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Abstract

Graph theory analysis of structural brain networks derived from diffusion tensor imaging (DTI) has become a
popular analytical method in neuroscience, enabling advanced investigations of neurological and psychiatric dis-
orders. The purpose of this study was to investigate (1) the effects of edge weighting schemes and (2) the effects
of varying interscan periods on graph metrics within the adolescent brain. We compared a binary (B) network
definition with three weighting schemes: fractional anisotropy (FA), streamline count, and streamline count
with density and length correction (SDL). Two commonly used global and two local graph metrics were exam-
ined. The analysis was conducted with two groups of adolescent volunteers who received DTI scans either 12
weeks apart (16.62 – 1.10 years) or within the same scanning session (30 min apart) (16.65 – 1.14 years). The
intraclass correlation coefficient was used to assess test–retest reliability and the coefficient of variation (CV)
was used to assess precision. On average, each edge scheme produced reliable results at both time intervals.
Weighted measures outperformed binary measures, with SDL weights producing the most reliable metrics.
All edge schemes except FA displayed high CV values, leaving FA as the only edge scheme that consistently
showed high precision while also producing reliable results. Overall findings suggest that FA weights are
more suited for DTI connectome studies in adolescents.
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Introduction

MRI connectomics treats the brain as a network of
connections between brain regions. It has been an in-

creasingly popular method for mapping the human connec-
tome, the comprehensive set of structural connections in an
individual’s brain (Sporns, 2013). Network analysis is carried
out using graph theory, which models the brain as a series of
nodes and edges (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010). In structural connectivity analysis, network
nodes are typically formed from gray matter parcellation
into regions-of-interest (ROIs). Edges typically represent
white matter tract connections, obtained from diffusion tensor
imaging (DTI) and tractography. A connectivity matrix then
yields various metrics that can quantitatively describe the
brain network’s properties and complexity on both a global

and local levels. The analysis of such structural networks,
and their disruption, has been applied in a variety of neurolog-
ical disorders, such as Alzheimer’s disease (He et al., 2008),
amyotrophic lateral sclerosis (Verstraete et al., 2011), tempo-
ral lobe epilepsy (Bernhardt et al., 2011), and traumatic brain
injury (Caeyenberghs et al., 2012), as well as in psychiatric
disorders, such as attention-deficit/hyperactivity disorder
(Bos et al., 2017), bipolar disorder (Leow et al., 2013),
major depressive disorder (MDD) (Korgaonkar et al., 2014;
Tymofiyeva et al., 2017), and schizophrenia (Fornito et al.,
2012).

MRI connectomics requires numerous steps with different
research groups having their own approaches to this complex
analysis (Meskaldji et al., 2013). To rely on a method, it is
crucial to examine the reliability of its results. Consequently,
there are a growing number of test–retest reliability studies
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3Department of Psychiatry and the Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, University of

California, San Francisco, San Francisco, California.
4Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
5Department of Biomedical Sciences, Florida State University, Tallahassee, Florida.

BRAIN CONNECTIVITY
Volume 9, Number 2, 2019
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2018.0580

144



addressing structural brain networks. Previous groups have
examined various components of the typical connectomics
pipeline, comparing differences in test–retest reliability with
respect to global and local graph theory metrics (Andreotti
et al., 2014), DTI gradient settings (Vaessen et al., 2010),
parcellation schemes (Bassett et al., 2011), tractography algo-
rithms (Bonilha et al., 2015; Buchanan et al., 2014), network
sparsity ranges, and the usage of high angular resolution diffu-
sion imaging (Dennis et al., 2012), and more (see the Welton
et al., 2015 review). However, few structural connectivity re-
liability studies have featured comparisons of edge character-
ization, a critical decision in the overall network construction.

Edges are the connections between network nodes. The
simplest criterion for defining an edge is a binary definition:
presence or absence. Typically, a fixed threshold or an adap-
tive threshold (a connectivity matrix density threshold) is set
to differentiate between these two states. However, by incor-
porating additional information, edges can be defined based
on their weight (Rubinov and Sporns, 2010). This allows for
a more detailed description of the network’s properties (Heu-
vel et al., 2010).

Multiple weighting schemes have been proposed to char-
acterize connectivity in diffusion MRI-based brain networks.
Streamline count (SC) is by far the most common edge
weighting scheme (Andreotti et al., 2014; Bassett et al.,
2011; Buchanan et al., 2014; Hagmann et al., 2007). Variants
of this method include normalization by total brain volume
and streamline count with density and length correction
(SDL) (Buchanan et al., 2014; Cheng et al., 2012; Hagmann
et al., 2008). A presumably more biologically meaningful
measure of connectivity strength is the measure of fractional
anisotropy (FA) sampled along the connecting streamlines.
This type of weight is based on tract integrity and myelina-
tion, rather than an abstraction of trajectory counts (Rubinov
and Bassett, 2011). However, FA-based weighting is less
prevalent in test–retest reliability studies. Previous studies
have included edge weighting as a comparison to binary def-
initions, but nearly all employ some variant of SC weighting.
Buchanan et al. (2014) were the only group to include FA as
an edge weight in their reliability investigation. To address
this gap in knowledge, the first aim of our analysis was to
compare the test–retest reliability of graph metrics derived
from networks constructed using FA- and SC-based weight-
ing schemes. We also included analysis using binary network
definitions.

