuni et al., 2016; Seibert et al.,
2016). Karunamuni and colleagues (2016) demonstrated cor-
tical thinning of up to 0.3 mm in the highest dose regions 1
year post-RT, which exceeds the annual atrophy rate (0.07–
0.1 mm) observed in patients with Alzheimer’s disease
(AD) (Sabuncu et al., 2011; Thompson et al., 2003). Given
the magnitude of cortical thinning and the well-established
role of association cortex in memory and other aspects of cog-
nition, RT-induced neocortical atrophy could represent an im-
portant substrate for longer term cognitive disability.

A major advance within neuroscience in the past decade
has been a shift in focus from how disease and treatment-
related factors affect discrete brain regions to how they dis-
rupt large-scale brain networks. Because complex cognitive
processes depend on the orchestration of multiple brain re-
gions (Barbey et al., 2014), a closer look at network disrup-
tion may provide insight into the development of cognitive
dysfunction in patients undergoing RT.
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One approach to quantifying both local and global damage
caused by RT is to probe changes in the underlying network
topology using measures derived from network models, such
as graph theory (Bosma et al., 2009; Douw et al., 2010). Tran-
sitivity and global efficiency are among the major graph theory
parameters that illustrate the degree of brain segregation and
integration, respectively (Bullmore and Sporns, 2012; Griffa
et al., 2013). Furthermore, previous studies have shown that
the brain is organized into modules of interconnected regions
with the same functional specialization (Bressler and Menon,
2010; Ghazanfar and Schroeder, 2006; Hagmann et al.,
2008). Therefore, modularity is a parameter that can represent
this network characteristic (Hagmann et al., 2008), with in-
creases in modularity suggesting that brain regions are well
connected within their module, but are poorly connected
with regions belonging to other modules. Hubs represent an-
other major concept in graph theory and are defined as impor-
tant brain regions that interact with many other nodes, ease
functional integration, and play an essential role in network
resilience to insult. Measures of node centrality variously eval-
uate the importance of individual nodes on the above criteria
(Rubinov and Sporns, 2010; Sporns, 2011).

In addition to the above measures, local network connec-
tivity metrics (e.g., local efficiency and clustering coeffi-
cient) can be derived, which exploit topological changes at
a regional level that may not be represented by the global
network structure. In particular, clustering coefficient repre-
sents the amount of segregation in the whole network and has
previously been shown to correlate with cognitive decline
(Liu et al., 2008; Yu et al., 2015). Collectively, these metrics
have been combined to characterize topological brain
changes across a range of neurological and psychiatric disor-
ders, including mild cognitive impairment (MCI) (Pereira
et al., 2016), AD (Bullmore and Sporns, 2009; Pereira
et al., 2016; Tijms et al., 2013a), vascular dementia (Tomasi
and Volkow, 2011; Wang et al., 2016), Parkinson’s disease
(Helmich et al., 2010), and schizophrenia (Alexander-
Bloch et al., 2013c). Although different MRI modalities
and metrics have been used to probe network changes across
studies, results have consistently revealed aberrant network
organization in patients that deviates from an efficient
small-world configuration observed in healthy controls
(Stam et al., 2007; Uehara et al., 2014).

Neuronal loss, axonal damage, and demyelination associ-
ated with RT may lead to a loss of connections and/or the de-
velopment of abnormal connections among distributed brain
regions and, consequently, result in either the fragmentation
or reorganization of structural brain networks (Alexander-
Bloch et al., 2013b). Changes in these inter- and intrare-
gional connectivity patterns can be evaluated by measuring
the covariance of cortical thinning before versus after RT
(Alexander-Bloch et al., 2013a). Evidence that cortical thick-
ness in one region affects the thickness of structurally
and functionally connected regions has been illustrated in
previous studies that have tracked large cohorts of individu-
als through adolescence with longitudinal imaging and
shown that areas that are structurally covariant are also cor-
related in terms of the rate of change in cortical thickness
(Alexander-Bloch et al., 2013a; Raznahan et al., 2011).
Therefore, we choose changes in the covariance of cortical
thinning across brain regions as our measure of structural
network connectivity associated with RT.

