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Abstract

The importance of how brain networks function together to create brain states has become increasingly recog-
nized. Therefore, an investigation of eyes-open resting-state dynamic functional network connectivity (dFNC) of
healthy controls (HC) versus that of schizophrenia patients (SP) via both functional magnetic resonance imaging
(fMRI) and a novel magnetoencephalography (MEG) pipeline was completed. The fMRI analysis used a spatial
independent component analysis (ICA) to determine the networks on which the dFNC was based. The MEG anal-
ysis utilized a source space activity estimate (minimum norm estimate [MNE]/dynamic statistical parametric
mapping [dSPM]) whose result was the input to a spatial ICA, on which the networks of the MEG dFNC
were based. We found that dFNC measures reveal significant differences between HC and SP, which depended
on the imaging modality. Consistent with previous findings, a dFNC analysis predicated on fMRI data revealed
HC and SP remain in different overall brain states (defined by a k-means clustering of network correlations) for
significantly different periods of time, with SP spending less time in a highly connected state. The MEG dFNC, in
contrast, revealed group differences in more global statistics: SP changed between meta-states (k-means cluster
states that are allowed to overlap in time) significantly more often and to states that were more different, relative
to HC. MEG dFNC also revealed a highly connected state where a significant difference was observed in inter-
individual variability, with greater variability among SP. Overall, our results show that fMRI and MEG reveal
between-group functional connectivity differences in distinct ways, highlighting the utility of using each of the
modalities individually, or potentially a combination of modalities, to better inform our understanding of disor-
ders such as schizophrenia.

Keywords: dynamic functional network connectivity (dFNC); functional magnetic resonance imaging (fMRI);
magnetoencephalography (MEG); schizophrenia

Introduction

Noninvasive neuroimaging is currently available in a
number of modalities, including functional magnetic

resonance imaging (fMRI) with its excellent spatial resolu-
tion and magnetoencephalography (MEG) with its excel-
lent temporal resolution. Harnessing and/or combining the
strengths these modalities offer are of great interest in both
healthy and patient populations, which can aid in informing
the classification of patient populations, identification of new
treatment targets, and/or potential treatment success. One of
the main goals of multimodal imaging is to provide clinicians

with biomarkers to assist with producing a diagnosis with in-
creased confidence and predicting a long-term prognosis for
each new patient.

Importantly, theoretical and experimental evidence implies
that the biological signals detected by both fMRI and MEG
originate from postsynaptic currents, although in a complex
manner potentially variable by brain region (Ahonen et al.,
1993; Conner et al., 2011; Hamalainen et al., 1993; Harvey
et al., 2013; Zhu et al., 2009), indicating that the combination
and/or comparison of MEG and fMRI make theoretical sense
(Hall et al., 2014). Although the exact relationship and influ-
ence of particular frequency bands remain an open question,
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the relationship between blood oxygen-level dependent
(BOLD) signal and electrophysiological activation has been
shown for a variety of task activations in gamma band
(Kunii et al., 2013; Lachaux et al., 2007; Niessing, et al.,
2005; Scheeringa et al., 2011; Zaehle et al., 2009), and it
has been shown that in the resting state the direction (positive
or negative) of electroencephalography (EEG)-BOLD signal
correlations varies across brain regions and frequency bands,
with lower as well as higher frequency brain oscillations
linked to neurovascular processes.

Of particular relevance here, it was found that low-frequency
oscillations (<20 Hz), and not gamma activity, predominantly
contributed to interareal BOLD correlations (Wang et al.,
2012). The authors report that these low-frequency oscillations
also influenced local processing by modulating gamma activity
within individual areas, and suggest that such cross-frequency
coupling links local BOLD signals to correlations across dis-
tributed networks. In addition, results from Bridwell et al.
(2013) characterized brain networks spatially and spectrally,
revealing that positive and negative associations appear
within overlapping regions of the EEG frequency spectrum.
That is, positive associations were primarily present within
the lower (delta and theta) and higher (upper beta and lower
gamma) spectral regions, sometimes within the same brain
regions as measured by fMRI.

Finally, it has been shown that even though the two modal-
ities (fMRI and MEG/EEG) may exhibit activity in similar
spatial locations, the functional pattern of this activity may
differ in a complex manner, suggesting that each modality
may be tuned to different aspects of neuronal activity (Muthu-
kumaraswamy and Singh, 2008). Taken together these findings
imply a complex relationship between neuronal activation and
neurovascular coupling as measured by the BOLD signal, and
suggest that all frequency bands contained in the MEG/EEG
signal are potentially of interest when studying patient
populations.

