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Abstract

The National Institutes of Health-sponsored Epilepsy Connectome Project aims to characterize connectivity
changes in temporal lobe epilepsy (TLE) patients. The magnetic resonance imaging protocol follows that
used in the Human Connectome Project, and includes 20 min of resting-state functional magnetic resonance
imaging acquired at 3T using 8-band multiband imaging. Glasser parcellation atlas was combined with the Free-
Surfer subcortical regions to generate resting-state functional connectivity (RSFC), amplitude of low-frequency
fluctuations (ALFFs), and fractional ALFF measures. Seven different frequency ranges such as Slow-5 (0.01–
0.027 Hz) and Slow-4 (0.027–0.073 Hz) were selected to compute these measures. The goal was to train ma-
chine learning classification models to discriminate TLE patients from healthy controls, and to determine
which combination of the resting state measure and frequency range produced the best classification model.
The samples included age- and gender-matched groups of 60 TLE patients and 59 healthy controls. Three tra-
ditional machine learning models were trained: support vector machine, linear discriminant analysis, and naive
Bayes classifier. The highest classification accuracy was obtained using RSFC measures in the Slow-4 + 5 band
(0.01–0.073 Hz) as features. Leave-one-out cross-validation accuracies were *83%, with receiver operating
characteristic area-under-the-curve reaching close to 90%. Increased connectivity from right area posterior
9-46v in TLE patients contributed to the high accuracies. With increased sample sizes in the near future, better
machine learning models will be trained not only to aid the diagnosis of TLE, but also as a tool to understand
this brain disorder.
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Introduction

Epilepsy, a brain disorder characterized by recurring
seizures, affects an estimated 1.2% of the United States

population (3.4 million persons) and is associated with a high
risk of cognitive and psychosocial dysfunction, and enor-
mous health care costs (Zack and Kobau, 2017). Powerful
imaging tools are now available for quantitatively character-

izing the structural and functional connections between brain
regions that make up epileptic networks (Holmes and
Tucker, 2013), providing a promising new approach for un-
derstanding, predicting, and treating refractory epilepsy.

Temporal lobe epilepsy (TLE) is the most common form
of epilepsy in adults, and the largest group among those
with medically refractory seizures (Tellez-Zenteno and
Hernandez-Ronquillo, 2012). Finding reliable biomarkers
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is crucial in prevention therapy and drug development, but
has so far been only modestly successful (Engel et al.,
2013). The National Institutes of Health-sponsored Epilepsy
Connectome Project (ECP) is a longitudinal study with the
specific aim of characterizing brain connectivity abnormali-
ties in people with TLE (Cook et al., 2018). ECP magnetic
resonance imaging (MRI) protocols follow those used in the
Human Connectome Project (HCP) (Van Essen et al., 2013)
and include a substantial resting-state functional MRI (rs-
fMRI) acquisition collected using simultaneous multislice
(SMS) magnetic resonance sequences (Moeller et al., 2010)
with a high temporal resolution implemented specifically for
Connectome studies on 3T GE 750 scanners.

The human brain is a complex dynamic system character-
ized by spontaneous oscillations in multiple frequency bands
(Buzsaki and Draguhn, 2004). Traditionally, analysis of rs-
fMRI data includes application of a bandpass filter in the
low-frequency oscillation (LFO) range (0.01–0.1 Hz, although
exact cutoffs vary slightly), because this frequency region is
less contaminated by low-/high-frequency noise and captures
relevant resting-state information (Biswal et al., 1995). Some
investigators have tested narrower frequency bands within and
around the LFO, labeled Slow-5 (0.01–0.027 Hz), Slow-4
(0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz), and Slow-2
(0.198–0.50 Hz) by Buzsaki and Draguhn (2004). Zuo and as-
sociates (2010) suggested that the Slow-4 and Slow-5 bands
reflect signal changes from the gray matter, and Slow-2 and
Slow-3 from the white matter. Recent study by Gohel and
Biswal (2015) revealed that functional integration between
brain regions at rest occurs in multiple frequency bands.