To date, no studies have examined the effects of fraction-
ated RT on cortical network changes in patients with brain
tumors. Due to evidence that RT may result in damage to
vascular endothelial cells and to the hippocampus (Kim
et al., 2004; Seibert et al., 2017), studies that have applied
graph theory to examine cortical networks in patients with
AD may serve as good models (He et al., 2008; Pereira
et al., 2016; Tijms et al., 2013b). He and colleagues (2008)
used cortical thickness to investigate large-scale structural
brain networks in AD and normal controls. They show in-
creased segregation in patients with AD compared with nor-
mal controls, characterized by increased average clustering
coefficient of all nodes (He et al., 2008). In another large-
scale structural connectivity study (N = 1008) of patients
with MCI and AD, Pereira and colleagues (2016) demon-
strated abnormal global network organization, characterized
by an increased path length, reduced transitivity, and in-
creased modularity, in both patient groups relative to con-
trols. In contradiction, Tijms and colleagues (2013b) used
single-subject gray matter graphs to show that cortical net-
works in patients with AD were characterized by a decreased
clustering coefficient, which indicates decreases in segrega-
tion (Tijms et al., 2013b). Thus, there is some disagreement
across studies, both in terms of the graph theory metrics tested
and the directionality of findings at both the local and global
network levels (e.g., increased vs. decreased segregation).
However, the existing literature uniformly suggests that pa-
tients with AD show abnormal cortical network topology
compared with controls that may underlie their insidious cog-
nitive decline (Dai and He, 2014; He et al., 2009; Reid and
Evans, 2013; Tijms et al., 2013b).

The aim of the current study was to establish whether frac-
tionated RT leads to global and/or local changes in structural
network topology. We applied graph theory to MRI-derived
cortical thickness estimates of 54 patients with primary brain
tumors before and after RT. We selected cortical thickness as
our metric of interest due to previous literature demonstrat-
ing the sensitivity of this measure to both radiation injury
(Karunamuni et al., 2016; Seibert et al., 2016) and vulnera-
bility in other patient populations (He et al., 2008; Li et al.,
2012). We examined both global and local changes in net-
work topology and analyzed the effects of regional RT
dose on local network properties. We also evaluated whether
RT affects the identification and distribution of major net-
work hubs in the brain that are known to be critical to cogni-
tive processing. Based on proposed mechanisms of brain
injury from RT (i.e., neuronal loss and axonal injury) and
existing research in AD, we hypothesize that (a) whole-
brain segregation will increase and brain integration will de-
crease in patients post-RT and (b) local network connectivity
metrics (e.g., local efficiency and clustering coefficient) will
decrease with increases in radiation dose.

Materials and Methods

Patients

We analyzed a cohort of 58 patients with primary brain tu-
mors. All patients underwent fractionated (1.8–2.0 Gy per
fraction) partial brain irradiation at UC San Diego Moores
Cancer Center between 2010 and 2014. Radiation dose is
measured in Gray (Gy), the unit of biologically absorbed
dose. To be included, the patients also had to have acquired
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MRI before RT (or within the first week of RT start) and ap-
proximately 1 year after RT start (9–15 months). Three pa-
tients were excluded due to poor image quality and one
was excluded due to a large surgical resection, resulting in
a final cohort of 54 patients for analysis. Forty-four of the
54 patients (age: median = 54, range = [19–77]) were treated
with a total of 30 fractions (treatments). Radiation dose for
the other 10 patients was converted using alpha/beta = 2 Gy
at each location in the volume to a 30-fraction equivalent
for direct comparison (Fowler, 1989).

Image acquisition and preprocessing

MR images were acquired on a 3T Signa Excite HDx sys-
tem (GE Healthcare, Milwaukee, WI) using an 8-channel
dedicated head coil. Images were acquired before start of
RT and at approximately 1 year after completion of RT.
The standardized protocol included a 3D T1-weighted inver-
sion recovery spoiled gradient-echo sequence (TE, 2.8 ms;
TR, 6.5 ms; TI, 450 ms) and T2-weighted FLAIR sequence
(TE, 126 ms; TR, 6000 ms; TI, 1863 ms). Images were cor-
rected for geometric distortions ( Jovicich et al., 2006) before
rigid-body coregistration of the pre-RT MRI to the CT sim-
ulation images used in radiation treatment planning using
custom software (Karunamuni et al., 2016). Quality control
was performed on the registration and they were confirmed
visually, thereafter the resulting transformation matrix was
used to resample the delivered radiation dose distribution
from the treatment plan to the MRI volume space.