It has been shown in fMRI by Abrol et al. (2016) that
multiple discrete, reoccurring connectivity states arise during
rest, and that subjects tend to remain in one connectivity state
for relatively long periods of time before transitioning to
another. Other researchers observed how brain regions spon-
taneously changed their ‘‘module affiliations’’ (i.e., network
connectivity) on a temporal scale of seconds, which could
not be simply attributable to head motion or other errors
(Liao, et al., 2017; Vergara et al., 2017). Similarly, in elec-
trophysiological data, it has been shown that sensor space
‘‘microstates’’ arise and change on the order of hundreds
of milliseconds (Baker et al., 2014; Khanna et al., 2015;
Van de Ville, et al., 2010) and vary between disorders depen-
dent on which network a microstate correlated with (e.g., a
microstate that correlated with the frontoparietal network
was impaired in schizophrenia) (Nishida et al., 2013).
Patients with schizophrenia (SP) have been investigated in
this manner by others as well, with SP experiencing partic-
ular microstates more often and also experiencing briefer
microstates than did healthy controls (HC) (review: Rieger
et al., 2016).

One way to summarize the recurring connectivity states
described above is via a functional network connectivity
(FNC) analysis, which may be defined as the way in which
sets of brain areas (networks) work together over time to pro-
duce different brain states, represented by statistical associa-

tions between network timecourses without regard to the
spatial proximity of the regions to one another. An increasing
body of literature suggests that neural oscillations perform a
key role in binding separate brain regions together and pro-
moting information transfer between distant brain areas
(Buzsáki and Draguhn, 2004; Engel and Singer, 2001; Roo-
pun et al., 2008). FNC has become an important metric for
the study of how this naturally occurs (Allen et al., 2014;
Calhoun, et al., 2014; Jafri et al., 2008). Furthermore, con-
nectivity between brain regions is now generally accepted
as being key to healthy brain function (Hall et al., 2014).

Clearly, the temporal, as well as the spatial, properties of
these networks are of importance to our understanding of
brain function, and it is probable that the definition of a net-
work may vary on different timescales (Erhardt et al., 2011a,b).
Over the past decade, FNC has most often been investigated
within the resting state (i.e., in the absence of a defined task)
using fMRI (Allen et al., 2011; Biswal et al., 1995; Biswal,
2012) and, to a lesser extent, electrophysiological methods,
MEG and EEG (Allen et al., 2018; Brookes et al., 2011a,b;
Meier et al., 2016; Nugent et al., 2017), in diverse popula-
tions, including schizophrenia, depression, bipolar disorder,
and in aging (Alamian, et al., 2017; Cetin et al., 2016; Dong,
et al., 2018; Du, et al., 2016; Fox et al., 2017; Houck et al.,
2017; Madden, 2017; Nashiro et al., 2017; Roiser et al.,
2016; Wu et al., 2017).

To date, FNC has most often been assessed as a static fea-
ture of the data, inferred from the overall (arbitrary) duration
of the scan. However, there is no a priori reason to assume that
in the resting brain, network correlations are static; indeed,
based on the known rapid dynamics of brain oscillations, it
may instead be expected that connections across networks
change over time, even during a brief resting scan, as subjects
experience different mental and emotional states (Miller et al.,
2014, 2016).

The logical extension of FNC that looks at how states vary
over small time ‘‘windows’’ to capture networks on a finer
temporal scale has been termed dynamic functional network
connectivity (dFNC). dFNC has also been investigated in
resting-state fMRI (Miller, et al., 2014; Sakoğlu et al.,
2010) and in diagnostic groups such as schizophrenia pa-
tients (Damaraju et al., 2014; Miller, et al., 2014), where
for schizophrenia patients in an eyes-closed resting scan it
has been shown that there is a reduction in fluidity, or dyna-
mism, in their ability to move from state to state. Impor-
tantly, the dFNC spatial patterns of intrasubject dynamic
variability have been shown to largely overlap with that of
intersubject variability, both of which were highly reproduc-
ible across repeated scanning sessions (Abrol et al., 2016).
dFNC has therefore been established as a useful tool for
both investigating changing brain states and for determining
how these states vary between patient populations.

