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Abstract 

The default mode network (DMN) is a prominent intrinsic network that is 

observable in many mammalian brains. However, few studies have investigated the 

temporal dynamics of this network based on direct physiological recordings. Herein, 

we addressed this issue by characterizing the dynamics of local field potentials (LFPs) 

from the rat DMN during wakefulness and sleep with an exploratory analysis. We 

constructed a novel coactive micropattern (CAMP) algorithm to evaluate the 

configurations of rat DMN dynamics and further revealed the relationship between 

DMN dynamics with different wakefulness and alertness levels. From the gamma 

activity (40-80 Hz) in the DMN across wakefulness and sleep, three spatially stable 

CAMPs were detected: a common low-activity level micropattern (cDMN), an 

anterior high-activity level micropattern (aDMN) and a posterior high-activity level 

micropattern (pDMN). A dynamic balance across CAMPs emerged during 

wakefulness and was disrupted in sleep stages. In the slow-wave sleep (SWS) stage, 

cDMN became the primary activity pattern, whereas aDMN and pDMN were the 

major activity patterns in the rapid eye movement sleep (REM) stage. Additionally, 

further investigation revealed phasic relationships between CAMPs and the up-down 

states of the slow DMN activity in the SWS stage. Our study revealed that the 

dynamic configurations of CAMPs were highly associated with different stages of 

wakefulness and provided a potential three-state model to describe the DMN 

dynamics for wakefulness and alertness.  
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Impact Statement 

In the current study, a novel coactive micropattern method (CAMP) was 

developed to elucidate fast DMN dynamics during wakefulness and sleep. Our 

findings demonstrated that the dynamic configurations of DMN activity are specific 

to different wakefulness stages and provided a three-state DMN CAMP model to 

depict wakefulness levels, thus revealing a potentially new neurophysiological 

representation of alertness levels. This work could elucidate the DMN dynamics 

underlying different stages of wakefulness and have important implications for the 

theoretical understanding of the neural mechanism of wakefulness and alertness. 
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Introduction 1 

Multimodal imaging studies of the human brain have discovered several intrinsic 2 

connectivity networks (ICNs) coexist during the resting state (Beckmann, DeLuca, 3 

Devlin, & Smith, 2005; Q. Liu, Farahibozorg, Porcaro, Wenderoth, & Mantini, 2017). 4 

Dynamic switching within these ICNs have demonstrated a hierarchical structure over 5 

time for brain activity at rest and have been significantly associated with cognitive 6 

traits (M. D. Fox et al., 2016; Vidaurre, Smith, & Woolrich, 2017). This suggests that 7 

brain activity is appropriately understood in terms of the dynamic configuration 8 

among ICNs. These studies have mainly considered each ICN as a whole during brain 9 

dynamics while ignoring the intrinsic dynamics of individual ICNs. Indeed, individual 10 

ICN also exhibits strong fluctuations in brain activity, and different ICNs are believed 11 

to dominate distinct cognitive functions (Rosazza & Minati, 2011). For a specific 12 

brain function, further tracking the dynamic configuration of fluctuations in brain 13 

activity at the single-ICN level might be critical for revealing the underlying 14 

physiological mechanism. 15 

The default mode network (DMN) is one of the important ICNs, and is typically 16 

believed to be related to off-task internal mentations with high activity in the resting 17 

state (Gusnard, Akbudak, Shulman, & Raichle, 2001; M E Raichle et al., 2001). 18 

Recent studies have reported that the DMN is also engaged and displays positive 19 

contributions during several higher cognition task performances, such as the Tower of 20 

London task (D. Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015; 21 

Deniz Vatansever, Manktelow, Sahakian, Menon, & Stamatakis, 2018). Changes in 22 
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wakefulness could also lead to alterations of DMN activity and connectivity in 23 

humans and rodents (K. C. R. Fox, Foster, Kucyi, Daitch, & Parvizi, 2018; Lu et al., 24 

2012; Marcus E Raichle, 2015). DMN connectivity between the frontal and posterior 25 

areas in the human brain was reduced during the slow wave sleep (SWS) stage with a 26 

low level of wakefulness (Sämann et al., 2011). However, at sleep onset and 27 

throughout the rapid eye movement sleep (REM) stage, regions in the human DMN 28 

were shown to be persistently coupled (Horovitz et al., 2008; Larson-Prior et al., 29 

2009). These findings illustrated that DMN activity was functionally reorganized 30 

during sleep and might further reflect levels of wakefulness and alertness. 31 

Additionally, fast and ever-changing dynamics of DMN activity have also been 32 

observed in various wakefulness levels in humans, implying that the temporal aspects 33 

of spontaneous DMN activity might be associated with alertness levels (Kapogiannis, 34 

Reiter, Willette, & Mattson, 2014; Panda et al., 2016). Thus, research investigating the 35 

dynamic configuration of DMN in different stages of wakefulness using direct 36 

physiological recordings is important. 37 

The DMN could also be observable in rat brains, indicating its conservation in the 38 

mammalian brain during evolution (Huang et al., 2016; Lu et al., 2012). Though there 39 

exists several difference between the brain regions in rat DMN and human DMN, the 40 

anatomical topologies of them are visually similar (Hsu et al., 2016; Marcus E 41 