Cortical thickness

Cortical thickness was estimated by reconstructing the cor-
tical surface from each T1-weighted MRI volume, weighted
by T2-weighted FLAIR to correct for edema or hypointensity
using FreeSurfer software (http://surfer.nmr.harvard.edu;
version 5.3) (Dale et al., 1999; Karunamuni et al., 2016). The
gray matter–white matter and gray matter-CSF junctions
were each reviewed visually on a slice-by-slice basis to
identify errors in the delineation of gray–white matter
boundaries. This quality control step was performed inde-
pendently by two expert image analysts blinded to dose
distribution and was done for the entire brain of all pa-
tients. After an independent review, the two evaluators
reached a consensus for each MRI study. Any cortical areas
for a given patient where image quality or surgical changes
led to segmentation error (e.g., line for gray matter-CSF
junction jutting out into CSF) were excluded. In addition,
all MRI voxels falling within 5 mm (uncertainty margin) of

the gross tumor volume contoured by the respective
treating physician at time of treatment planning were au-
tomatically excluded (Weltens et al., 2001). The process of
precisely excluding the resection cavity and any imaging
abnormality was performed separately for each time point
to account for any gross changes in the local anatomy.
Cortical surfaces were anatomically parcellated using the
Desikan–Killiany atlas (Desikan et al., 2006) such that the
surfaces were labeled bilaterally in native space with 34
cortical regions (Fig. 1).

Network construction

For each time point (pre- and post-RT), a 68 · 68 symmet-
ric–weighted network (matrix) of the structural connectivity
in the whole brain was constructed at the group level using
partial correlations with patients’ age and sex as covariates.
Each value in this matrix represents the connectivity strength
between two related nodes (regions). We constructed popu-
lation brain networks over a wide range of network densities,
0.1 £ Sthr £ 0.6, with an increment of the threshold by 0.01,
where the global structural network metrics were analyzed.
Structural network connectivity metrics of integration
(global efficiency), segregation (transitivity and modularity),
and local properties (local efficiency and clustering coeffi-
cient) were then extracted from the correlation matrices
using the Brain Connectivity Toolbox at each time point
(Rubinov and Sporns, 2010). All of these metrics have
been shown to have good to excellent test-retest reliability
in a recent systematic review (intraclass correlation coeffi-
cients >0.60 in 21 of 25 studies) (Welton et al., 2015).

Network properties

A detailed description of graph theory and the following
network parameters can be found in a study by Rubinov
and Sporns (2010). We briefly describe each metric calcu-
lated in our study below.

Modularity is a statistic that quantifies the degree to which
the network may be subdivided into clearly delineated groups
(Fig. 2A). It is calculated as the fraction of the edges that fall
within the given groups minus the expected fraction if edges
were distributed at random (Newman, 2006).

Transitivity is quantified based on the fraction of triangles
over triplets of nodes. A triplet involves three nodes that are
connected by either two or three undirected ties. A triangle
involves the three closed triplets, in which one of them is
in the middle of the other nodes. Transitivity is the number
of maximum triplets (3 · triangles) divided by the total

FIG. 1. Cortical regions
from the Desikan–Killiany
atlas using FreeSurfer. Color
images available online at
www.liebertpub.com/brain
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number of triplets (Holland and Leinhardt, 1971; Rubinov
and Sporns, 2010) as shown below:

Transitivity = 3t=T

where t is number of triangles and T is number of triplets in
the whole network.

