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Abstract  

Schizophrenia has been understood as a network disease with altered functional and 

structural connectivity in multiple brain networks compatible to the extremely broad 

spectrum of psychopathological, cognitive and behavioral symptoms in this disorder.  

When building brain networks, functional and structural networks are typically modelled 

independently: functional network models are based on temporal correlations among 

brain regions, whereas structural network models are based on anatomical characteristics. 

Combining both features may give rise to more realistic and reliable models of brain 

networks.  

In this study, we applied a new flexible graph-theoretical-multimodal model called FD 

(F, the functional connectivity matrix, and D, the structural matrix) to construct brain 

networks combining functional, structural and topological information of MRI 

measurements (structural and resting state imaging) to patients with schizophrenia 

(N=35) and matched healthy individuals (N=41). As a reference condition, the traditional 

pure functional connectivity (pFC) analysis was carried out. 

By using the FD model, we found disrupted connectivity in the thalamo-cortical network 

in schizophrenic patients, whereas the pFC model failed to extract group differences after 

multiple comparison correction. We interpret this observation as evidence that the FD 

model is superior to conventional connectivity analysis, by stressing relevant features of 

the whole brain connectivity including functional, structural and topological signatures. 

The FD model can be used in future research to model subtle alterations of functional and 

structural connectivity resulting in pronounced clinical syndromes and major psychiatric 

disorders. Lastly, FD is not limited to the analysis of resting state fMRI, and can be 

applied to EEG, MEG etc.    
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Introduction 

Schizophrenia is a mental illness with heterogeneous symptoms including positive 

symptoms such as delusions and hallucinations and negative symptoms such as reduced 

emotional expression, lack of motivation, among others. It has been hypothesised that 

schizophrenia could be understood as a network disease with dysfunctional connectivity 

between multiple brain regions (Friston and Frith 1995; Andreasen et al. 1998; Friston 

1999). According to this hypothesis, symptoms are assumed to emerge from a failure in 

the functional integration of information processing in the brain (Garrity et al. 2007). 

Several studies have found abnormal functional and structural connectivity in multiple 

brain networks supporting the theory of schizophrenia as a dysconnectivity syndrome 

(Friston and Frith 1995; Hadley et al. 2016) and suggesting functional and structural 

disturbances in wide whole-brain-range connectivity (Nelson et al. 1998; Andreasen and 

Pierson 2008; Kühn et al. 2012; Zalesky et al. 2012; Cocchi et al. 2014; van den Heuvel 

and Fornito 2014; Barch 2014; Singh et al. 2015). 

Brain networks in neuroimaging using functional magnetic resonance imaging (fMRI) 

are composed by brain areas, called nodes, and the connections between nodes are called 

links (van den Heuvel and Hulshoff Pol 2010).  Links in the brain networks can be 

constructed using structural or functional information. In structural networks, links are 

built using correlations of morphometric features from diffusion tensor imaging (DTI) 

and MRI as fibres in the white matter/total number of interconnecting streamlines, cortical 

thickness or grey matter volume. Whereas in functional networks, two regions are said to 

be functionally connected, and therefore, engaged in information processing, if they 

present a temporal correlation. Links constructed using these temporal correlations are 

usually calculated using Pearson’s correlation coefficient.  
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Typically, structural and functional brain networks are calculated and analysed 

separately, for example, functional networks are built using solely temporal correlations 

given by Pearson correlation function, regardless of any structural information. However, 

combining these two equally important features of brain function and morphology might 

give rise to more realist, complete and even reliable models of brain networks (Bowman 

et al. 2012; Xue et al. 2015; Calhoun and Sui 2016; Battiston et al. 2017; Kang et al. 2017; 

Calamante et al. 2017; Chu et al. 2018).  

 In this framework, a new graph-theoretical-multimodal model was proposed to study 

connectivity, that is called the FD model (F, the functional connectivity matrix, and D, 

the structural matrix (Finotelli and Dulio 2015).  The FD model adds, to the pure 

functional connectivity (pFC), structural and topological information that can be obtained 

from multiple different techniques: topological information given by nodal degree, 

functional connectivity matrix given by Pearson’s correlation, Spearman correlation, 

mutual information, Granger causality or any other correlation/causality index, and for 

the structural matrix D, from morphometric characteristics, such as volume, cortical 

thickness and grey/white matter connectivity as well the Euclidean distances between 

pairs of brain areas, DTI data, etc. The FD model has been successfully applied to EEG 

data with subjects performing a musical task (Finotelli et al. 2016), and to synthetic data 

simulation human’s brain functional activity at rest (Dulio et al. 2018). 