Based on these findings, our hypothesis was that seizure
activity in TLE patients, which generally occurs at much
higher frequencies than these slow bands, produces alter-
ations in gray matter connectivity that can be detected at
lower frequencies with fMRI. Since the raw voxel-based sig-
nal data are four-dimensional (4D), highly complicated, and
very large in size, three summary measures were calculated:
resting-state functional connectivity (RSFC) (Biswal et al.,
1995), amplitude of low-frequency fluctuations (ALFFs)
(Biswal et al., 1995; Zang et al., 2007), and fractional
ALFFs (fALFFs) (Zou et al., 2008). RSFC measures corre-
lations between blood-oxygen-level-dependent (BOLD)
time series of two brain regions, whereas ALFFs and
fALFFs capture intensity-based measures of BOLD change
at a single region of interest. The goal was to reveal which
combinations of a resting-state measure and a frequency
band capture the most valuable information to discriminate
between TLE patients and healthy controls.

Previous studies that investigated these measures in TLE
patients reported abnormalities in different regions of the
resting brain. These abnormalities include decreased RSFC
within the epileptic temporal lobe, between hippocampi,
and between the hippocampus and the orbitofrontal region
(Centeno and Carmichael, 2014), and increased RSFC in
the lateral portions of the nonepileptic hemisphere (Kucuk-
boyaci et al., 2013). Zhang and associates (2010) reported
that TLE patients with medial temporal sclerosis (a common
structural abnormality in TLE) show increased ALFFs in the
medial temporal lobe and thalamus and decreased ALFFs in
the default-mode network. A difference in fALFFs was noted
between left and right TLE patients in the thalamus (Yang
et al., 2015).

The Glasser parcellation atlas (Glasser et al., 2016) was
used for this study. This parcellation is a recent development
from the HCP consortium for surface-based morphometry. It
consists of 180 cortical parcels per hemisphere. These parcels
were delineated using a multimodal approach and the authors
reported that the parcellation is highly reproducible (Glasser
et al., 2016). One limiting factor is that this parcellation
only contains cortical brain regions. Therefore, 19 subcortical
regions from the FreeSurfer subcortical segmentation (Dale
et al., 1999; Fischl et al., 2002) were added for the current
analysis.

Using the three summary measures and the surface-based
morphometry analysis helps to reduce the size of the data,
but the resulting data are still highly complicated (Garcia-
Ramos et al., 2016; Song et al., 2015). Machine learning
has proved effective at finding patterns in complex data
sets in many fields and applications (Kotsiantis et al.,
2006). Therefore, machine learning techniques were applied
to determine which set of features would discriminate be-
tween the TLE patients and healthy controls with the highest
accuracy.

Clinical application of machine learning is currently
most limited by the lack of data compared with the number
of potential training features (Beleites et al., 2013). To cre-
ate a reliable machine learning model, one needs to select
an informative set of features for training, then narrow
this set down to key components (Hua et al., 2005; Vergun
et al., 2016). Therefore, knowing what information is useful
is essential, but typically difficult to determine a priori. In
this study, 20 different combinations of resting fMRI mea-
sures and frequency bands were considered for the machine
learning training. Note that it is not necessary to consider
the ‘‘All’’ band with fALFFs, because fALFF is defined
as ALFF of a specific band over that of the All band. A fea-
ture selection method using Lasso (Least Absolute Shrink-
age and Selection Operator) (Tibshirani, 1996) was employed
to remove uninformative features (Meier et al., 2012; Tang
et al., 2013).

Given a large enough sample size, machine learning mod-
els based on artificial neural networks such as deep learning
will generally outperform traditional models (Ng, 2016). In
many medical imaging applications, however, there are not
enough samples to train such models. In these cases, what
may be tried instead is to train simpler machine learning
models to get an approximate assessment of potential useful-
ness. This can also reveal what underlying features are able
to produce good models. As more data are accumulated in
the future, performance will improve and become stable
with the use of deeper learning models. Any results obtained
now with traditional models are setting the lower bound for
the future.

Materials and Methods

Participants

The ECP (NINDS U01 NS093650) is a multisite prospective
research project of the Medical College of Wisconsin (MCW)
and University of Wisconsin-Madison (UW-Madison) (Cook
et al., 2018). The MCW and Froedtert Hospital Institutional
Review Board approved the use of human participants for
this study. All participants provided written informed consent
before their participation.
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Epilepsy patients enrolled in the ECP are between ages of
18 and 60 (inclusive), have a full-scale IQ of 70 or above,
speak English fluently, and have no medical contraindica-
tions to whole-body 3T MRI or magnetoencephalography
(MEG). They must have a diagnosis of TLE supported by
two or more of the following: (1) described or observed clin-
ical semiology consistent with seizures of temporal lobe or-
igin, (2) electroencephalography (EEG) evidence of either
temporal intermittent rhythmic delta activity or temporal
epileptiform discharges, (3) temporal onset of seizures cap-
tured on EEG, or (4) MRI evidence of medial temporal scle-
rosis or hippocampal atrophy. Patients are excluded who
have any of the following: (1) presence of any lesions
other than medial temporal sclerosis and nonspecific white
matter abnormalities on 3T MRI with a dedicated epilepsy
protocol that includes high-resolution axial and coronal
fluid attenuated inversion recovery sequences, (2) an active
infectious etiology of seizures, or (3) suspected or confirmed
evidence of active autoimmune or inflammatory process in
the central nervous system. Patients who underwent epilepsy
surgery previously were also excluded.