To create the network efficiency properties, we measured
the shortest path length (dij) (Fig. 2B) between each pair of
nodes in the network and computed the inverse value of
this length. In a network with N nodes, the inverse value
of mean dij is the network global efficiency as follows (Latora
and Marchiori, 2001):

Eglobal Gð Þ = 1

N N� 1ð Þ +
i6¼j2G

1

dij

Local efficiency was calculated using the global efficiency
from the adjacent subgraph of the node. We averaged the
local efficiencies across all nodes to estimate the total net-
work local efficiency as described below:

Elocal Gð Þ = 1

N
+
i2G

Eglobal Gið Þ

Clustering coefficient is the fraction of triangles around a
node and can be computed as described below (Fig. 2C)
(Watts and Strogatz, 1998):

CC =
2t

k k� 1ð Þ

where k is the degree of the node.

Hub identification

Centrality is a topological measure of the importance or
influence of a node or edge for network organization (Bull-

more and Sporns, 2012). The centrality of a node measures
how many of the shortest paths between all other node
pairs in the network pass through it (Bullmore and Sporns,
2009; Freeman, 1977). Node degree (Fig. 2D), closeness,
and betweenness centralities are among the different types
of centralities that are tested in brain connectivity studies
(Bullmore and Sporns, 2009; Crossley et al., 2014).

Hub nodes generally show an above average number of
connections, a high level of (betweenness) centrality, a
short characteristic path length in the network, and a low
clustering coefficient (Heuvel et al., 2010; Sporns et al.,
2007). We identified major hubs in the network both pre-
RT and post-RT to examine whether patients undergo
changes in hub distribution as a result of RT. We scored
each region based on their node degree, betweenness central-
ity, characteristic path length, and clustering coefficient
(Heuvel et al., 2010). Nodes were scored a one if they
were in the highest 20th percentile of node degree and be-
tweenness centrality and lowest 20th percentile of clustering
coefficient and path length. The rest of nodes were scored
zero. Nodes with a sum score of 2 or more were identified
as hubs (Heuvel et al., 2010).

Statistics

Significant pre- to post-RT changes were tested using non-
parametric permutation tests with 1000 permutations (Bas-
sett et al., 2008; He et al., 2008). The randomization
procedure was repeated 1000 times for every density value
(50) and network parameters were extracted for every den-
sity in both time points. Correlation matrices (68 · 68)
using partial Pearson correlation coefficients (with age and
sex as covariates) were created for each time point. Matrix
calculations and permutations were conducted using R.
Two-tailed t-tests were conducted to demonstrate the differ-
ence in network connectivity metrics pre- and post-RT in all

FIG. 2. Graph theory measures are depicted in a rendering of a simple graph with 13 nodes and 21 edges. (A) The network
forms two modules (a and b) interconnected by a single hub node. (B) The distance between two nodes (A and B) is the length
of the shortest path. Nodes A and B connect passing three links (edges). The inverse of the average of the distances among all
node pairs is the graph’s global efficiency. (C) The clustering coefficient is depicted for a central node and its six neighbors.
These neighbor nodes provide 8 of 14 possible edges and the clustering coefficient of 0.57. (D) Node degree presents the
number of edges attached to the given node, depicted for a node with large degree (left) and a node with low degree
(right). Color images available online at www.liebertpub.com/brain

302 BAHRAMI ET AL.



connectivity densities. Bonferroni correction was conducted
to correct for multiple comparisons across various network
densities (N = 50 density levels; p-value = 0.001) (Haynes,
2013). Linear regression (adjusted for age and sex) was con-
ducted to measure the association between radiation dose
(continuous variable) and changes in nodal network connec-
tivity metrics in each region using JMP ( JMP Pro, Version
12.0.0. SAS Institute, Inc., Cary, NC, 1989–2007).

Results

Patient, tumor, and treatment characteristics of the cohort
are shown in Table 1, including sex, age, histology, tumor lo-
cation, and radiation fractionation schemes.

Global network analysis

With increasingly higher values of network density, the
modularity decreased, whereas the global efficiency and tran-
sitivity increased at both time points (Fig. 3). Higher density
values indicate the existence of a denser matrix and a more
conservative cutoff point to calculate the graph properties.