The aim of this paper is to analyze whole brain network of patients with schizophrenia 

and a matched group of healthy individuals by means of two different models. First, pFC 

model, commonly used in the literature, that takes only the functional connectivity into 

consideration. Second, the FD model that utilizes not only the functional data but also 

structural and topological properties of the cerebral network.   
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Methods 

 

Participants  

Forty-one were healthy individuals and thirty-five individuals who met the criteria 

for a diagnosis of schizophrenia following the International Classification for Diseases 

and Related Health Problems (ICD-10)  (World Health Organization 2012) were included 

in the study. The recruitment of patients diagnosed with schizophrenia took place at St. 

Hedwig Hospital, Department for Psychiatry and Psychotherapy of the Charité-

Universitätsmedizin Berlin (Germany). A trained clinician assessed the severity of 

symptoms with the Scale for Assessment of Negative Symptoms (SANS) (Andreasen 

1989), and Scale for Assessment of Positive Symptoms (SAPS) (Andreasen 1984). For 

the healthy individuals, the recruitment was accomplished using advertisements and 

flyers. Healthy individuals did not meet the criteria for any psychiatric disorder based on 

information acquired with the Mini International Neuropsychiatric Interview (MINI) 

(Ackenheil et al. 1999) and were not in current or past psychotherapy of an ongoing 

mental health-related problem. Healthy individuals matched the group of patients in terms 

of age, sex, handedness and level of education (Table 1). Handedness was acquired using 

the Edinburgh Handedness Inventory, cognitive functioning was tested using the Brief 

Assessment of Cognition in Schizophrenia (Keefe et al., 2008) and verbal intelligence 

with a German Vocabulary Test (Schmidt & Metzler, 1992). All procedures of the study 

were approved by the ethics committee of the Charité-Universitätsmedizin Berlin. 
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MRI Data acquisition 

 Images were collected on a Siemens Tim Trio 3T scanner (Erlangen, Germany) with a 

12-channel head coil. Structural images were obtained using a T1-weighted magnetization 

prepared gradient-echo sequence (MPRAGE) based on the ADNI protocol (TR=2500ms; 

TE=4.77ms; TI=1100ms, acquisition matrix=256×256×176; flip angle = 7˚; 1x1x1mm3 voxel 

size). Whole brain functional resting state images during 5 minutes were collected using a T2*-

weighted EPI sequence sensitive to BOLD contrast (TR=2000ms, TE=30ms, image 

matrix=64×64, FOV=216mm, flip angle=80º, slice thickness=3.0mm, distance factor=20%, 

voxel size 3×3×3mm3, 36 axial slices). Before resting state data acquisition was started, 

participants were in the scanner for about 10 minutes during which a localizer and the anatomical 

images were acquired so that subjects could get used to the scanner noise. During resting state 

data acquisition participants were asked to close their eyes and relax during data acquisition. 

 

Preprocessing of resting state data 

The first 5 images were discarded to ensure for steady-state longitudinal 

magnetization. The data was then corrected for slice timing and realigned. Individual T1 

images were coregistered to functional images and segmented into gray matter, white 

matter, and cerebrospinal fluid. Data was spatially normalized to the MNI template and, to 

improve signal-to-noise ratio, spatially smoothed with a 6-mm FWHM. Motion and 

signals from white matter and cerebrospinal fluid were regressed. Data was then filtered 

(0.01 – 1 Hz) to reduce physiological high-frequency respiratory and cardiac noise and 

low-frequency drift and, finally, detrended. All steps of data preprocessing were done 

using SPM12 except filtering that was applied using the REST toolbox (Song et al. 2011). 

In addition, to control for motion, the voxel-specific mean framewise displacement  was 
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calculated ( Power and colleagues (Power et al. 2012). Framewise displacement values 

were below the default threshold of 0.5 for control and patient group (table 1).  