It is also crucial to investigate MRI connectomes’ reliabil-
ity in a demographic where the brain is still developing. Ado-
lescence is a period of ongoing maturation with major global
and local white matter network changes (Asato et al., 2010;
Barnea-Goraly et al., 2005; Bartzokis et al., 2012; Lebel
et al., 2008; Mukherjee et al., 2001; Richmond et al.,
2016). There is a concern that longitudinal MRI studies in
the still-developing brain might encounter underlying ‘‘back-
ground’’ changes (e.g., ongoing myelination or regional dif-
ferences in gray matter maturation rates, see Khundrakpam
et al., 2016), which may influence the findings. In addition,
there are many neurodevelopmental and psychiatric disor-
ders the age of onset of which typically occurs in adoles-
cence (Paus et al., 2008). Currently, most reliability studies
are based on brain networks created from adult samples.
The study by Dennis et al. (2012) was one of the few studies
to use a younger cohort, with an average age of 23.6 – 1.47

years. However, the overall range of this group was large,
spanning from 20 to 30 years. Thus, the second aim of our
study was to assess the test–retest reliability of graph analy-
sis in the adolescent brain. We examined adolescents at two
different interscan periods: (1) 12 weeks apart and (2) 30 min
apart, within the same scanning session. In summary, we had
two main aims in our test–retest reliability analysis of diffu-
sion MRI connectomics graph metrics. The first aim was to
examine differences between binary and weighted edge def-
initions, and the differences between FA-, SC-, and SDL-
weighted edge schemes. The second aim was to investigate
the method’s reliability in the adolescent brain at two inter-
scan time periods.

Materials and Methods

Subjects

Participants were drawn from a longitudinal study of ad-
olescent volunteers, in which participants received repeated
DTI scans. Subjects were grouped based on the time inter-
val between the first and second DTI scans. The first group
(n = 26, 16F), of ages ranging from 14.25 to 18.19 years (�x =
16.62 – 1.10 years), received scans set 12 weeks apart. The
second group (n = 23, 12F), of ages ranging from 14.42
to 18.99 years (�x = 16.65 – 1.14 years), received scans within
the same session (roughly 30 min apart). All MRI scans were
compliant with the Health Insurance Portability and Account-
ability Act and the study was approved by the Institutional
Review Board of the University of California, San Francisco.
Written informed consent was obtained from all adult partic-
ipants or their legal guardians if they were younger than
18 years old. All MRI scans were read by a radiologist
(R.D.W.) for incidental findings and participants with abnor-
mal scans were excluded. Participant demographic informa-
tion is summarized in Table 1, including several participants’
psychiatric diagnosis and psychotropic medication status.

MRI data acquisition

Each subject underwent an hour-long MRI protocol using
a 3T General Electric MR750 MRI scanner and NOVA
Medical 32-channel head coil. The scan included a standard
inversion time (T1)-weighted IR-SPGR sequence, with rep-
etition time/TI/echo time (TR/TI/TE) = 10.2 s/450 ms/4.2 s,
flip angle = 15�, matrix = 256 · 256, field of view (FOV) = 25.6
cm, and slice thickness = 1 mm. The ASSET acceleration fac-
tor was set to 2 with a total scan time of 3 min and 50 sec. The
scan also included a spin-echo echo-planar-imaging DTI se-
quence (TR = 7.5 sec, TE = 60.7 ms, matrix size = 128 · 128,
FOV = 25.6 cm, slice thickness = 2 mm). One b0 was collected
and diffusion-sensitizing gradients were applied at a b-value
of 1000 s/mm2 along 30 noncollinear directions. The maxi-
mum gradient strength was 50 mT/m, and the ASSET accel-
eration factor was set to 2, resulting in a sequence scan time
of 4 min.

MRI data preprocessing

Preprocessing was done using the FMRIB Software
Library (FSL 5.0.8) (Smith et al., 2004) and MATLAB.
The DTI data were converted to NIFTI (Neuroimaging In-
formatics Technology Initiative) format. To insure diffusion
data quality, an automated data rejection algorithm was used
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to identify and discard directionally encoded diffusion mea-
surements that were corrupted by motion (Tymofiyeva et al.,
2012). When N ‡ 200 pixels deviated from the corresponding
mean pixel value for all diffusion directions by three stan-
dard deviations, the direction was not included in the tensor
calculation. The remaining images were corrected for eddy
current distortions and affine head motion using eddy_cor-
rect. A b-vector rotation was then applied in MATLAB.
The DTI reconstruction and deterministic whole-brain
streamline fiber tractography were carried out using Diffu-
sion Toolkit (Wang et al., 2007). The Fiber Assignment by
Continuous Tracking (FACT) algorithm (Mori et al., 1999)
was used to construct streamlines. This was done with one
seed per voxel, using the entire diffusion-weighted volume
as a mask image (rather than a thresholded FA map). The
Diffusion Toolkit software automatically calculated mini-
mum and maximum thresholds from the mask volume.
Streamlines were terminated if the tract curvature exceeded
35�, a value chosen based on previous work in adolescents
(Tymofiyeva et al., 2017).