In this study, we present a dFNC analysis using MEG and
fMRI eyes-open resting scans collected from the same sam-
ple of HC and schizophrenia patients, and indicate where we
find overlap and differences between the results from the dif-
ferent modalities. We discuss possible reasons for these re-
sults, including careful selection of analysis parameters and
scan length, particularly for the MEG data analysis where
this has not been extensively studied previously. For the
dFNC of fMRI data, we follow an established pipeline (Cal-
houn et al., 2014; Miller et al., 2014).
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For the MEG data analysis, we describe the creation of a
novel pipeline that includes a source space analysis (MNE/
dSPM, i.e., dynamic statistical parametric mapping from
within minimum norm estimate software) as input to a spatial
independent component analysis (ICA) as the basis for the
dFNC. We argue that using components calculated in such
a way helps mitigate the ‘‘signal leakage’’ problem for
MEG source space-based analyses as leakage manifests in
the spatial maps, but the network connectivity patterns
(CP) are preserved (Houck, et al., 2017).

Finally, we investigate group differences between HC and
schizophrenia patients for both methods. We expect that SP
will spend less time in highly connected brain states. We fur-
ther hypothesize that for both fMRI and MEG analysis SP
will show a reduction in global meta-state statistic values
that measure how and when individuals move between states
at a global level, relative to HC (i.e., we will see a ‘‘reduced
dynamism’’ for SP).

Materials and Methods

Participants

Briefly, this investigation combined existing data (Aine
et al., 2017) from 46 schizophrenia patients and 45 HC
from whom informed consent was obtained according to in-
stitutional guidelines at the University of New Mexico
Human Research Protections Office (HRPO). All participants
were compensated for their participation. Patients with a di-
agnosis of schizophrenia or schizoaffective disorder were in-
vited to participate. Each patient completed the Structured
Clinical Interview for DSM-IV Axis I Disorders (First
et al., 1997) for diagnostic confirmation and evaluation of
comorbidities. Exclusion criteria included history of neu-
rological disorders, mental retardation, substance abuse, or
clinical instability. Patients were treated with a variety of
antipsychotic medications, and therefore, doses of antipsy-
chotic medications were converted to olanzapine equivalents
(Table 1) (Gardner et al., 2010).

Although patients and controls were not specifically
matched, demographic characteristics including age, gender,
and caregiver socioeconomic status (Werner et al., 2007),
were monitored throughout recruitment to ensure that both
groups were of similar composition. There were no significant
between-group differences on these measures. Each partici-
pant completed resting MEG and fMRI scans; however,
only data from 74 participants were available to be used
for the MEG analysis (demographics remained similar be-
tween groups, no significant differences were found). The
participant data and preprocessing used for this study overlap-
ped with that presented in Houck et al. (2017), but the ana-
lytic approach developed in this work is novel and distinct.

Functional magnetic resonance imaging

All fMRI data were collected on a 3T Siemens Trio scan-
ner with a 12-channel radiofrequency coil. High-resolution
T1-weighted structural images were acquired with a five-
echo MPRAGE sequence with TE = 1.64, 3.5, 5.36, 7.22,
9.08 ms, TR = 2.53 sec, TI = 1.2 sec, flip angle = 7�, number
of excitations = 1, slice thickness = 1 mm, field of view = 256 mm,
resolution = 256 · 256. T2*-weighted functional images were
acquired using a gradient-echo EPI sequence with TE = 29 ms,

TR = 2 sec, flip angle = 75�, slice thickness = 3.5 mm, slice
gap = 1.05 mm, field of view = 240 mm, matrix size = 64 · 64,
voxel size = 3.75 · 3.75 · 4.55 mm. An automated prepro-
cessing pipeline and neuroinformatic system, developed
at the Mind Research Network (MRN) (Scott et al.,
2011), were used to preprocess the fMRI data. Five min-
utes of eyes-open resting data were collected from each
participant.

After standard preprocessing (realignment, slice-timing
correction, spatial normalization, and smoothing, see Houck
et al., 2017), a subject-specific data reduction PCA was per-
formed, retaining 100 principal components (PCs). To use
memory more efficiently, group data reduction was per-
formed using an EM-based PCA algorithm and C = 75 PCs
were retained. The infomax algorithm (cf. Erhardt et al.,
2011b) was used for gICA from within the GIFT toolbox
(http://mialab.mrn.org/software/gift). To estimate the reli-
ability of the decomposition, the infomax ICA algorithm was
applied 10 times via ICASSO (Himberg et al., 2004) and the
resulting components were clustered. Subject-specific maps
and timecourses were estimated using a back-reconstruction
approach based on PCA compression and projection (Calhoun
et al., 2001; Erhardt et al., 2011b). Of the 75 components