 

Voxel-based morphometry (VBM) 

VBM, an unbiased objective technique, has been developed to investigate regional  

differences in the brain anatomy (Mechelli et al. 2005) using MRI. VBM estimates 

regional white and/or gray matter volume.  Structural data was processed by means of the 

VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) and SPM8 

(http://www.fil.ion.ucl.ac.uk/spm) with default parameters. The VBM8 toolbox involves 

bias correction, tissue classification and affine registration. The affine registered  gray 

matter (GM) and white matter (WM) segmentations were used to build a customized 

DARTEL diffeomorphic anatomical registration through exponentiated lie algebra 

template. Then warped GM and WM segments were created. Modulation was applied in 

order to preserve the volume of a particular tissue within a voxel by multiplying voxel 

values in the segmented images by the Jacobian determinants derived from the spatial 

normalization step. In effect, the analysis of modulated data tests for regional differences 

in the absolute amount (volume) of GM.  

 

The mathematical models 

 

In this section we introduce the two models involved in this study: pFC and FD, and 

describe the basic concepts of Graph theory and Linear Algebra (the matrices). 
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Network representation: Adjacency matrix is the mathematical expression of a network. 

In brain networks, each row and column is a neural element and how they are related are 

the weights. If the weights are obtained calculating the pFC between n neural elements, 

e.g. voxels or brain regions, the resulting adjacency matrix will have n rows and n 

columns, being called a square matrix. Importantly, by exchanging the rows with the 

columns in a matrix A returns a matrix AT called the transpose of A. AT is so characterized 

by having n rows and n columns. If A=AT the matrix is said to be symmetric, which holds 

to pFC but not to effective connectivity due to the different nature of the measure. 

 

Degree of a node: The degree of a neural element (or node) is the sum of all its 

connections in the network. This topological metric is useful to get information about the 

centrality of the node in the network and a first step in understanding if the node can take 

on the role of a hub. Hubs play a central role in the network, integrating and distributing 

information in very effective ways due to the number and positioning of their connections 

in a network. 

 

Formally, a graph G refers to a set of vertices (or nodes) and of edges (or links) that 

connect the vertices. Two nodes are said to be adjacent if they are endpoints of an edge. 

An important number associated with each vertex is its degree. The degree of an arbitrary 

node v is the number deg(v) of the adjacent nodes. In our study, the nodes represent the 

cerebral areas in the AAL template. Importantly, a graph G can be equivalently 

represented by a square matrix AG. This is done by defining a weight for each edge of the 

graph G. For each i ∈{1,2,…,m} and j ∈{1,2,…,n} the entry (i,j) of the matrix AG  is the 

weight of the edge connecting the nodes i and j, if it exists, or 0 otherwise. 
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The degree of the nodes can be calculated by adding all the non-zero elements of the 

columns (or equivalently, due to the symmetry, of the rows) of the connectivity matrix 

associated to that node.  

 

The pFC model: Functional connectivity computed based on Pearson correlation 

coefficients is the most frequently applied method in the literature. This is a measure of 

linear correlation between two variables X and Y. The correlation values range from -1 

to +1. When applied to neuroimaging, the correlations refer to a statistical dependence 

between physiological recordings that have been acquired from distinct neural elements 

(nodes). In fMRI, the neural elements are most likely brain regions or voxels and the 

physiological recordings are the indirect measure of the neural activity: the blood-

oxygen-level dependent (BOLD). The Pearson correlation coefficient is symmetric, that 

is, correlation between X and Y is the same as the correlation between Y and X: 

corr(X,Y)=corr(Y,X). This leads to an important property for the mathematical 

description of a network: the adjacency matrix is symmetric. 

 

The FD model: The FD model combines functional information given by the pFC matrix 

with structural and topological information: the FD model computes the connectivity as 

a function of, not only the strength of the statistical correlations as in pFC, but also as a 

function of the node degrees, and the structural connectivity (for details, see (Finotelli 

and Dulio 2015).  