Definition of network nodes

Each brain was segmented into ROIs using the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002). Only 90 cerebral regions were considered, as the cere-
bellum is often affected by stronger artifacts and is not always
fully covered in the FOV (Tymofiyeva et al., 2017). T1-
weighted data were registered to the b0-volume of the DTI
data set and to the MNI space template using linear registra-
tion (FLIRT) (Jenkinson and Smith, 2001; Jenkinson et al.,
2002). This allowed for the application of the AAL atlas in
the DTI space to produce the 90 nodes of the network. The
registration and segmentation results were visually inspected
for errors. The resultant ROIs were dilated by one voxel,
and they defined the nodes of the graph network analysis.

Definition of network edges

To define the edges (connections) between these nodes
(AAL ROIs), three weighting schemes were utilized. Connec-
tions were recorded in an n · n adjacency matrix, where aij is
the edge weight between node i and node j. Only streamlines
at least 5 mm in length were considered. The first weighting
scheme was defined using the average FA value within voxels
along streamlines connecting nodes i and j:

aij =
+

v2Vi, j
FA vð Þ

mi, j

, (1)

where Vi,j is the set of all voxels (of size mi,j) being passed by
any of the streamlines that connect nodes i and j. FA is the
measure of diffusion anisotropy within the voxel.

The second weighting scheme was defined by SC, the
number of tractography streamlines connecting two
nodes:

aij = Nij, (2)

where Ni,j is the number of all streamlines that connect nodes
i and j.

The third edge weight scheme was a variant of SC that cor-
rects for the density and length of a given streamline and is
termed streamline density with length (SDL). The SDL
scheme is defined as

aij =
2

giþ gj

+
s2Sij

1

l sð Þ , (3)

where gi and gj are the volumes (number of gray matter vox-
els) of nodes i and j, Sij is the set of all streamlines found be-
tween nodes i and j, and l(s) is the length of the streamline s
connecting nodes i and j. Volume correction helps control for
differences in subjects’ gray matter volumes, which is pro-
portional to the number of possible connection points per re-
gion. Length correction helps to compensate for errors that
may increase with tract length and to correct the bias in re-
peatedly identifying long tracts when conducting white mat-
ter seeding (Hagmann et al., 2007).

A fourth binary (B) edge scheme was also studied, repre-
senting an unweighted network. The binary scheme used a
density threshold value of 15%, applied to SC-weighted ma-
trices. This value was chosen based on a reproducibility anal-
ysis by Duda et al. (2014). In their analysis, the mean dice
value (signifying consistent network topology) for different
fiber tracking algorithms (Euler, FACT, RK4, and TenD)
and anatomical label sets (AAL and DTK31) stabilized
when using a 15% threshold. The binary entries of the adja-
cency matrices were calculated by first setting a fixed thresh-
old value for an individual matrix at one streamline and then
increasing the fixed threshold value until the density of the
remaining nonzero connections constituted 15% of all possi-
ble connections in the matrix: n n� 1ð Þ½ �=2, where n is the
number of nodes (90 in our case).

Results are reported using a combination of the four edge
schemes (B, FA, SC, and SDL), and the interscan time inter-
val, 12 weeks (12), or within-session (30). For example,
FA30 refers to results based on FA-weighted edges gathered
from the within-session scans.

Graph network measures

Four graph network measures were assessed using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).
These metrics were chosen based on their widespread
usage in MRI connectomics studies and popularity in test–

Table 1. Participant Demographics

Interscan period n Mean age – SD (years) Gender Diagnosis Medication

12 Weeks 26 16.62 – 1.10 16F, 10M 5ADHD 3
30 Minutes 23 16.65 – 1.14 12F, 11M 5ADHD, 1MDD 4

Participants were volunteers from a longitudinal study of adolescents. Those on medication were taking medication throughout the entire
12-week period.

ADHD, attention-deficit/hyperactivity disorder; F, female; M, male; MDD, major depressive disorder.
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retest reliability studies (see the Welton et al., 2015 review).
The network metrics included two global and two local mea-
sures, all constructed multiple times using the four edge char-
acterization schemes (binary, FA-weighted, SC-weighted,
and SDL-weighted). Specific descriptions are detailed here-
under. Note that the equations hereunder are for weighted
metrics.

i. Weighted clustering coefficient (c), a measure of a
node’s connectivity with its neighbors and is one of
the most common measures of network segregation. A
higher average clustering coefficient value represents
increased network segregation.

ci =
1

ki ki� 1ð Þ +
n

j, h = 1

(aijaihajh)1=3, (4)

where ki is the node degree, a basic measure of connectivity
defined by

ki = +
n

j = 1

1

0

�
if aij > 0

otherwise
: (5)

ii. Weighted characteristic path length (l), one of the most
widely used measures of network integration. It mea-
sures the average shortest path length between all
pairs of nodes in the network.

li =
1

n� 1ð Þ +
n

j = 1, j 6¼i

dij, (6)

where d is the distance matrix constructed by recording the
shortest weighted path length between any pairs of nodes.

iii. Node strength (w), a measure that represents the sum
of the edge weights at that node.

wi = +
n

j = 1

aij: (7)

iv. A simple connection between two nodes, represented
by the connection weight aij (defined in Definition of
Network Edges section).