Table 1. Independent Component Analysis

Component Numbers and Anatomical Locations

MEG ICA
component No. Component ID

1 Auditory (Left)
2 Posterior cingulate (Bilateral)
3 Lateral occipital (Right)
4 Parahippocampus (Bilateral)
5 Superior frontal (Right)
6 Precuneus (Right)
7 Medial orbital frontal (Bilateral)
8 Supramarginal (Left)
9 Temporal pole (Right)

10 Insula (Right)
11 Visual (Left)
12 Precuneus (Left)
13 Paracentral (Right)
14 IFG/Insula/Lateral orbital front (Left)
15 Temporal pole (Left)
16 Precuneus (Left)
17 Paracentral (Left)
18 Supramarginal (Right)
19 Frontal (Bilateral)
20 Inferior parietal (Right)
21 Postcentral (Right)
22 Insula (Left)
23 Inferior parietal (Left)
24 Superior frontal (Left)
25 Auditory (Right)
26 IFG/Insula/Lateral orbital front (Right)
27 Postcentral (Left)
28 Isthmus cingulate (Bilat)
29 Lingual (Bilateral)
30 MTG (Left)
31 MTG (Right)
32 Precuneus (Right)

ICA, independent component analysis; MEG, magnetoencepha-
lography; MTG, medial temporal gyrus.
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returned by gICA, 39 were identified as BOLD related based
on their frequency content and spatial patterns (e.g., no edge-
like effects, no components located in ventricles or white
matter) (Allen et al., 2011).

To assess the frequency and structure of reoccurring
FC patterns, we applied the k-means clustering algorithm
(Lloyd, 1982) to windowed covariance matrices as in Allen
et al. (2014), where dFNC was defined as the (Gaussian
tapered) windowed zero-lag cross-correlations among recon-
structed timecourses. We used a 22 TR window length (44 sec,
following Damaraju et al., 2014, and Miller et al., 2014, and
within the guidelines presented by Leonardi et al., 2015),
slid 1 TR at each step, and computed pairwise correlations be-
tween timecourses within these windows.

Four ‘‘cluster states’’ were identified as optimal for k-means
clustering using the Silhouette and Gap methods for the
dFNC analysis (see the Gap and Silhouette Methods for
Determining Number of Clusters section in Supplementary
Data). State transitions were computed for each subject at
all windows. Temporal statistics of cluster states was calcu-
lated for each subject, including frequency of occurrence
(how often an individual visited a particular cluster state),
dwell time (total time an individual remained in each cluster
state), and number of transitions between cluster states.

We summarized the temporal behavior of the resulting clus-
ter states, which are then allowed to overlap in time, into meta-
states; that is, a representation of how much a given subject
is in each of the cluster states at each point in time. This ap-
proach builds distance vectors to the cluster centroids for
each windowed FNC matrix. More specifically, windowed
FNCs are modeled as ‘‘weighted sums of maximally inde-
pendent connectivity patterns (CP)’’ (Miller et al., 2016).

Discretized CP distance vectors are called meta-states.
Global statistics were then calculated on the meta-states and
compared between HC and SP groups, including (1) the num-
ber of distinct meta-states subjects occupy during the scan
length (‘‘number of states’’); (2) the number of times subjects
switch from one meta-state to another (‘‘change between
states’’); (3) the range of meta-states subjects occupy, that
is, the largest L1 distance between occupied meta-states
(‘‘state span’’); and (4) the overall distance traveled by each
subject through the state space, that is, the sum of the L1 dis-
tances between successive meta-states (‘‘total distance’’).

Magnetoencephalography

Five minutes of eyes-open resting-state MEG data were
acquired continuously. Artifact removal, correction for
head movement, and downsampling to 250 Hz were con-
ducted offline using Elekta MaxFilter software (MaxFilter,
Elekta) (Taulu and Simola, 2006; Taulu et al., 2004) with
123 basis vectors, a spatiotemporal buffer of 10 sec, and a
correlation limit of r = 0.95. Cardiac and blink artifacts were
removed using a signal space projection approach (Uusitalo
and Ilmoniemi, 1997).