The controls are healthy adults in the 18 to 60 years age
range. Exclusion criteria for the healthy controls include:
Edinburgh Laterality (Handedness) Quotient less than +50;
primary language other than English; history of any learning
disability, brain injury or illness, substance abuse, or major
psychiatric illness (major depression, bipolar disorder, or
schizophrenia); current use of vasoactive medications; and
any medical contraindications to MRI or MEG.

Data from 60 consecutive TLE patients (mean age = 39.5 –
12.0 years, 34 women, 5 left-handed, epilepsy duration =
18.7 – 14.4 years, 38 drug-resistant TLE) and 59 healthy con-
trols (mean age = 36.0 – 14.4 years, 32 women) were analyzed.
Supplementary Table S1 summarizes the demographics and
the clinical information of the TLE patients. The two groups
did not differ in the mean age ( p = 0.16, two-tailed t-test),
and gender ratio ( p = 0.79, Chi-squared test). The patient
group consisted of 29 left, 15 right, and 4 bilateral TLE pa-
tients, and 12 TLE patients of uncertain seizure laterality.
To closely match the TLE and control samples, 12 of the
healthy control data sets were taken from the Alzheimer Dis-
ease Connectome Project (ADCP; 1UF1AG051216-01A1)
(Hwang et al., 2018), which uses the same set of MRI scanners
at MCW and UW-Madison and the same imaging protocols
for structural and rs-fMRI scans as the ECP. The MCW Insti-
tutional Review Board has approved the use of human partic-
ipants for ADCP and the sharing of deidentified data sets from
this study.

Data acquisition

MRI was performed on 3T GE 750 scanners at both insti-
tutions. Resting fMRI images were acquired using whole-
brain SMS imaging (8 bands, 72 slices, repetition time
(TR)/echo time (TE) = 802 ms/33.5 ms, flip angle = 50�,
matrix = 104 · 104, field of view (FOV) = 20.8 cm, voxel
size 2 mm isotropic) and a 32-channel receive coil. The par-
ticipants were asked to fixate on a white cross at the center
of a black screen during the scans. Time series from four
5-min resting-state scans acquired in a single session
were concatenated. T1w structural images were acquired
using a magnetization prepared gradient echo sequence

(TR/TE = 604 ms/2.516 ms, inversion time [TI] = 1060.0
ms, flip angle = 8�, FOV = 25.6 cm, 0.8 mm isotropic).
Cube T2w structural images were also acquired (TR/TE =
2500 ms/94.641 ms, flip angle = 90�, FOV = 25.6 cm, 0.8 mm
isotropic).

Data processing

Data were preprocessed using the HCP minimal process-
ing pipelines version 3.4.0 (Glasser et al., 2013), which is
primarily based on FreeSurfer (Dale et al., 1999) and
FMRIB Software Library ( Jenkinson et al., 2012). In brief,
the function of this pipeline is to align the T1w and T2w im-
ages, register them to the Montreal Neurological Institute
space, segment the volume into predefined structures, recon-
struct white and pial cortical surfaces, and perform FreeSur-
fer’s standard folding-based surface registration to a surface
atlas (the ‘‘fsaverage’’ template). The functional portion of
the pipelines removes spatial distortions using spin echo
unwarping maps, realigns volumes to compensate for subject
motion, registers the fMRI data to the structural images, re-
duces the bias field, normalizes the 4D image to a global
mean, masks the data with the final brain mask, and maps
the voxels within the cortical gray matter ribbon onto the na-
tive cortical surface space. More details on the HCP process-
ing pipelines can be found in Glasser and associates (2013).