Whole-brain analysis. Increases in transitivity ( p < 0.0001,
CI = [0.0110, 0.0171]; Fig. 3A), modularity ( p < 0.0001, CI =
[0.0176, 0.0406]; Fig. 3B), and global efficiency ( p < 0.0001,

CI = [0.0072, 0.0112]; Fig. 3C), relative to pre-RT, were ob-
served in brain tumor patients after RT. These changes were par-
ticularly robust at higher network densities for global efficiency
and transitivity, suggesting that group differences are more no-
ticeable in denser matrices due to removal of the noisy and ex-
tremely weak connections.

Contralateral hemisphere analysis. We also analyzed
changes in network properties in the hemisphere contralat-
eral to the tumor location to ensure that network changes
were not associated with local tumor effects (34 regions in
each hemisphere). Pre- to post-RT changes in the network
properties showed the same patterns as demonstrated for
the whole-brain analysis. For patients with left hemisphere
brain tumors (N = 31), increases in transitivity, modularity,
and global efficiency after RT were observed in the right
hemisphere ( p < 0.0001, CI = [0.0155, 0.0299]; p < 0.0001,
CI = [0.0234, 0.0333]; and p < 0.0001, CI = [0.0038, 0.0185],
respectively). In patients with right hemisphere brain tumors
(N = 23), similar increases were observed in the left hemi-
sphere (transitivity: p < 0.0001, CI = [0.0029, 0.0437]; modu-
larity: in 42% of the densities p < 0.0001, CI = [0.0341,
0.0136]; and global efficiency: in 82% of the densities
p < 0.0001, CI = [0.0217, 0.0292]).

Local network analysis

We identified two major nodal network measures (i.e.,
local efficiency and clustering coefficient) based on the RT
dose to each region. Decreases in local efficiency ( p = 0.007,
r =�0.321, Fig. 4A) and clustering coefficient ( p = 0.005,
r =�0.335, Fig. 4B) were seen in regions receiving higher
doses of RT. Inferior parietal lobule (IPL), postcentral gyrus
(PC), and rostral anterior cingulate (RAC) were among the
regions with the highest decreases (top 5th percentile) in
local efficiency (�2.80%,�2.92%, and�2.25%, respectively)
and clustering coefficient (�6.12%,�5.90%, and�5.30%, re-
spectively).

Hub identification

Pre-RT, the IPL, inferior temporal, lateral occipital, lateral
orbito-frontal, precuneus, and superior parietal regions were
all identified as major network hubs, whereas post-RT, the
IPL, lateral occipital, and superior parietal regions were no
longer classified as hubs (Fig. 5).

Discussion

Our study applies the graph theory to illustrate that frac-
tionated partial brain RT contributes to structural network
changes in patients with brain tumors, characterized by in-
creases in global network segregation (i.e., increased transi-
tivity and modularity) and integration (i.e., global efficiency)
of cortical subnetworks in the brain. We also found decreases
in both local efficiency and clustering coefficient as a func-
tion of RT-dose. Finally, we demonstrate changes in hub dis-
tribution in patients post-RT in regions critical to cognition,
including inferior and superior parietal regions. Collectively,
these findings suggest there may be dose-dependent patho-
logical changes within cortical networks, which may contrib-
ute to the late delayed cognitive decline observed in many
patients following RT. In addition, this study is the first to

Table 1. Patient/Tumor/Treatment Characteristics

Characteristic Number of patients (%)

Sex
Male 37 (69)
Female 17 (31)

Age (years) Median 54 (range 19–77)

Tumor histology
Grade IV glioma 32 (59)
Grade III glioma 12 (22)
Grade II glioma 7 (13)
Other low-grade glioma 1 (2)
Low-grade glioneural tumor 1 (2)
Meningioma 1 (2)

Tumor location
Frontal 19 (35)
Temporal 16 (29)
Parietal 2 (4)
Occipital 3 (6)
Temporoparietal 4 (7)
Frontoparietal 2 (4)
Temporooccipital 1 (2)
Frontotemporal 1 (2)
Parietooccipital 1 (2)
Thalamus 2 (4)
Cavernous sinus 1 (2)
Cerebellum 1 (2)

Median time from resection
to pre-RT MRI (weeks)

3.9 (2–20)

Radiation therapy total dose (Gy):fraction size (dose in
Gy per fraction)
60:2 41 (76)
59.4:1.8 6 (11)
55.8:1.8 1 (2)
54:1.8 3 (6)
50.4:1.8 3 (6)
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demonstrate that a local treatment such as focal brain RT
may have more global network effects on brain function.