 

In the FD model, the general formula for calculating the functional weight of an arbitrary 

entry Wi,j(t) of the matrix W is: 
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𝑊𝑖𝑗(𝑡) =
𝑑𝑒𝑔(𝑖)𝑑𝑒𝑔(𝑗)

𝑊𝑚𝑎𝑥(𝑡)
 𝑒−(𝑑𝑖,𝑗−𝑓𝑖𝑗(𝑡))                                       (1) 

 

Where deg is the degree calculated as explained above, di,j and fij are, respectively, the 

generic entry of position (i,j) in the matrix D, which incorporates the structural 

information of the brain network, and in the matrix F, the functional connectivity matrix, 

whose entries represent the statistical dependence between the time series of measured 

neurophysiological signals  and t is the time. Wij is within the range of 0 and +1, and 

therefore comparable to pFC. The exponent is the difference of two matrices, D and F, 

that should be characterized by having their entries in (nearly) the same range of 

variability. The FD model can employ both structural and functional data obtained from 

multiple different techniques. For more details concerning the explicit structure of (1) we 

refer the reader to (Finotelli and Dulio 2015). The only precaution is that D should be 

normalized in order to be comparable to matrix F.  

 

 In the present study we constructed the functional connectivity matrices F using 

Pearson’s correlation, the most popular connectivity measure, and the structural 

connectivity matrix D using VBM estimates of regional gray matter volume, resulting in 

a structural connectivity pattern matrix (He et al. 2007). VBM is a function of cortical 

thickness and cortical area, and therefore an important unbiased morphometry measure.  

 

Connectivity Matrices  

 

Functional connectivity matrix generation: for each subject, the time series of each brain 

area (node) segmented according to the AAL 90 atlas (Tzourio-Mazoyer et al. 2002), 

were extracted using REST toolbox (Song et al. 2011). Then, the linear correlation 
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between all pair of nodes (i,j=1,…,90) was calculated using Pearson’s correlation 

coefficient, resulting in a matrix F=[fi,j]. Two nodes were considered connected, and 

therefore a link set to fi,j, if the Pearson’s correlation coefficient was statistically 

significant. Due to the FD model, negative and self-correlations were not considered:  

negative fi,j was set to 0 as well as all the elements on the principal diagonal of the 

matrices. Please note that the pFC is composed only by the F matrices, whereas the FD 

model follows formula (1). 

 

Structural connectivity matrix generation: VBM was calculated as explained above. As 

for functional connectivity matrix, regions were segmented into the same 90 AAL regions 

as mentioned above. Two regions (nodes i,j=1,…,90)  were assumed to be connected if 

the correlation of regional grey matter across subjects dij given by Pearson’s correlation 

coefficient was statistically significant, resulting in a structural connectivity pattern 

matrix D=[di,j] for each group (He et al. 2007). Likewise, we did not consider negative 

and self-correlations due to the FD model: negative dij was set to 0 as well as all the 

elements on the principal diagonal of the matrices. 

 

The FD model: Matrix generation: for each subject, the entries wi,j (i,j=1,…,90) of the FD 

model matrices W were calculated using (1), where deg(i) and deg(j) are the degree of 

nodes i and j respectively, D=[di,j], is the stuctural matrix,  F(t)=[fi,j(t=1)]=[fi,j], is the 

(thresholded) FC matrix F(t=1)=F see  (Finotelli et al. 2016). For every matrix W, the 

thresholding procedure is performed by dividing all the entries of W, Wij, by Wmax, the 

maximum value of W (for details see (Finotelli and Dulio 2015).  
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Statistical analysis 

 

In both pFC and FD model, we performed a permutation-based unpaired t-test in order to 

compare the control and the patient group. We tested the null hypothesis of equality 

between the distributions of patients and controls on link î-ĵ against the alternative of 

difference in distribution between the two groups on the same link. The test was based on 

the computation of the squared t-test statistic over all possible permutations of the data 

with respect to units (regardless of the groups). The p-value of the test was computed as 

the proportion of permutations leading to a value of the test statistic higher or equal with 

respect to the one observed with the original data. The significance level of the test 

α=0.05. In total, we compared, since the matrices were symmetric, 4050 links (we recall 

that we have zero entries on the main diagonal since there is not self-looping, so we 

excluded the diagonal from the comparison).  