Additional preprocessing was performed using Analysis of
Functional NeuroImages (Cox, 1996), which included motion
regression using 12 motion parameters, and regression-based
removal of signal changes in the white matter, cerebrospinal
fluid, and the global signal. Bandpass filtering was applied
to select frequency bands of interest: Slow-2 (0.198–0.50 Hz),
Slow-3 (0.073–0.198 Hz), Slow-4 (0.027–0.073 Hz), Slow-5
(0.01–0.027 Hz), Slow-4 + 5 (covering both Slow-4 and
Slow-5; 0.01–0.073 Hz), LFO (0.01–0.1 Hz), and All (no band-
pass filtering; *0.00–0.62 Hz). For the brain atlas, a combina-
tion of 360 cortical regions defined by the HCP’s Glasser
parcellation and 19 subcortical regions from the FreeSurfer
subcortical segmentation was used. BOLD time series from
these 379 regions were extracted per subject to generate ma-
chine learning training features.

Motion outliers

A soft motion outlier criterion was implemented. It was
not desired to build a classifier model based on highly se-
lected data, because an ideal model should be able to classify
participants despite moderate levels of motion in the scanner.
To achieve this, the machine learning model needs to be ex-
posed to a sufficient number of data points contaminated by
motion. One needs to be cautious, however, not to train a
model that classifies based on high versus low motion, in-
stead of TLE patients versus healthy controls.

Therefore, instead of performing a rigorous motion scrub-
bing, only a weak threshold was selected based on the global
motion. A metric called derivative of variance root mean
squared (DVARS) was used, which measures the root-
mean-square intensity difference between two consecutive
volumes (Power et al., 2012). The mean DVARS across
time was calculated for every 5-min rs-fMRI scan and, there-
fore, each participant received four mean DVARS scores.
Figure 1 shows the histograms of mean DVARS by runs
for both groups.
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Overall, the two groups had visually similar mean
DVARS distributions, except for a small number of outliers
who were more frequent in the TLE group. Participants who
had at least one run with mean DVARS >60 were excluded
from the analyses. Using this method, 9 TLE patients and
3 healthy controls were excluded as outliers, and the remain-
ing samples consisting of 60 TLE patients (DVARS = 45.4 –
5.7) and 59 healthy controls (DVARS = 45.7 – 5.2) were
matched statistically on mean DVARS ( p = 0.48).

Machine learning training features

For RSFC measures, Pearson’s correlations were com-
puted. A total of 71,631 unique pairwise correlations were
used as training features in the machine learning. For
ALFFs, the filtered BOLD time series were Fourier trans-
formed to the frequency domain, and the mean of the square
root values within the frequency range of interest was calcu-
lated (Zang et al., 2007). fALFF was calculated as the ALFF
of the frequency range over the ALFF of the All range (Zou
et al., 2008). For ALFFs and fALFFs, the number of avail-
able features in the training was 379 for each.

Statistical analysis

Two-tailed t-tests between the groups were computed to
assess group differences for each feature from each of the
three measures. The Benjamini–Hochberg false discovery
rate (FDR) method was used to correct for multiple compar-
isons (Benjamini and Hochberg, 1995).

Machine learning models

All machine learning analyses were done in MATLAB
R2016a with the Statistics and Machine Learning Toolbox
(MathWorks, 2017). Three different binary classifiers were
examined: support vector machine (Cortes and Vapnik, 1995),
linear discriminant analysis (Izenman, 2008), and naive Bayes
(Friedman et al., 1997) classifiers. These three traditional
classifiers were trained instead of one to get a general sense
of the expected machine learning classification performance.

Leave-one-out-cross-validation (LOOCV) was used to es-
timate model performance (Evgeniou and Pontil, 2004). In

each LOOCV loop, one participant was taken out and the
machine learning model was trained with N� 1 participants.
Then the left out participant was used as a testing sample for
the trained model. This procedure was repeated until every
participant had been left out once. The classification perfor-
mances were averaged to give the LOOCV accuracy. This
method is known to give the most unbiased estimate of the
test error and is a good method for small sample cases (Evge-
niou and Pontil, 2004; Vergun et al., 2016). Receiver operat-
ing characteristic area-under-the-curve (AUC) was also
computed by adjusting the misclassification cost function
during training. A random classifier would give 50%
LOOCV accuracy with AUC = 0.5.

Feature selection

To reduce feature dimensionality, Lasso regression analy-
sis was performed on the training set in each cross-validation
loop, with the regularization coefficient (lambda) at 0.1
(Tang et al., 2013; Tibshirani, 1996). Only features with non-
zero Lasso coefficients were used in the training of the ma-
chine learning models. Features that received nonzero
coefficients in all 119 cross-validation loops were saved for
further analysis. Recursive feature elimination (RFE) (Guyon
et al., 2002) was employed within each loop based on the
Lasso coefficients to further reduce the dimensionality.