The cortical surface of each participant was reconstructed
from T1-weighted MRI images using FreeSurfer for the
automatic segmentation of the skull and scalp surfaces. Vis-
ual inspection confirmed that the automatic segmentation
returned a reasonable solution. A repeatedly subdivided ico-
sahedron was used as the spatial subsampling method, which
resulted in 10,242 locations per hemisphere. Coordinate

system alignment was accomplished by first manually iden-
tifying fiducial landmarks and second by refining the align-
ment with the iterative closest point algorithm (Besl and
McKay, 1992), using the digitized scalp surface points.

Source space analysis was conducted using MNE/dSPM,
an anatomically constrained linear estimation approach (Dale
et al., 2000). The regularization parameter was set to corre-
spond to a signal-to-noise ratio of 3 in the whitened data.
Source orientation had a loose constraint of b = 0.2, and a
depth weighting of 0.8 was used. The forward solution was cal-
culated using a single compartment boundary element method
(Hämäläinen and Sarvas, 1989; Mosher et al., 1999); the sur-
face was tessellated with 5120 triangles. Activity at each vertex
of the cortical surface was mapped using a noise-normalized
MNE (Dale et al., 2000). In essence, MNE/dSPM identifies
where the estimated current differs significantly from baseline
noise (e.g., empty room data); this method also acts to reduce
the location bias of the estimates (Gramfort et al., 2014).

Spatial normalization was accomplished using FreeSurfer
spherical coordinate system (Dale et al., 1999; Fischl et al.,
1999) for group comparisons. Spatiotemporal source distri-
bution maps downsampled to a 50 Hz sampling rate were
obtained at each time point (providing an upper frequency
bound of 25 Hz). Due to processing time and data storage con-
siderations, the first 60 sec of each scan were projected into the
brain volume and the files were converted to NIFTI format to
be used with the GIFT toolbox.

Group spatial ICA was applied to the subject’s MNE/
dSPM source space maps using the GIFT toolbox (http://
mialab.mrn.org/software/gift) as in our prior work (Houck
et al., 2017). MEG ICA processing generally followed the
procedures applied to the fMRI. Spatial maps were generated
by decomposing the mixed MEG timecourses to yield a set of
32 spatially independent and temporally coherent networks.
The final number of components was selected by determin-
ing that (1) networks (single or multiple areas of activation)
were not being lost by the reduction in number of compo-
nents and (2) that the same area was not being ‘‘broken up’’
into numerous components when only a single area of acti-
vation was present (see Fig. 1 for examples of components).
This was an important consideration since later analyses
involved multiple statistical comparisons.

Furthermore, unlike with fMRI, these data should contain
a minimum of artifact components (in the present case we
found no artifact components) due to noise reduction and
artifact removal during preprocessing. As with fMRI, subject-
specific maps and timecourses were estimated using a back-
reconstruction approach based on PCA compression and
projection (Calhoun et al., 2001; Erhardt et al., 2011b;
Houck et al., 2017). Although a beamformer source space
analysis technique has been used in a similar manner before
(as input to an ICA) (Houck et al., 2017), we show here that
the MNE/dSPM measure used in this way gives reasonable
and arguably more focal (although not point-like) compo-
nents. This may be due to the differential sensitivity of
MNE-based methods to connectivity in non-event related
potential (ERP) data (Hincapié et al., 2017).

Furthermore, simulation has shown that MNE provides
better connectivity estimation than beamformers if the inter-
acting sources are simulated as extended cortical patches
with high within-source coherence (Hincapié et al., 2017).
Which method to use is also an important consideration
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when correlations between sources may lead to partial or full
signal cancellation in the beamformer. Finally, a k-means
clustering, dFNC, and meta-state analysis were conducted
between all 32 components (Table 1), following the same
procedure described above for fMRI.

One question that needed to be addressed was the length of
the window to use for the dFNC analysis. For fMRI we chose
to follow a well-established precedent of a 22-TR window
( = 44 sec) (Allen et al., 2014). Such a long time window
was not considered for the MEG data since we were inter-
ested in investigating the faster oscillations available from
this modality. We therefore chose a 4-sec window length
for the analysis. This allowed us to capture our range of fre-
quencies of interest (1–25 Hz), giving us the ability to see
connections at higher frequencies unavailable via the fMRI
analysis while avoiding ‘‘washing out’’ information from
higher frequencies with too long a window (see the Window
Size and MEG Data section in Supplementary Data for how
window size effects results).