One of the most robust findings in this study is the in-
creased segregation of cortical subnetworks in patients
after RT. Specifically, transitivity is a metric that quantifies
the connectivity of different brain regions to their neighbors
(Ingalhalikar et al., 2014). Greater transitivity indicates a ten-
dency for nodes to be highly integrated within their local
cluster. In addition, modularity describes the degree to
which a network is capable of being divided into modules
or groups of regions with a high number of within-module
connections and a low number of between-module connec-
tions (Newman, 2004, 2006). When brain regions are well
connected within their own module, but are weakly con-
nected with regions belonging to other modules, the modu-
larity of the network increases. In the current study, we
found increased modularity in patients after RT, which
may suggest greater isolation of individual brain modules
and poorer communication across modules after RT. Baggio
et al. (2015) found that increased modularity was associated
with memory and visual impairments in patients with Parkin-
son’s disease (Baggio et al., 2015). Increased modularity has
also been associated with working memory deficits in pa-
tients with multiple sclerosis (Gamboa et al., 2014). In our
study, increases in modularity along with increases in transi-
tivity may indicate that the brain is less able to communicate

across cortical subnetworks, which may contribute to impair-
ment in higher-level cognitive processes that rely on distrib-
uted neural networks (e.g., executive functions). We further
showed that these changes occur both ipsilateral and contra-
lateral to the tumor, providing further evidence that increased
network segregation is likely the result of RT-induced dam-
age and not local tumor-related effects.

Increases in global efficiency were also observed in our
study. Although not hypothesized, increased global efficiency
may stem from either stronger short-range connections or
shorter paths between nodes (Latora and Marchiori, 2001)
and indicate that the communication between pairs of nodes
is more direct. This finding may reflect the development of ab-
normal connections between brain structures following RT-
induced damage, resulting in the reorganization of cortical
networks (Bonilha et al., 2012). RT may cause alterations in
cellular and small vessel structure, which leads to the elimina-
tion or weakening of long-range projections and connections,
preferentially supporting stronger short-range connections
(Bullmore and Sporns, 2009; Netoff et al., 2004). The topol-
ogy of the network may become relatively overconnected as
a result of these aberrant cellular and vascular changes
(Belka et al., 2001; Khuntia et al., 2006).

In addition to global network changes, we demonstrated
that local efficiency and clustering coefficient decrease as a
function of RT dose. This supports previous findings that

FIG. 3. Pre- to post-RT changes in global network measures. Plots show the differences in transitivity (A), modularity (B),
and global efficiency (C) across network densities. Shaded areas represent the upper and lower bounds of each measure across
densities. Color images available online at www.liebertpub.com/brain
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higher doses of RT result in greater cortical thinning (Karu-
namuni et al., 2016) and white matter compromise (Connor,
2016). Furthermore, Yu and colleagues (2015) showed de-
creased local efficiency and clustering coefficient across
many brain regions in patients with vascular cognitive im-
pairment compared with healthy controls. Similarly, Liu
and colleagues (2008) found that reduced clustering coef-
ficient and local network efficiency were associated with
duration of illness and medication dose in patients with
schizophrenia. The relationship between dose and decreased
clustering coefficient suggests that higher doses of RT lead to
a greater disruption of local network connectivity both within
and across regions. In addition, we identified several regions
(including the IPL, PC, and RAC) that appear to be highly
vulnerable to RT (Seibert et al., 2016). This finding is of par-

ticular interest given the importance of the IPL and RAC to
the well-described central executive network (CEN)—a net-
work of fronto-cingulo-parietal regions that subserves a
broad range of executive functions, including sustained at-
tention, mental flexibility, inhibition, and working memory
(Niendam et al., 2012). Furthermore, both the IPL and supe-
rior parietal region lost their status as major network hubs
post-RT, providing further evidence for the degradation or
possible restructuring of connectivity within the CEN. It is
of note that of the six hubs identified in our study, the IPL,
superior parietal region, and precuneus have been identified
as major hubs in previous studies (Hagmann et al., 2008). In
fact, both the superior parietal and IPL have been identified
within the top 25th%ile in terms of their efficiency, degree,
and network strength in previous research. In addition, in a
functional connectivity study, Buckner and colleagues
(2009) investigated cortical hubs in AD and IPL, precuneus,
and superior parietal were among the major hubs identified.
Thus, their loss as major hubs post-RT could have deleteri-
ous effects on large-scale network communication.