Results

As noted in the Materials and Methods section, the TLE
patients and control participants did not differ on age, gen-
der, or mean DVARS.

The highest LOOCV classification accuracies using RSFC
were in the low to mid-80%, with the AUC close to 90%. The
highest accuracies were only in the mid-70% using ALFF and
fALFF measures. These results are summarized in Table 1.

Using RSFC, the Slow-4 + 5 band produced the best over-
all model performance in classifying the TLE patients and
healthy controls, with *83% LOOCV accuracy. The accura-
cies from the three machine learning models were also con-
sistent: 83.19% – 1.37%. Using ALFFs and fALFFs,
LOOCV accuracies were not as consistent as using RSFC.

FIG. 1. Histograms show-
ing distributions of mean
DVARS by runs for the two
groups. Participants who had
at least one run with mean
DVARS >60 were excluded
from the analyses. The red
bars indicate the excluded
participants: nine TLE pa-
tients and three healthy con-
trols. DVARS, derivative of
variance root mean squared;
TLE, temporal lobe epilepsy.
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A total of 19 Slow-4 + 5 RSFC features were selected by
the Lasso feature selection every time in all 119 cross-
validation loops, and these are summarized in Table 2, as
well as shown in Figure 2. Only five of these features also re-
ceived significant p values ( pfdr < 0.05) from the group t-test.
Connection between right fusiform face complex (R_FFC)
and right area posterior 9-46v (R_p9-46v, a part of Brod-
mann area 46) was the most significant feature based on
both Lasso and t-test ( pfdr < 0.001) analyses, and was stron-
ger in TLE patients than in the healthy group (Fig. 3).

The 19 significant features did not include any exclusively
temporal lobe connections. We reran the analysis using
Slow-4 + 5 RSFC, but only within the temporal lobe (24 re-
gions, 276 connections). The maximum LOOCV accuracy
was only 68.91%. The connection between left area TG dor-
sal (L_TGd, a part of Brodmann area 38) and left area TE1
anterior (L_TE1a) was found to be the most significant
temporal lobe feature based on both Lasso and t-test ( pfdr =
0.006) analyses, and was stronger in the healthy group.
Figure 4 shows 15 temporal lobe features that were selected
by the Lasso feature selection every time in all 119 cross-
validation loops.

Discussion

TLE is associated with chronic structural brain changes,
particularly in medial temporal structures, but also in the
thalamus, insula, and various cortical regions, which are
thought to be a consequence of repeated seizure activity
(Caciagli et al., 2017). Our hypothesis was that these brain

alterations in TLE would also have significant effects on rest-
ing brain activity and inter-regional connectivity, regardless
of their seizure focus. Therefore, we studied a heterogeneous
group of TLE patients.

Seven frequency ranges with three different measures of
the resting functional brain signals were tested to train
three different traditional machine learning models. This ex-
tensive search for good training features was an attempt to
cover all possible measures using the resting fMRI images.
In brief, the results suggest that functional brain alterations
in the TLE patients are indeed detectable and are captured
best by RSFC using the Slow-4 + 5 range. The machine
learning models can use this information to separate TLE pa-
tients from age- and gender-matched healthy controls with
*83% accuracy. Also notably, the features separating be-
tween the TLE patients and healthy controls were located
throughout the entire brain, and not just within the temporal
lobe, which is consistent with previous findings (Liao et al.,
2010; Morgan et al., 2015).

There have been many articles in the recent literature de-
scribing the development of reliable machine learning mod-
els to make more accurate decisions from complex clinical
data sets. For example, there are reports on using machine
learning to predict postsurgical outcome of TLE patients
using nonimaging data (Armananzas et al., 2013), structural
MRI data (Feis et al., 2013; Munsell et al., 2015), or intracra-
nial EEG (Memarian et al., 2015). Machine learning has also
been applied in the lateralization of TLE based on rs-fMRI
(Yang et al., 2015) or positron emission tomography (PET)
(Kerr et al., 2013), and in separating TLE patients and