 

Finally, to control for multiple comparison, we performed the Bonferroni-Holm 

correction at α=0.05. The Bonferroni-Holm correction controls the family-wise error rate 

over the family of all links. The statistical methodology was the same for both models 

 

Results 

We calculated whole brain connectivity using two different methods, first pFC and 

second the new graph-theoretical-multimodal FD model that takes structural as well as 

topological information of the brain network into account. First, we presented the results 

using the pFC and second the results of the FD model followed by a comparison between 

models. 
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pFC 

Brain network using pFC was calculated for each subject (see Method section) in both 

control and patient group (average whole brain network per group in Fig. 1). Then, a pair-

wise group comparison was performed, and the p values were thresholded at 5% and 

corrected for multiple comparison (Bonferroni). No statistically significant connections 

were found between healthy controls and schizophrenia patients (see below for further 

discussion on statistically significant links, respective thresholds and multiple comparison 

methods between pFC and FD model).  

 

FD model 

 

A brain network was calculated for each subject (see Method section formula (1)).  The 

average whole brain network per group is depicted in Fig. 2 - top. Then, pair-wise group 

comparisons were performed in the whole brain network, the p values (Fig. 2 - bottom) 

were thresholded at 5% and corrected for multiple comparison (Bonferroni).  

Connections that were statistically different between healthy control and schizophrenia 

patients, thresholded using the Bonferroni-adjusted p-value 0.05. 

 

To explore the remaining links after the correction for multiple comparison, we reported 

the main links detected for the nodes with the highest connections (high degree). These 

nodes play a central role in the network given their interconnections and high degree (Fig. 

3 and table 2). The brain regions that showed the most disrupted connections (high degree 

links) to other brain areas were the thalamus, inferior temporal gyrus, middle occipital 

gyrus, parahippocampus and superior occipital gyrus.  The thalamus was the main hub 

connecting both cortical (mainly occipital and temporal via superior occipital gyrus) and 
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subcortical areas (parahippocampal gyrus, hippocampus, precuneus). Impaired 

connections in frontal areas and sensorimotor cortex were also found. These links were 

mainly from/to inferior temporal and middle occipital. Interestingly, the hyperconnected 

subnetwork is part of a large network, known as thalamocortical network (Woodward et 

al. 2012).  

(Figure 3 at the end of the paper) 

 

Model comparison: pFC and FD  

 

We performed an exploratory analysis to compare the pFC and FD model, we showed the 

p-values of each connection resulting from the pairwise multiple comparison (Fig. 4 A). 

These matrices were thresholded as described above at 5% (Fig. 4B). 

(Figure 4 at the bottom of the text) 

 

In order to test whether the links found by applying the FD model were the same as the 

ones revealed by applying the standard pFC analysis, that is, whether there was a 

significant overlap between the links found by the two methods, we calculated the 

confusion matrix (Table 3). 

Most of the links were non-significant for both models: 5099 (63%). The number of links 

that were significant for the FD model and for the pFC model was 223 (2.8%). The links 

that were significant for the FD model but not for the pFC model summed up to 2651 

(33%). Significant links for pFC that were not in FD corresponded to 127 (1.6 %).  

Finally, to adjust for the multiplicity of tests, we applied the Bonferroni-Holm (Fig. 4C) 

correction to the unadjusted p-values. After the adjustment, all p-values computed for the 

pFC model are equal to one. This means that using such a model no statistically 
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significant differences can be detected between healthy controls and schizophrenia 

patients. However, when looking at results for FD model, there were statistically 

significant links after adjusting for multiple comparisons. 

 

Discussion 

We applied a new model, called The FD model, to infer connectivity in the brain and 

compared it to the classical pFC. The main advantage of the FD model is that it takes into 

consideration not only the temporal correlations as in pFC does, but also includes 

information about structural connections and topological information of the network. 

Combining structural and functional information, two equally important features of brain, 

might give rise to more realistic and even reliable models of brain networks (Bowman et 

al. 2012; Xue et al. 2015; Calhoun and Sui 2016; Battiston et al. 2017; Kang et al. 2017; 

Calamante et al. 2017; Chu et al. 2018). In addition, degree is an important topological 

measure that reflects how well a specific region is connected to the whole network and it 

is therefore related to the notion of a hub. Hubs play a central role in the network, 

integrating and distributing information in effective ways due to the number and 

positioning of their connections in a network. 