The last two metrics are local graph measures. The fol-
lowing regions were examined for node strength: caudate,
middle frontal gyrus (MFG), anterior cingulate cortex
(ACC), and posterior cingulate cortex (PCC). Regions
were selected based on their relevance in neurological and
psychiatric disorders (Gasquoine, 2013; Leech and Sharp,
2014; Tymofiyeva et al., 2017). Connections between the
caudate to MFG and PCC to MFG were measured for the
final graph metric. These were chosen based on their asso-
ciations with adolescent MDD (Tymofiyeva et al., 2017)
and the default mode network (Khalsa et al., 2014), respec-
tively. All local level analyses were conducted bilaterally,
with connecting regions on the same side (e.g., L-caudate
to L-MFG).

Test–retest statistics

Statistical analyses were carried out in R v.3.4.3 and SPSS
v.20. Graph network metrics were assessed with the coeffi-
cient of variation (CV) and the intraclass correlation coeffi-
cient (ICC) (McGraw and Wong, 1996; Shrout and Fleiss,
1979). The CV is a measure of dispersion relative to the
mean and has been implemented in previous test–retest re-
liability studies (Cheng et al., 2012; Owen et al., 2013;
Vaessen et al., 2010). Specifically, we calculated a pooled
within-group CV. It is defined as the ratio between the
mean within-subject standard deviation (Sw) and the overall
measurement mean yð Þ, and it is typically expressed as a
percentage (Lachin, 2004):

CV = 100 � Sw

y
: (8)

The ICC was originally created to assess the reliability of
multiple raters measuring the same item. It has been previ-
ously utilized in other DTI graph theoretic network reliabil-
ity studies (Andreotti et al., 2014; Bassett et al., 2011;
Bonilha et al., 2015; Buchanan et al., 2014; Cheng et al.,
2012; Dennis et al., 2012; Owen et al., 2013; Vaessen
et al., 2010; for more, see the Welton et al., 2015 review).
Specifically, we computed a two-way mixed single measures
ICC(3,1), using consistency instead of absolute agreement.
‘‘(3,1)’’ refers to the nomenclature presented by Shrout and
Fleiss; the first number refers to the model (3 = two-way
mixed-effects) and the second number refers to the type
(1 = single rater/measurement) (Koo and Li, 2016). Usage
of the term ‘‘ICC’’ in this article can be assumed to mean
ICC(3,1). ICCs were calculated from repeated DTI scans
for the two groups: (1) 12 weeks apart and (2) 30 min apart
(within-session) with the following:

ICC 3, 1ð Þ= BMS�EMS

BMSþ k� 1ð ÞEMS
, (9)

where BMS is the between-subject variance, EMS is the
mean square error, and k is the number of raters. In our
case, raters correspond to the two repeated measurements.
ICC test–retest reliability values are commonly interpreted
as poor (<0.40), fair (0.40–0.59), good (0.60–0.74), and ex-
cellent (0.75–1.00) (Cicchetti, 1994). In general, CV values
can be interpreted as an estimate of a metric’s precision
within subjects, whereas ICCs are additionally related to
differences between subjects. We refer to CV as a measure
of precision and ICC as a measure of reliability, although
ICC also incorporates precision information. These two mea-
sures provide complementary information necessary to assess
a method in a comprehensive manner. For example, a graph
metric that has a high ICC and a high CV can be interpreted
as a measure that is sensitive to individual differences but is
not precise (Andreotti et al., 2014; Owen et al., 2013).

To assess potential changes from baseline measurement
due to ongoing brain maturation in the adolescent partici-
pants, we also performed a paired-sample t-test for all met-
rics and weighting schemes.

Results

MRI scans were well tolerated by all participants. Overall,
the number of rejected directions for both groups ranged
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from 0 to 12 (�x = 4.6 – 3.2 directions) and did not differ sig-
nificantly between the within-session repeated scans and
those repeated 12 weeks apart (paired t-test significance for
within-session: p = 0.77 and 12-week: p = 0.39).

Graph theory metrics

Graph metrics were calculated for the two groups (12-
week or within-session) using the four edge schemes (binary,
FA-weighted, SC-weighted, and SDL-weighted). Figure 1
shows an example of a single subject’s tractograms and
AAL 90-node network maps obtained from two scans within
the same MRI session. Table 2 reports significance values of
paired t-tests assessing differences between the 12-week re-
peated measures. Overall, no differences showed statistical
significance.

Overall, CV values ranged from 1.8% (B30-path length) to
70.4% (SDL12-PCC to MFG,L) and ICC values ranged from
0.10 (SC30-path length) to 0.89 (FA30-Caudate to MFG,L).
Both B12 and B30 schemes could not detect direct bilateral
PCC to MFG connections, preventing CV and ICC assess-
ments for these specific metrics. In addition, an ICC could
not be calculated for the B30 caudate to MFG, R local con-
nection.

On average, graph measures’ CV values ranged from 9.6%
to 45.0%, and the ICC averages ranged from 0.50 to 0.79
(‘‘fair’’ to ‘‘excellent’’). Of the various graph metrics, only
the clustering coefficient showed consistent precision (aver-
age CV = 9.6%) and consistent reliability (average ICC =
0.66, ‘‘good’’). The characteristic path length and the local
graph metrics showed varying degrees of precision and reli-
ability.