Table 1. Summary of Machine Learning Results

Measure Frequency band

SVM LDA NB

Accuracy AUC Features Accuracy AUC Features Accuracy AUC Features

RSFC Slow-2 57.14 0.52 57 63.87 0.62 3 61.34 0.60 3
Slow-3 65.55 0.67 14 63.03 0.62 12 63.03 0.61 21
Slow-4 52.10 0.44 3 53.78 0.43 3 52.94 0.42 3
Slow-5 75.63 0.80 10 75.63 0.80 8 76.47 0.79 11
Slow-4 + 5 84.87 0.86 31 81.51 0.86 36 83.19 0.88 29
LFO 72.27 0.72 5 69.75 0.71 5 73.95 0.79 60
All 72.27 0.72 37 69.75 0.73 27 68.07 0.69 26

ALFFs Slow-2 52.94 0.43 25 53.78 0.49 34 57.98 0.56 33
Slow-3 63.03 0.59 4 67.23 0.69 1 66.39 0.67 1
Slow-4 69.75 0.71 17 68.91 0.72 17 69.75 0.73 17
Slow-5 78.99 0.81 11 77.31 0.81 13 73.11 0.76 12
Slow-4 + 5 64.71 0.65 3 67.23 0.68 3 64.71 0.67 3
LFO 73.95 0.72 14 78.15 0.81 14 69.75 0.72 15
All 62.18 0.56 6 61.34 0.61 8 63.87 0.64 10

fALFFs Slow-2 53.78 0.46 22 59.66 0.58 2 60.50 0.57 2
Slow-3 54.62 0.42 12 73.11 0.78 6 72.27 0.75 6
Slow-4 64.71 0.55 2 63.87 0.64 2 65.55 0.65 2
Slow-5 70.59 0.70 6 68.07 0.70 6 64.71 0.69 2
Slow-4 + 5 56.30 0.46 6 55.46 0.53 25 56.30 0.53 24
LFO 58.82 0.50 16 55.46 0.54 3 63.03 0.57 20

Bold values represent the best results per category.
The three resting-state measures and seven frequency bands tested are organized in the leftmost columns. The three traditional machine

learning models trained are organized in the top row. The accuracies are the LOOCV accuracies. ‘‘Features’’ column indicates the number of
features selected from the RFE feature selection. Best LOOCV accuracies were achieved with Slow-4 + 5 RSFC features.

ALFFs, amplitude of low-frequency fluctuations; AUC, area-under-the-curve; fALFFs, fractional ALFFs; LDA, linear discriminant anal-
ysis; LFO, low-frequency oscillation; LOOCV, leave-one-out cross-validation; NB, naive Bayes; RFE, recursive feature elimination; RSFC,
resting-state functional connectivity; SVM, support vector machine.
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healthy controls using structural imaging data (Bernhardt
et al., 2015), diffusion imaging data (Del Gaizo et al.,
2017), or both (Focke et al., 2012). It was also applied in sep-
arating epilepsy patients overall and healthy controls using
RSFC (Rajpoot et al., 2015; Zhang et al., 2012). No studies
have intensively studied the classification between TLE

patients and healthy controls using rs-fMRI features. The
current results may guide future research in this area.

As an extensive high-quality imaging data set, the ECP
will provide an unprecedented opportunity for the develop-
ment of more reliable machine learning models. By the end
of the project, comprehensive data from close to 200 TLE

FIG. 2. Eighteen signifi-
cant Slow-4 + 5 RSFC corti-
cal features based on Lasso
feature selection are shown.
Connection between left area
9 anterior (L_9a) to left
amygdala is the only one not
shown in the figure from
Table 2. This figure suggests
that the changes in the TLE
brains are throughout the
whole brain, not only in the
temporal lobes. The back-
ground brain images were
generated with the Connec-
tome Workbench and from
Glasser et al. (2016). RSFC,
resting-state functional con-
nectivity.

Table 2. Nineteen Features That Were Repeatedly Selected by the Lasso Feature Selection

in All 119 Cross-Validation Loops

Lasso features
t-Test

No From To Lasso weight p_FDR

1 ‘‘R_Fusiform Face Complex’’ ‘‘R_FFC’’ ‘‘R_Area posterior 9-46v’’ ‘‘R_p9-46v’’ 0.713 <0.001*

2 ‘‘R_RetroSplenial Complex’’ ‘‘R_RSC’’ ‘‘R_Area 46’’ ‘‘R_46’’ �0.622 0.003*

3 ‘‘L_Entorhinal Cortex’’ ‘‘L_EC’’ ‘‘L_Area V3CD’’ ‘‘L_V3CD’’ 0.584 >0.1

4 ‘‘L_Area 11l’’ ‘‘L_11l’’ ‘‘L_Area 52’’ ‘‘L_52’’ 0.575 >0.1

5 ‘‘R_RetroSplenial Complex’’ ‘‘R_RSC’’ ‘‘R_Rostral Area 6’’ ‘‘R_6r’’ �0.552 >0.1