In addition, the decision of how many cluster states to use in
the MEG dFNC analysis presented some questions. First was
whether the MEG dFNC should closely parallel the fMRI
dFNC steps. This was abandoned for two reasons: (1) due to
the temporal resolution of the MEG data, there was no a priori
reason to expect that the two modalities would reveal the same
number of states and (2) different quantities of data were eval-
uated, with 60 sec of 50 Hz data in the MEG case (i.e., 3000
sampling points), as opposed to 300 sec with a 2-sec TR in
the fMRI (i.e., 150 sampling points).

We initially used the Gap and Silhouette methods to esti-
mate the number of k-means cluster states, however, we
found that due to a single outlier individual the cluster state
suggestion was unstable. Investigation of two, three, four,
and five cluster states indicated that four state was optimal
for the present data set, as this gave stable, replicable results
that consistently grouped all the data from the single outlier
individual into its own cluster state, and also gave reasonable
occupancy percentages for the remaining three states (i.e., the
percentage of correlation maps in each meaningful state was
19%, 64%, and 17%). The state that contained the outlier
did not return any statistics for the group analysis since it
did not contain sufficient data (i.e., only a single individual en-
tered that state and all data for that individual were associated
with that state), this state was removed from all additional an-
alyses and did not influence any of the results shown.

Finally, we summarized the temporal behavior of the
resulting cluster states, which are now allowed to overlap
in time, into meta-states; that is, a representation of how
much a given subject is in each of the cluster states at each
point in time. Global statistics was then calculated on the
meta-states and compared between HC and SP groups.
Recall these are: ‘‘number of states,’’ ‘‘change between
states,’’ ‘‘state span,’’ and ‘‘total distance.’’

Results

dFNC and meta-state statistics of fMRI data

We found that 4 k-means cluster states characterized
the temporal dynamics of a 5-min eyes-open resting-state
fMRI scan, for both HC and SP, with a minimum of 24 par-
ticipants entering each state at some point during the 5 min of
data collection (Fig. 2A). Furthermore, we found that for

FIG. 1. ICA component maps from resting MEG data sep-
arated into anatomic domains. Note that each color within
each network represents a different IC. Please note that the
same color in a different network does not necessarily repre-
sent the same region. DMN: pink and blue, inferior parietal/
angular gyrus; green, cingulate (isthmus); red, posterior
cingulate; FRONT, primarily frontal components (some
overlap with cingulate areas); TEMP, primarily temporal
components. DMN, default mode network; IC, independent
component; ICA, independent component analysis; MEG,
magnetoencephalography; VIS, visual components.
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FIG. 2. (A) fMRI k-means cluster states derived from ICA components, for HC and SP groups, number of participants who
entered each state is indicated at the bottom of each plot. Color coded as follows: light blue, subcortical; light green, auditory;
pink, sensory motor; orange, cerebellar; light purple, visual; yellow, DMN; blue, attention; dark green, frontal. Insets show
view of dFNC as correlation grids (components · components) in same network order (top to bottom). (B) Average amount of
time HC and SP spend in each state, that is, dwell time. (C) Global meta-state statistics for HC versus SP groups. All t-tests
represent HC-SP. *Indicates significance at p < 0.05, FDR corrected. FDR, false discovery rate; fMRI, functional magnetic
resonance imaging; dFNC, dynamic functional network connectivity; HC, healthy controls; SP, schizophrenia patients.
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some cluster states, SP and HC spent significantly different
amounts of time there, as determined by dwell time. Partic-
ularly, SP visited and remained in state 1 for a significantly
longer time than HC, whereas for state 3 the trend was re-
versed, with HC remaining in that state for a significantly
longer time (Fig. 2B). On average, schizophrenia patients
spent less time than HC in a state typified by strong, large-
scale connectivity (state 3, many correlations showing r > 0.5).
No significant interindividual variability between groups was
found for any cluster state.

We also investigated global statistics and, for this meta-state
statistics, found no significant group differences for any mea-
sures, including number of states, change between states,
state span, or total distance (as defined in the Materials and
Methods section; see the Distribution of Meta-state Statistics
Between HC and SP Groups section in Supplementary Data
for plots of the distribution of the meta-state statistics).

dFNC and meta-state statistics of MEG data

We found that 3 k-means cluster states were stable and
characterized the temporal dynamics for 1 min of eyes-
open resting MEG data, for both HC and SP, where a mini-
mum of 58 participants entered each state at some point
during the 1 min of data investigated (Fig. 3A). We found
a significant overall between-group difference for state 2,
with more variability for SP than for HC (i.e., a statistically
significant difference was observed in interindividual vari-
ability for how closely each group resembled the state).