Once the models were applied to each subject in the schizophrenia group and in the 

healthy controls, individual whole brain networks were inferred followed by a pairwise 

comparison of all connections in the network between groups. In the FD model, we found 

wide-spread disrupted connectivity in key areas for schizophrenia (Andreasen 1997; 

Andreasen et al. 1998; Pergola et al. 2015), namely, hyperconnectivity in the thalamo-

cortical network: thalamus, occipital, temporal parahippocampal gyrus and frontal areas. 

In this network there were six main central nodes: bilateral thalamus, right 

parahippocampal gyrus, right superior and middle occipital, right inferior temporal gyrus. 
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In addition, frontal and somatosensory areas were also present, in this cases the impaired 

connections arise mainly from the temporal inferior hub and middle occipital hub.  

In line with previous models such as the “cognitive dysmetria” (Andreasen et al. 1998) 

and “filtering” models (Pergola et al. 2015), we observed that the thalamus was the main 

hub of the disrupted network. This region is located in a crucial anatomic position of the 

brain and its main function is the facilitation of connections as it receives input and output 

from distinct cortical areas. For this reason, it has been considered a key player in filtering 

and gating of information (Andreasen 1997; Pergola et al. 2015). Furthermore, it has been 

suggested that the thalamus might play a crucial role in schizophrenia because any 

disconnection in such a gate could lead to major changes in information load (Andreasen 

1997) which in turn might account for the great variety of cognitive and clinical 

characteristic of the disease (Andreasen et al. 1998). Motivated by patients’ description 

of  “being bombed by stimuli which they have difficulty screening out” (McGhie and 

Chapman 1961), Andreasen (Andreasen 1997)  hypothesed a scenario in which  

information overload due to filtering and gating dysfunction could lead to a 

misinterpretation of the “self/not self”,  auditory hallucinations, persecution, lack of 

energy etc, that represent key symptoms of schizophrenia. Although a growing body of 

evidence points to disruptions in the thalamus in schizophrenia patients, (Pergola et al. 

2015; Ferri et al. 2018) its role and contribution are still a matter of debate.   

In the computational neuroscience literature, the thalamus has been reported as a 

promising candidate for pattern classification analysis (Pergola et al. 2015). In addition,  

changes in the network topology of schizophrenic patients makes hubs ideal candidates 

for machine learning techniques as demonstrated by Cheng and colleagues (Cheng et al. 

2015) with high accuracy when classifying patients and controls.  
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These are exciting outcomes since the declared goal of computational psychiatry is to 

provide physicians with tools that enable them to objectively identify patients where most 

approaches had been subjective up until that point. The hope is that the computational 

approach could be used to predict the likelihood of a previously unseen patient having 

schizophrenia. Identifying topological markers could lead to tools that enable to 

quantitatively determine the severity of common symptoms and even identify and 

measure the progression of the disease, as well as the effectiveness of treatment. Hence, 

it would be of scientific interest to find prognostic and diagnostic markers, not only based 

on empirical observations but also on outcomes obtained by a graph theoretical analysis. 

Our future research will focus on potential biomarkers and classification in schizophrenia. 

  

Comparing the FD network and pure functional connectivity network based on pFC, we 

showed in the present study that the FD model is able to select links, of neurobiological 

meaning for schizophrenia, that otherwise would be neglected by the pFC analysis. 

Hence, the FD model stresses relevant features of the whole brain connectivity by adding 

structural as well as topological information to pFC. Therefore, we suggest that the FD 

model could be considered as an additional effective model to describe functional neural 

networks.  

We believe that increasing the precision of the anatomical data in the model will reveal 

even further connectivity differences. In addition, it might contribute to a better 

understanding about the relationship between structural modularity and functional 

modularity of the brain, an open and challenging problem. Lastly, it is important to stress 

that the FD model is not only limited to the modality of fMRI. It can be also applied to 

PET (Positron Emission Tomography), EEG (electro-encephalography) and MEG 

(magneto-encephalography) data.  
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Figures and tables 

 

Table 1. Demographics and clinical characteristics.  