6 ‘‘L_Area 2’’ ‘‘L_2’’ ‘‘R_Area PGs’’ ‘‘R_PGs’’ 0.451 0.087

7 ‘‘R_Area posterior 9-46v’’ ‘‘R_p9-46v’’ ‘‘R_Area PH’’ ‘‘R_PH’’ 0.377 0.005*

8 ‘‘L_Area 9 anterior’’ ‘‘L_9a’’ ‘‘L_Amygdala’’ ‘‘L_Amygdala’’ �0.376 0.087

9 ‘‘L_VentroMedial Visual
Area 3’’

‘‘L_VMV3’’ ‘‘R_Frontal Opercular
Area 4’’

‘‘R_FOP4’’ 0.336 0.063

10 ‘‘L_Area 23d’’ ‘‘L_23d’’ ‘‘L_Hippocampus’’ ‘‘L_H’’ �0.297 0.095

11 ‘‘L_Area OP4/PV’’ ‘‘L_OP4’’ ‘‘L_Area PFt’’ ‘‘L_PFt’’ �0.292 0.039*

12 ‘‘L_Ventral Visual Complex’’ ‘‘L_VVC’’ ‘‘R_Ventral Visual Complex’’ ‘‘R_VVC’’ �0.290 0.002*

13 ‘‘R_Fusiform Face Complex’’ ‘‘R_FFC’’ ‘‘R_Medial Belt Complex’’ ‘‘R_MBelt’’ 0.274 >0.1

14 ‘‘L_Area anterior 10p’’ ‘‘L_a10p’’ ‘‘R_Area IFJa’’ ‘‘R_IFJa’’ �0.260 >0.1

15 ‘‘L_Premotor Eye Field’’ ‘‘L_PEF’’ ‘‘L_ParaBelt Complex’’ ‘‘L_PBelt’’ �0.231 >0.1

16 ‘‘L_Primary Auditory Cortex’’ ‘‘L_A1’’ ‘‘R_Area 8Av’’ ‘‘R_8Av’’ �0.225 >0.1

17 ‘‘R_Area IntraParietal 2’’ ‘‘R_IP2’’ ‘‘R_Area PGs’’ ‘‘R_PGs’’ �0.214 >0.1

18 ‘‘R_Medial Area 7P’’ ‘‘R_7Pm’’ ‘‘R_Area 5m’’ ‘‘R_5m’’ 0.201 >0.1

19 ‘‘R_Area 31p ventral’’ ‘‘R_31pv’’ ‘‘R_Area 46’’ ‘‘R_46’’ �0.191 0.057

*Represents statistical significance (p < 0.05).
Features highlighted in light gray were stronger in TLE patients, and vice versa for the rest. Only five out of 19 features showed significant

group differences based on t-test.
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patients will be acquired, which will include demographics,
cognitive test scores, structural and fMRI, MEG, and genet-
ics information. All of this information can be regarded as
potential machine learning features. In this ongoing research,
it was decided to first start with the RSFC because it has
shown success with machine learning as already explained.

Deep learning methods generally outperform traditional
machine learning models given a sufficient sample size
(Ng, 2016). However, this is often an unrealistic sample
size in clinical studies with limited data. More immediate
use of machine learning, therefore, may be to use traditional
machine learning techniques for multidimensional analyses
of given features. Without machine learning, or a similar au-
tomated method, we are limited in our ability to comprehend
high-dimensional data, especially when the patterns are com-
plex. Also, the true nature of a clinical question may be sig-
nificantly more nonlinear than one may assume at the outset.
Instead of trying to sort out useful information from a com-

plex set of features, one can consult machine learning models
to discover patterns within them.

The biggest limitation of traditional machine learning
models is the need to select input features for the model
being trained. In most cases, we do not know a priori what
combination of features would contain the most useful infor-
mation for those models. In this study, a Lasso-based feature
selection method along with RFE was employed. At present,
identifying the best set of features and the correct nonlinear-
ity of the models (or kernels) remains a trial-and-error pro-
cess. In theory, deep learning methods can perform this
feature selection much efficiently given a sufficient amount
of data. Given limited data, we believe that it is advisable
to think broadly, considering a wide range of potential fea-
tures available, while actively narrowing the set down so
that the models are not clogged with noisy information.