FIG. 1. (Top) Tractograms derived from a
subject’s two DTI scans taken 30 min apart
(within-session). (Bottom) A brain network
map of the same subject’s binary R-caudate
node strength. The 90 nodes derived from the
AAL atlas are in dark or light gray to reflect
presence or absence of an R-caudate con-
nection. The other ROIs of the local graph
analysis are also labeled. Network visuali-
zation was performed using Gephi (Bastian
et al., 2009). AAL, Automated Anatomical
Labeling; ACC, anterior cingulate cortex;
DTI, diffusion tensor imaging; L., left; MFG,
middle frontal gyrus; PCC, posterior cingu-
late cortex; R, right. Color images are
available online.

Table 2. p-Values Resulting from Paired t-Tests

Edge
scheme

Clustering
coefficient

Path
length

Caudate node
strength

ACC node
strength

MFG node
strength

PCC node
strength

Caudate to MFG
connection

PCC to MFG
connection

L R L R L R L R L R L R

B12 0.14 0.81 0.16 0.33 0.32 0.59 0.55 0.83 0.59 0.13 0.93 0.74 NA NA
FA12 0.68 0.99 0.30 0.81 0.42 0.66 0.70 0.95 0.22 0.48 0.57 0.19 0.22 0.82
SC12 0.97 0.45 0.40 0.17 0.52 0.28 0.85 0.83 0.76 0.26 0.26 0.24 0.11 0.19
SDL12 0.84 0.80 0.35 0.25 0.41 0.40 0.89 0.95 0.55 0.43 0.35 0.31 0.11 0.19

The 12-week group’s graph metrics were tested for differences using a paired t-test (two-tailed). Each row lists an edge scheme’s results
expressed as a p-value. (B, binary; FA, fractional anisotropy weight; SC, streamline count weight; SDL, streamline count with density and
length correction weight), and top-most row denotes graph metrics. ACC, anterior cingulate cortex; L, left; PCC, posterior cingulate cortex;
MFG, middle frontal gyrus; R, right. ‘‘NA’’—PCC to MFG connections were not observed using the binary definition.

148 YUAN ET AL.



Weighting scheme test–retest statistics

Table 3 gives a summary of the CV analysis for all graph
metrics grouped by the four edge schemes and the interscan
time intervals. Total weight scheme CV averages (e.g., average
of all FA-weighted metrics) were 21.2% – 16.1%, 7.8% – 2.6%,
25.2% – 15.9%, and 27.8% – 14.2% for B-, FA-, SC-, and
SDL-based measures, respectively. As mentioned in Graph
Theory Metrics section, B12 and B30 bilateral PCC to
MFG connections were not observed; CV could not be cal-
culated for these. A boxplot comparison of the CV values
grouped by weighting scheme and time interval is displayed
in Figure 2.

Table 4 shows a summary of the ICC results. On average,
within-session binary-based ICCs (0.66 – 0.09, ‘‘good’’) were
higher than those from the 12-week interval (0.61 – 0.14,
‘‘good’’). FA-weighted ICCs were also higher on average
within-session (0.62 – 0.18, ‘‘good’’) than those from the
12-week interval (0.54 – 0.18, ‘‘fair’’). SC-weighted ICCs
were on average lower within-session (0.63 – 0.17, ‘‘good’’)
than the 12-week interval (0.66 – 0.13, ‘‘good’’). SDL-
weighted ICCs were also lower on average within-session
(0.68 – 0.10, ‘‘good’’) than the 12-week interval (0.71 –
0.11, ‘‘good’’). Owing to a lack of variance, binary ICC mea-
sures could not be calculated for the R-caudate to MFG and
bilateral PCC to MFG tracts. Figure 3 shows a boxplot com-
parison of the ICC values grouped by weighting scheme and
time interval.

Interscan period test–retest statistics

Figure 4a–d shows the ICC values (with 95% confidence
intervals) of the two interscan periods, separated by edge
scheme and the tested graph metrics. The overall average
CV percentage for graph measures for the 12-week group
was 21.2% – 16.6%, and the overall average CV percentage
for the within-session group was 19.8% – 14.1%. Average
ICC values for the 12-week and within-session repeated mea-
sures were 0.63 – 0.16 (‘‘good’’) and 0.66 – 0.15 (‘‘good’’),
respectively. Binary and FA-weighted ICCs increased on av-
erage as the interscan time interval decreased. SC- and SDL-
weighted graph measures did not follow this trend. Refer to
Tables 3 and 4 for specific CV and ICC values.