In contrast to the fMRI results, we found no group differ-
ences in dwell time between HC and SP groups (Fig. 3B).
However, in these data, we see group differences in the global
meta-state statistics ‘‘change between states’’ and ‘‘total dis-
tance’’ (Fig. 3C; see the Distribution of Meta-state Statistics
Between HC and SP Groups section in Supplementary Data
for plots of the distribution of the meta-state statistics).

Discussion

dFNC of fMRI and MEG: do they provide
complementary information?

Our fMRI results, which reveal that SP spent significantly
less time in a highly connected brain state (dwell time, state
3 Fig. 2B), parallel and replicate those of Damaraju et al.
(2014), although we investigated an eyes-open resting state
in contrast to the eyes-closed paradigm used in their study.
However, for meta-state statistics calculated from fMRI
data, we found no significant group differences for any mea-
sures, including number of states, change between states,
state span, or total distance (as defined in the Materials and
Methods section). This is in contrast to Miller et al. (2014,
2016) who introduced and investigated these statistics be-
tween HC and SP in eyes-closed resting data and found sig-
nificant ‘‘reduced connectivity dynamism’’ in all statistics
for SP relative to HC for these global statistics.

Of additional note is that the directionality (i.e., which
group, HC or SP, showed the higher mean value) of all
four global meta-state statistics is in the opposite direction
as found in Miller et al. (2014), with HC exhibiting less
movement between states than SP. However, we again
point out that an eyes-open resting state was used for the pres-
ent study and with a smaller sample size, whereas Miller used

an eyes-closed resting state, both potentially effecting which
states were detected and how frequently they are visited
(McAvoy et al., 2012).

Our MEG dFNC results revealed a significant overall
between-group difference for state 2, with more variability
for SP than for HC (i.e., significant difference was observed
in interindividual variability for how closely each group re-
sembled the centroid of the cluster state). Because this
state includes many high correlations between frontofrontal
and frontoparietal regions (i.e., r > 0.5), this group difference
is in keeping with numerous results that indicate that there is
a frontal dysfunctional connectivity (i.e., dysconnectivity)
(Bullmore et al., 1997; Friston and Frith, 1995) for SP, a dys-
connectivity seen both among frontal regions, for example,
insula and lateral frontal cortex (Palaniyappan et al., 2013)
and between frontal regions and more distal areas, particu-
larly frontoparietal control network regions (Roiser et al.,
2013; Wu et al., 2017).

We also saw a strong correlation between activity in bilat-
eral medial temporal gyrus and parahippocampus for all cluster
states and groups, a relationship that may deserve additional in-
vestigation due to the involvement in memory, particularly
recollection (Eichenbaum et al., 2007), as well as to everyday
functioning in SP (Hanlon et al., 2012). It appears that the
timescale of the MEG data may be attuned for such study.

In contrast to the fMRI results, we found no group differ-
ences in dwell time between HC and SP groups (Fig. 3B).
However, it is in these data that we see group differences
in some of the global meta-state statistics, specifically the
‘‘change between states’’ and the ‘‘total distance’’ (Fig. 3C).
Recall these are the number of times that subjects switch
from one meta-state to another and the overall distance trav-
eled by each subject through the state space (the sum of the
L1 distances between successive meta-states), respectively.
This indicates that not only are SP changing states more
often than HC but they are also changing to states that are
more different in comparison with the previous state occupied.

Interestingly, and something that should be investigated
further, we find that in all cases, global meta-state statistics
occurs in the same direction even when failing to reach sig-
nificance. In other words, SP show higher mean values for
meta-state statistics relative to HC for both the MEG and
fMRI analyses in the present study, reversed from what
was found in Miller et al. (2014) for an eyes-closed resting
state. In addition, since there is no definitive answer to the
question of the optimal number of clusters (i.e., the optimal
number of clusters is always somewhat subjective and de-
pends on both the method used for measuring similarities
and the parameters used for partitioning), we returned to
the analysis and determined that for a choice of two cluster
states, results are consistent with what has been reported; for
example, fMRI showed differences between HC and SP in
dwell time, but no significant meta-state statistic differences.