 

HC (n=41) 

Mean(Standard 

Deviation) 

SCZ(n=35) 

Mean(Standard 

Deviation) 

 

          

pValue 

Gender (male/female) 24/17  21 /14   
Age (years) 

Framewise displacement  

35.2 (11.0) 

0.15(0.02) 

35.3 (10.8) 

0.17(0.02) 

0.953 

0.42 

Edinburg Handedness Inventorya 79.4 (38.5) 75.56 (52.6) 0.742 
Education (years) 14.1 (2.9) 13.1 (3.8) 0.183 

BACSa 270.4 (37.0) 234.1 (28.4) < 0.001 

Verbal Intelligence (IQ)a 100.5 (10.6) 94.4 (12.8) 0.031 

Illness duration (years)  9.4 (8.8)  

Illness onset (age in years)  25.6 (8.9)  

Chlorpromazine-equivalent (mg)  317.1 (221.6)  

SANS Composite Scorea  20.2 (12.0)  

SAPS Composite Scorea  15.4 (14.9)  
 

 
BACS, Brief Assessment of Cognition in Schizophrenia; SAPS, Scale for Assessment of Positive Symptoms; SANS, 
Scale for Assessment of Negative Symptoms;  
a sum score of items reported. 

 

 

Table 2: Impaired links established by the central nodes of the subnetwork.  

Central nodes with impaired 

connectivity 

Connected to: 

Right thalamus Right hippocampus,  

right parahippocampal gyrus,  

bilateral calcarine, 

 bilateral cuneus,  

bilateral lingual gyri,  

right superior occipital gyrus,  
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left precuneus 

Right inferior temporal gyrus  Right precentral,  

right frontal superior, 

 right inferior frontal pars opercularis,  

right frontal inferior pars triangularis,  

right supperior motor areas,  

bilateral superior occipital gyri,  

left inferial parietal gyrus,  

right putamen 

Right middle occipital gyrus  Right inferior frontal pars orbitalis,  

left medial frontal pars orbitalis,  

bilateral rectus,  

bilateral paracentral lobuli,  

left superior temporal pole  

Right parahippocampus Bilateral medial frontal pars orbitalis,  

left anterior cingulum,  

bilateral thalamus,  

left middle temporal pole  

Right superior occipital gyrus Right inferior occipital gyrus,  

right superior parietal gyrys,  

bilateral thalamus,  

bilateral inferior temporal gyrus  

Left thalamus  Bilateral parahippocampal gyri,  

left lingual gyrus,  

right superior occipital gyrus,  

right inferior occipital gyrus  

 

Table 3. Confusion matrix – overlapping links between FD model and pFC model. 

 Non Significant pFC Significant pFC 

Non Significant W FD 5099 (63%) 127 (1.6%) 

Significant W FD 2651 (33%) 223 (2.8%) 
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Figure 1: Average connectivity matrices calculated using pFC. The axis are the labels 

from the 90AAL template. 

 

Figure 2: Top – Averaged connectivity matrices calculated using the FD model. Bottom 

– significant links after multiple comparison correction. The axis are the labels from the 

90AAL template. 
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Figure 3:  Impaired connections between healthy controls and schizophrenic patients. The 

central nodes of disrupted subnetworks were thalamus, inferior temporal gyrus, middle 

occipital gyrus, parahippocampal gyrus, superior occipital gyrus. The thalamus is 

considered the main hub of these central nodes connecting both cortical (mainly occipital 
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and temporal via superior occipital gyrus) and subcortical areas (parahippocampal gyrus, 

hippocampus, precuneus). Impaired connections in frontal areas and sensorimotor cortex 

were mainly from/to inferior temporal and middle occipital.  
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Figure. 4 – A. Adjacency matrix with uncorrected p values for FD model (right column) 

and pFC model (left column). B. Adjacency matrix with thresholded uncorrected p 

values at 5%. C. Bonferroni-Holm adjusted p-values for the FD model (right column) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 8, 2018. ; https://doi.org/10.1101/489997doi: bioRxiv preprint 

https://doi.org/10.1101/489997


29 
 

and the pFC model (left column). There were no significant differences in connectivity 

for the pFC model between healthy controls and schizophrenic patients. The axis are the 

labels from the 90AAL template. 
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