Healthy subjects test–retest analysis

To exclude potential influence of the illness course
and medication on the reproducibility metrics, we also re-
examined our 12-week analysis using healthy subjects only.
All participants with psychiatric diagnoses were excluded
(n = 5), some of whom were on psychotropic medication. The
12-week healthy sample’s reliability measures did not differ
significantly from the full sample’s reliability measures. The
average CV values of each edge definition scheme were
22.9% – 17.3%, 7.2% – 1.9%, 26.5% – 18.2%, and 30.2% –
59.3%, for B, FA, SC, and SDL, respectively. Healthy

Table 3. Coefficient of Variation Values for Weighted and Binary Graph Metrics

Edge
scheme

Clustering
coefficient

Path
length

Caudate node
strength

ACC node
strength

MFG node
strength

PCC node
strength

Caudate to MFG
connection

PCC to MFG
connection

Mean
CVL R L R L R L R L R L R

B12 7.1 1.9 52.1 31.3 18.6 21.1 11.3 11.8 14.4 12.1 54.5 24.7 NA NA 21.7
B30 6.8 1.8 52.7 23.8 19.0 19.9 12.0 11.2 14.4 9.6 56.0 21.3 NA NA 20.7
FA12 4.4 3.7 8.6 8.2 7.4 7.3 6.5 6.5 8.7 9.3 6.9 6.0 9.3 11.3 7.4
FA30 5.8 4.0 8.1 8.5 8.6 8.5 8.9 8.7 10.0 10.2 5.1 4.7 7.5 16.7 8.2
SC12 9.7 21.8 30.6 28.7 15.1 19.3 15.5 14.3 10.4 9.9 33.0 24.1 69.2 62.1 26.0
SC30 10.2 20.2 29.5 24.0 18.8 19.1 16.0 14.0 12.9 13.4 31.7 23.0 57.6 51.7 24.5
SDL12 17.2 26.4 31.9 34.8 18.7 23.1 20.5 19.4 16.1 16.2 32.7 27.5 70.4 58.8 29.5
SDL30 15.8 27.3 29.4 27.3 18.8 18.9 16.2 15.9 16.8 17.9 30.2 22.7 56.2 51.1 26.0

CV values are expressed as a percentage.
CV, coefficient of variation; ‘‘NA’’, PCC to MFG connections were not observed using the binary definition in both interscan time inter-

vals; 12, 12-week interval; 30, 30-min within-session interval.

FIG. 2. Boxplot comparison of edge schemes’ CV values,
grouped by time interval. B, binary; CV, coefficient of vari-
ation; FA, fractional anisotropy weight; SC, streamline count
weight; SDL, streamline count with density and length cor-
rection weight; 12, 12-week interval; 30, 30-min within-
session interval; x, average CV. Color images are available
online.
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subjects’ average ICC values of each edge definition scheme
were 0.61 – 0.17, 0.59 – 0.16, 0.66 – 0.16, and 0.72 – 0.16,
for B, FA, SC, and SDL, respectively. As in the full sample,
the ICC for the binary’s bilateral PCC–MFG connections
lacked variation between groups, preventing an ICC calcu-
lation. See Supplementary Tables S1 and S2 for specific
results.

Discussion

Our results indicate that overall, graph theory network
measures were reliable when derived from structural con-
nectivity in the adolescent brain. Regarding our first aim,
network measures derived from nonbinary edge weighting

schemes were more consistently reliable and precise than
those derived from binary definitions. SC- and SDL-based
measures produced the most reliable results, but with con-
sistently low precision. FA-based measures consistently
produced very precise graph measures with ‘‘fair’’ to ‘‘good’’
reliability. For our second aim, we found that weighted net-
work measures could produce reliable measurements in the
adolescent brain both within session and 12 weeks apart.
We discuss next the performance of the studied weighting
schemes and differences in reliability and precision of the
four studied graph metrics in the following two sections.

Weighting schemes

Our results support previous findings regarding the utility
of network weighting in the adult brain (Cheng et al., 2012).
We found that binary metrics had decent performance, but
the rigidity of the definition (‘‘all or nothing’’) led to very in-
consistent results with individual weak connections. For ex-
ample, the B30 R-caudate to MFG measure produced results
that suggested subjects’ brains were forming or losing con-
nections within the scanning session. Tract formation at
this rate is unlikely. It is more likely that the differences be-
tween the repeated measures were enough to cross the binary
scheme’s 15% density threshold. Weighted schemes offer
more nuanced characterization of edges that are weak or
below the binary threshold (Rubinov and Sporns, 2010).
An example of this can be seen in the edge metric between
PCC and MFG nodes. The weighted graph metrics character-
ized these local connections reliably, whereas the binary-
based threshold filtered them out.

FA-weighted graph metrics consistently showed high pre-
cision in the test–retest analysis. The scheme’s average CV
was less than half of the others. The FA edge scheme per-
formed better with global measures, particularly characteris-
tic path length. This will be further discussed in Graph
Theory Metrics section. FA-weighted metrics were reliable
for specific local regions: bilateral ACC, L-MFG, and bilat-
eral PCC, but had trouble with local measures related to the
R-caudate and R-MFG.

SC-based graph metrics were all ‘‘fair’’ or higher, able to
reliably characterize all local regions and specific connections.
The notable exception is its ‘‘poor’’ reliability for path length.