Because the most common late delayed cognitive effects
associated with RT include deficits in executive functions,
processing speed, attention, and memory, poor communicat-
ing across distributed regions within the CEN provides a
plausible substrate for post-RT cognitive decline (McDuff
et al., 2013; Meyers and Brown, 2006; Saad and Wang,
2015). As noted above, the inferior parietal cortex has been
shown to be critical to attention and memory (Cabeza and
Nyberg, 2000; Ciaramelli et al., 2008; Seibert et al., 2011)
and the superior parietal region has also been implicated in
working memory and attention (Koenigs et al., 2009; Posner
et al., 1984). The loss of both of these hubs post-RT suggests
that they become less central to their networks, which may
decrease the efficiency of processing within the CEN and as-
sociated networks. These findings are in agreement with a
previous study that used probabilistic tractography to probe
CEN changes in children with medulloblastoma following
cranial irradiation (Duncan et al., 2016). The above study
demonstrated decreased white matter integrity throughout
the CEN post-RT, including connections from the striatum
to cingulate and parietal regions bilaterally. Thus, RT may
have deleterious effects on distributed cortical and subcorti-
cal networks in patients, which could preferentially disrupt
the CEN.

Strengths of this study include the network analysis
employed, the longitudinal design, and the sizable patient co-
hort available for analysis. However, there are several limi-
tations that should be noted. First, brain tumor patients are
subject to systemic therapy, tumor effects, and surgical se-
quelae that may impact their structural connectivity at a
global and a local level. However, we demonstrate that net-
work changes are seen both globally and in the contralateral
hemisphere, making it less likely that local tumor effects or
surgical changes were driving our results. Furthermore, the
association between changes in local network properties
and radiation dose makes it unlikely that systemic therapy
was a primary cause. Second, the underlying pathophysiol-
ogy of radiation-associated cortical atrophy and altered
structural connectivity has not been well described. We se-
lected MRI (i.e., cortical thickness) and graph theory metrics
that are commonly used in studies of neurological disease
and have been previously linked to cognitive decline

FIG. 4. Scatterplots depict the association between pre- to
post-RT changes in local efficiency (A) and clustering coef-
ficient (B) as a function of dose in each region. Solid red line
shows the regression line, dotted red lines identify the 95%
confidence interval, and the dotted blue line defines the mean
percentage change. IPL, PC, and RAC were among the regions
with the highest decreases (top 5th percentile) in local effi-
ciency and clustering coefficient. IPL, inferior parietal lobule;
PC, postcentral gyrus; RAC, rostral anterior cingulate. Color
images available online at www.liebertpub.com/brain
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(Bullmore and Sporns, 2009; Karunamuni et al., 2016; Wijk
et al., 2010). However, it is possible that other MRI (e.g.,
gray matter volume or contrast) or graph theory metrics
that were not tested in our study may also show significant
changes that may further inform our understanding of these
network alterations. Finally, although we propose that RT-
associated network changes within the CEN may be directly
related to much of the late-delayed cognitive decline seen in
many patients, cognitive data were not available for the cur-
rent patient sample. However, our future work will address
whether these observed changes in network topology repre-
sent biomarkers for domain-specific cognitive decline (e.g.,
executive dysfunction) post-RT.

Conclusions

Taken together, our findings demonstrate alterations in
global and local network topology following RT in patients
with primary brain tumors. Further studies are needed to de-
termine whether this kind of topology-based technique could
be used to predict or monitor neurocognitive decline in pa-
tients following RT or other cancer-related therapies.
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