In this study, three traditional machine learning models
were trained, to get a general sense of the expected machine

FIG. 3. This is a histogram showing the
distributions of Pearson correlation between
signals from R_FFC and R_p9-46v. An in-
creased correlation, or decreased negative
correlation, was found in the TLE
group. This feature was the most significant
feature based on both Lasso and t-test ana-
lyses. R_FFC, right fusiform face complex;
R_p9-46v, right area posterior 9-46v.

FIG. 4. Fifteen significant
Slow-4 + 5 RSFC temporal
lobe features based on Lasso
feature selection are shown.
Only temporal lobe features
(276 out of 71,631) entered
the feature selection. None of
these features were selected
when whole brain connectiv-
ity was used to separate be-
tween TLE patients and
healthy controls.
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learning classification performance using traditional tech-
niques. The best overall accuracy was achieved with the
Slow-4 + 5 RSFC features and it was very comparable between
the three classifiers. These traditional models are more straight-
forward and understandable than highly nonlinear models such
as deep learning. Therefore, they allow us to more easily ana-
lyze what underlying features are contributing the most to the
models. The set of Slow-4 + 5 RSFC features that contributed
most to the models, which are visualized in Figure 2, suggest
widespread functional connectivity alterations in TLE patients.
This list included no exclusively temporal lobe connections,
which is perhaps due to the heterogeneity of our TLE patient
group. It is notable that connections outside of the temporal
lobe result in better classification than temporal lobe connec-
tions. The increased connection between R_FFC and R_p9-
46v is consistent with the findings of Riley and associates
(2015), who reported altered functional connectivity of the cor-
tical face processing networks in TLE patients. Abnormal
structure and function of the retrosplenial cortex (RSC) have
also been reported (Addis et al., 2007; Mueller et al., 2009).

These results are promising for future applications in diag-
nosing and understanding the basic pathophysiology of TLE.
Currently TLE diagnosis is made with a combination of EEG,
MEG, structural MRI, and/or single-photon emission com-
puted tomography/PET in conjunction with clinical phenom-
enology, but in many cases, convincing evidence is difficult
to capture noninvasively, and more invasive approaches
such as subdural grids or depth electrodes are used (Pizarro
et al., 2016). Diagnosis of TLE with an rs-fMRI scan could
provide valuable adjunctive evidence and might eventually re-
place some current clinical tests with a more cost-effective
method.

Future models can build on our current model by increas-
ing the sample size by incorporating additional data sets of
TLE patients, other type of epilepsies, and healthy controls,
so a machine learning classifier with high accuracy, sensi-
tivty, and specificity can be constructed. It should also be
noted that the current results are from studying TLE patients
regardless of their patient subtypes. With increasing sample
sizes, it will allow one to subclassify the TLE patient group
based on clinical subgroupings such as left versus right sei-
zure foci, those with versus without medial temporal sclero-
sis, and those with well-controlled versus uncontrolled
seizures, which will provide more comprehensive informa-
tion regarding functional changes associated with this brain
disorder.

Other future direction for this line of research is to test a
wider variety of training features. From this study, it was
learned that RSFC measures contained more useful infor-
mation than ALFFs or fALFFs for the traditional machine
learning models tested. Potential training features from
other modalities (e.g., MEG, diffusion tensor imaging) in
the ECP data set will be tested in future analyses. It is
also interesting to combine different feature sets to poten-
tially produce better models, because the goal of ECP is
to use all the information available to make comprehensive
statements about the TLE population. Once we settle on the
best set of training features that can discriminate TLE pa-
tients from the healthy controls, they can then be used to
predict clinical outcomes often found in this patient popula-
tion by training regression type models, which may guide
clinical decisions in the future.

Conclusion

The current results suggest that oscillations in the low-
frequency range may provide valuable information about al-
tered brain connectivity patterns in TLE patients. Using only
RSFC features generated from the Slow-4 + 5 range, between
0.01 and 0.073 Hz, traditional machine learning models were
able to separate a heterogeneous sample of TLE patients
from healthy controls with 83% accuracy. Increased connec-
tivity from R_p9-46v and decreased connectivity from RSC
in the TLE group contributed most to these classification
models. ALFF and fALFF measures produced less accurate
and more unstable models than RSFC. More effective and
stable classification models are expected in the future with
additional data and with higher machine learning model
complexity. The ECP protocol with its sensitive state-of-
the-art methods allows one to capture with higher spatial
and temporal resolution abnormal network function in TLE
than existing literature.
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