Table 4. ICC(3,1) Values for Weighted and Binary Graph Metrics

Edge
scheme

Clustering
coefficient

Path
length

Caudate node
strength

ACC node
strength

MFG node
strength

PCC node
strength

Caudate to MFG
connection

PCC to MFG
connection

Mean
ICCL R L R L R L R L R L R

B12 0.62 0.55 0.78 0.86 0.39 0.58 0.48 0.45 0.61 0.54 0.80 0.66 NA NA 0.61
B30 0.68 0.72 0.65 0.68 0.72 0.58 0.83 0.89 0.81 0.70 0.65 NA NA NA 0.72
FA12 0.60 0.82 0.33 0.21 0.56 0.68 0.51 0.32 0.74 0.73 0.62 0.39 0.66 0.35 0.54
FA30 0.65 0.87 0.58 0.47 0.64 0.66 0.50 0.47 0.66 0.69 0.89 0.77 0.68 0.12 0.62
SC12 0.66 0.38 0.84 0.77 0.56 0.60 0.61 0.61 0.71 0.76 0.88 0.74 0.52 0.65 0.66
SC30 0.54 0.10 0.69 0.55 0.58 0.56 0.82 0.73 0.69 0.69 0.84 0.66 0.75 0.69 0.63
SDL12 0.77 0.47 0.80 0.78 0.63 0.71 0.75 0.77 0.75 0.79 0.86 0.78 0.52 0.56 0.71
SDL30 0.73 0.48 0.63 0.61 0.57 0.54 0.81 0.77 0.76 0.78 0.82 0.66 0.75 0.66 0.68

ICC analysis could not be conducted for the bilateral binary PCC to MFG connections, and also for B30 R-PCC node strength metric.
ICC, intraclass correlation coefficient.

FIG. 3. ICC(3,1) results for edge schemes grouped by 12-
week and within-session measures. ICC, intraclass correla-
tion coefficient; x, mean ICC value for a particular group
of graph theoretical measures. Color images are available
online.
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Comparatively, the SDL weight did not display this defi-
ciency. Characteristic path length is primarily influenced by
long paths between nodes (Rubinov and Sporns, 2010). The
tract length correction in the SDL scheme could be causing
this higher reliability. The SDL weight had the highest reli-
ability on average, with all graph measures producing reliable
results. This finding supports a previous result by Buchanan
et al. (2014) in which SDL-weighted global metrics showed
slightly better ICCs than FA-weighted ICCs. The authors
did find that FA weights were reliable (global ICCs >0.60)
as well, which our findings also support.

However reliable, SC- and SDL-weighted measures were
hindered by imprecision. Both had CV averages >25%. FA-
weighted metrics outperformed all others in this regard. The
scheme’s high precision and ‘‘fair’’ to ‘‘good’’ average reli-
ability could be due to averaged FA’s robustness to noise.
Edge weighting by mean diffusion anisotropy could also pro-
vide a better reflection of the underlying white matter fiber
microstructure (Pierpaoli and Basser, 1996). By comparison,
basing the edge weight definition on the number of stream-
lines is less biologically meaningful. The number of stream-
lines can change due to tract length, curvature, and degree of
branching ( Jones et al., 2013).

Graph theory metrics

The clustering coefficient was the graph metric that
showed the most consistent reliability and precision. This
supports previous findings in other reliable studies (Andreotti
et al., 2014; Buchanan et al., 2014; Owen et al., 2013; Vaes-
sen et al., 2010). Seven of the eight clustering coefficient

ICCs were ‘‘good’’ or higher (>0.60). CVs for this graph
metric were low as well, indicating that the metric could re-
liably and precisely measure a structural network’s segrega-
tion with all schemes for 12 weeks.

Characteristic path length has been described as both unre-
liable and reliable. Studies in the Welton et al., 2015 review
reported a large range of ICCs (0.28–0.94; ‘‘poor’’ to ‘‘excel-
lent’’). Our findings were similarly mixed. Binary and FA-
weighted path lengths performed best. Binary edges produced
the most precise path length measures (CV <2%), with
‘‘fair’’ (ICC = 0.55) 12-week and ‘‘good’’ (ICC = 0.72) within-
session reliability. FA-weighted edges were also very precise
(CV £4%) and produced ‘‘excellent’’ reliability for both time
intervals (ICC = 0.82 and 0.87 for 12-week and within-session
repeated measures, respectively). The weight’s performance
was similar to previous findings by Buchanan et al., although
they utilized probabilistic rather than deterministic tractography.
Path length did not perform well using the two SC-based
weights. Both showed a fourfold increase in CV and reliability
scores were ‘‘fair’’ or below.

The local measures in this reliability analysis consisted of
node strength and specific connections. The regions were the
caudate, ACC, PCC, and MFG, and the individual edges of
interest were the caudate to MFG and PCC to MFG. Com-
pared with the global graph analysis, local analysis yielded
mixed results. The ICCs ranged from ‘‘poor’’ to ‘‘excellent.’’
Binary-based local measures were particularly variable, with
‘‘excellent’’ ICCs (B12 L-caudate node strength) to an in-
ability to measure tracts (bilateral PCC to MFG). All edge
schemes performed reliably with the bilateral PCC node
strength and the L-caudate to MFG tract. In this study, all

FIG. 4. ICC(3,1) results for (a) binary edge definition, (b) FA-weighted definition, (c) SC-weighted definition, and (d)
SDL-weighted definition. Each plot displays 12-week (lighter bars) and within-session (darker bars) ICC values for a single
edge scheme’s network measures. The 95% confidence intervals are also displayed; negative values are treated as a value of
0. Color images are available online.
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but one edge scheme (B12) had ‘‘good’’ reliability (ICC
>0.60). SDL-weighted measures consistently produced
‘‘excellent’’ reliability (ICC ‡0.75), both at 12-week and
within-session intervals. However, these reliable local mea-
sures were often hindered by low precision (CV >10%).
This consistent wide dispersal limits the utility of the SDL
edge scheme.