In the present study, we found that the information gained
from a dFNC analysis of resting-state data of the same par-
ticipants differs between the neuroimaging modalities of
fMRI (differences seen in cluster state-level statistics) and
MEG (differences seen mostly in global-level meta-state sta-
tistics). Therefore, the fusion of these modalities is expected
to reveal additional information (Calhoun and Liu, 2016),
potentially informing identification/classification (e.g., in-
dividuals may have comorbidities), new treatment targets,
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FIG. 3. (A) MEG k-means cluster states derived from ICA components, for HC and SP groups, number of participants who
entered each state is indicated at the bottom of each plot. Color coded as follows: light blue, auditory; light green, sensory
motor; pink, inferior parietal; orange, visual; light purple, DMN; yellow, MTL; blue, precuneus; dark green, frontal; red, tem-
poral pole. Insets show view of dFNC as correlation grids (components · components) in same network order (top to bottom).
(B) Average amount of time HC and SP spent in each state, that is, dwell time. (C) Global meta-state statistics for HC versus
SP groups. All t-tests represent HC-SP. *Indicates significance at p < 0.05, FDR corrected. MTL, medial temporal lobe.
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and/or potential treatment success. The next step includes
determining the best way of combining these data within
an overarching framework to maximize the information from
each modality and the combination (e.g., joint-ICA).

The major limitations of the present study were the use of
only 1 min of MEG data for the analyses and the downsam-
pling of the MEG data to 20 ms necessitated by computing
time and memory constraints, which resulted in an upper fre-
quency limit of 25 Hz, and therefore, an inability to probe
gamma-band relationships at this time. We are currently work-
ing on implementing a faster method for the analysis and will
soon have hardware supplying additional memory resources
alleviating these shortcomings. Arguably, one could travel to
a greater number of distinct ‘‘states’’ were one to have more
time to do so, although of course both HC and SP had the
same limitation. In addition, were this the case, we would
argue that many more than three viable states would have
been detected in the 1-min MEG data analyzed.

A higher sampling rate could plausibly reveal more inter-
actions and transitions (including gamma-band), however, a
preliminary analysis with a 10 ms sampling rate (50 Hz max-
imum frequency) revealed similar results to those presented
here. It has been conjectured that even 5 min of data (an
often used scan duration for fMRI) may be too short for
dFNC determined from fMRI data. Indeed, improvements
in the reliability of resting-state data tend to rise with scan
length, plateauing at a scan length of 13 min (Birn et al.,
2013). Consistent with this finding, Liuzzi et al. (2017) showed
that large improvements in repeatability were apparent when
using a 10-min, compared with a 5-min, recording for MEG
resting-state functional connectivity analyses. However, that
study was looking for a single ‘‘canonical’’ state, whereas
the present study, using windowed correlations and k-means
clustering, is evaluating a set of states whose number is
data driven, which may have a different, perhaps shorter, op-
timal scan duration.

It has been shown that FNC states in electrophysiological
data can be quite transient (100–200 ms), suggesting that the
resting brain is changing between different patterns of re-
peated activity at a rapid pace at the neuronal temporal scale
(Vidaurre et al., 2016). Clearly, the timescales of these states
need further investigation. However, regardless of the time
scale, imaging modality, or underlying biological signal, the
primary finding across studies, including the present study,
is that d/FNC evolves as a multistable process passing through
multiple and reoccurring discrete brain states, rather than
varying in a more continuous sense (Allen et al., 2014;
Cabral, et al., 2016; Hansen et al., 2015; Hutchison et al.,
2013; Preti et al., 2017).

Conclusions

Our results here show how two neuroimaging modalities,
MEG and fMRI, can each reveal distinct differences between
HC and SP groups, and how the differences emerge in dif-
ferent metrics for each modality. For the eyes-open resting
state investigated, we found group differences at the ‘‘cluster
level’’ for fMRI (i.e., dwell time), whereas for MEG, we
found differences at what has been referred to as the ‘‘global
level’’ (i.e., change between states and distance traveled)
(Miller et al., 2014). This indicates the importance of fu-
ture work that usefully combines these two neuroimaging

methodologies, taking advantage of the distinct information
contained in each, to, for example, better differentiate clin-
ical populations with overlapping symptoms, for example,
using a joint ICA.

However, it is notable that some cluster states have similar
structures, which could potentially influence the meta-state-
level statistics. Future work will also aim to identify which
metrics correlate with illness characteristics such as symp-
toms, chronicity, and cognitive impairment. In addition, we
presented a novel MEG analysis pipeline, which incorporates
a source space analysis (MNE/dSPM) as input to a group
ICA, the networks/components of which may then be used
for a dFNC analysis.
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