Overall, the global measures outperformed local mea-
sures, particularly due to increased precision. This result sup-
ports previous findings that local measures displayed more
variability than global measures (Andreotti et al., 2014;
Cheng et al., 2012). A possible explanation of this finding
is that many global network measures are defined as an aver-
age of many nodes’ local measures. Thus, the global calcula-
tion inherently corrects for local variability.

Interscan period analysis

Our second aim was to examine test–retest reliability in the
adolescent brain for two interscan periods: within session and
12 weeks apart. This was done by comparing graph metrics
with DTI scans 12 weeks apart and within session in adoles-
cents (16.62 – 1.10 years). Our results indicated that weighted
schemes outperformed binary-based definitions. The binary
measures failed to identify the PCC-to-MFG connections,
whereas the weighted measures were able to. Within the
three edge weights, the FA- and SDL-weighted metrics
slightly outperformed SC-weighted metrics. However, there
was no one scheme that greatly stood out in both precision
and reliability. Precision performance remained consistent as
before, with FA-weighted metrics outperforming all. There
was modest improvement in precision from 12 weeks to
within session (CV averages from 21.2% to 19.8%). SC
weights and SDL weights showed larger CV improvements,
but the metrics remained highly imprecise.

Overall, edge schemes displayed reliable measures both at
12 weeks and within the same scanning session. We expected
that reliability would improve when scans were taken closer
together. This was the case with binary and FA, but unexpect-
edly not so with SC and SDL. For example, SC-clustering
coefficient decreased from ‘‘good’’ to ‘‘fair,’’ and path length
was less reliable within session. FA was the only scheme in
which most of the graph coefficients behaved as expected: in-
creasing reliability with decreasing interscan time interval.

There are no comparable reliability results for FA-weighted
graph metrics in the literature based on this 12-week interval
(in the previously discussed Buchanan et al., 2014 results
were for a 2- or 3-day period). However, others have found sim-
ilarly ‘‘good’’ or higher ICCs for SC-weighted measures over
longer durations in adults. For example, Owen et al. (2013)
found high reliability for weighted and unweighted metrics
for a period of 60.8 – 33.6 days. In a multisite study, Bonilha
et al. (2015) found high ICCs for SC-weighted nodal graph
measures for 125 days. Although the methodologies and cohort
ages differ, these findings point toward the feasibility of using
graph network analysis in studies of longer timescales.

Limitations

There are several limitations in our study that could have
affected our results. One such limitation is the varying num-
ber of rejected diffusion directions in our data set. Six sub-
jects had 10 or more rejected directions. It has been shown

that an increased number of rejected directions can cause
an overestimation of FA (Chen et al., 2015). This effect is
mainly due to decreased signal-to-noise ratio. Our scanning
procedure was representative of typical MRI acquisitions
of adolescent populations in both research and clinical set-
tings; motion restriction methods such as a tooth rest were
not implemented.

Our analysis is also limited to the chosen graph metrics.
Although other graph theoretical measures exist, the chosen
four were representative of many graph theory analyses.
Another limitation is that the ICCs require a large sample
size to generate a precise 95% confidence interval. Reducing
the interval’s width requires sample sizes challenging to ob-
tain for most MRI studies (Buchanan et al., 2014; Shoukri
et al., 2004). We suggest that studies continue using the
ICC, implement other metrics in conjunction such as the
CV, and aim for larger sample sizes when possible.

Another limitation is related to the fact that many of the
referenced test–retest reliability studies employed different
methodologies, making proper comparison difficult. One
such difference is the usage of a probabilistic tractography
approach, rather than a deterministic approach. We chose
to use deterministic tractography, since probabilistic tractog-
raphy has a higher likelihood of generating false positives.
This can be more harmful to network analysis than false neg-
atives (Taylor et al., 2017; Zalesky et al., 2016). Importantly,
the choice of tractography algorithm has been shown to af-
fect overall reliability results. Buchanan et al. found that
probabilistic tractography performed better than determin-
istic tractography in combination with SDL-weighted mea-
sures in terms of mean ICC. However, there were no
conclusive advantages when examining FA-weighted mea-
sures. Our findings indicate that within a deterministic pipe-
line setup, FA weighting is a reliable tool for graph network
analysis.

Conclusion

This study compared the reliability of graph metrics de-
rived using three weighting schemes (FA, SC, and SDL)
and a binary scheme (B). Based on our results, we recom-
mend using weights over binary definitions. We found that
FA-based measures produced reliable highly precise graph
measures. SC- and SDL-weighted measures produced slightly
more reliable results, but they were consistently imprecise.
Our findings also indicate that graph analysis is a feasible
method over longer periods of time (i.e., 3 months). We
also recommend using FA-weighted edge definitions during
network construction for this longitudinal context due to its
ability to retain its high precision.
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