Raichle, 2015). In addition, neural activity of DMN regions also activated in awake 42 

rats, and suppressing the activity in the core DMN regions could modulate rats’ 43 

normal behavior (Tu, Ma, Ma, Dopfel, & Zhang, 2020; Upadhyay et al., 2011). 44 
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Furthermore, the information flow within anterior and posterior DMN subsystems 45 

exhibited various alterations in different sleep stages and mental disorders in rats (Cui 46 

et al., 2018; Jing et al., 2017). The above findings imply that the DMN might carry a 47 

core function that transcends across species. Therefore, employing animal models to 48 

direct record physiological DMN signals is an effective way to investigate the 49 

temporal dynamics of DMN activity. 50 

Several neurophysiological studies have reported that during the deep sleep stage, 51 

the neurons in various brain regions exhibited highly synchronized firing rates, 52 

occurring at approximately 0.5-2 Hz (Crunelli & Hughes, 2010; Gretenkord et al., 53 

2020; Lőrincz et al., 2015). This specific activity pattern was identified as the 54 

up-down state, and has been considered a biomarker of low-level wakefulness in deep 55 

sleep (Jercog et al., 2017; Perez-Zabalza et al., 2020). Moreover, this up-down state 56 

has been demonstrated for both neuron membrane potentials and local field potentials 57 

(LFPs) (Holcman & Tsodyks, 2006) and characterizes the dynamics of slow 58 

oscillations during deep sleep (Ji & Wilson, 2007; Lőrincz et al., 2015). However, the 59 

existence of a physiological relationship between the up-down state and DMN 60 

dynamics is a topic of active interest, that deserves further exploration. 61 

In the present study, we developed and applied a new dynamic activity pattern 62 

method to address these challenges. The new method, named the coactive 63 

micropattern analysis (CAMP), decomposed the fast dynamic activity into several 64 

intrinsic CAMPs and defined the brain dynamics through the constitutions and 65 

transitions among these CAMPs. We employed the CAMP analysis to elucidate the 66 
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dynamic configurations of LFPs from rat DMN in different stages during wakefulness 67 

and sleep. Our results illustrate a reorganized dynamic configurations of CAMPs for 68 

fast DMN activity in different stages of wakefulness, implying that the dynamic 69 

configurations of DMN micropatterns might provide underlying neural correlates for 70 

the wakefulness levels observed during wakefulness and sleep. 71 

Methods and Materials 72 

Detailed descriptions of the experimental procedures and data acquisition are 73 

described in the Supplementary Materials. Twenty-nine male Sprague-Dawley rats 74 

were used in our study. The DMN signals were acquired by chronically implanting 75 

fifteen electrodes into the brains of rats under deep anesthesia (Fig. 1 and Table 1). 76 

The rat DMN contained the following bilateral structures: the orbital frontal cortex 77 

(OFC), the rostral dorsal prelimbic cortex (PrL), the cingulate cortex (CG), the 78 

retrosplenial cortex (RSC), the dorsal hippocampus (HIP), the temporal lobe cortex 79 

(TE), the medial secondary visual cortex (V2) and the posterior parietal cortex (PPC). 80 

According to their anatomical coordinates (Lu et al., 2012), the PrL, OFC and CG 81 

regions were considered to be in the anterior subsystem of the DMN, whereas the 82 

RSC, HIP, PPC, TE and V2 regions were in the posterior subsystem of the DMN. In 83 

addition, we also implanted two electromyographic (EMG) electrodes bilaterally in 84 

the dorsal neck muscles. After DMN electrode implantation surgery, all rats recovered 85 

for approximately 2 weeks. During the recording session, the rats were placed in a 86 

noise-attenuated chamber and were allowed to move freely without anesthesia. All the 87 
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signals for the LFP, the EMG and the videos signals were simultaneously recorded 88 

and continuously monitored for 72 h.  89 

The dataset used in the current study was selected from the last 24 h of the total 90 

recording and was separated into three stages, including resting (AWAKE), SWS and 91 

REM sleep stages. The AWAKE stage of rats was defined when the rats were standing 92 

or sitting quietly with low-amplitude and mixed-frequency LFP activity and relatively 93 

low and stable EMG activity. The SWS stage was the sleep duration when the rats 94 

were sleeping with high-amplitude and low-frequency LFP activity and low-level 95 

EMG activity. The REM sleep stage was the duration when the rats were sleeping 96 

with sawtooth-pattern LFP activity and flat EMG activity. For each rat, 30 segments 97 

in different stages were chosen, and each segment lasted 10 s (a total of 300 s of 98 

LFPs). All experimental animal procedures were approved by the Institutional Animal 99 

Care and Use Committee of the University of Electronic Science and Technology of 100 

China. 101 

Moreover, we proposed a novel CAMP method to track fast DMN dynamics 102 

during wakefulness and sleep. Briefly, this method utilizes a point process approach 103 

that combines the advantages of both microstate analysis and coactive pattern analysis 104 

(X. Liu & Duyn, 2013; Michel & Koenig, 2018) and extracts CAMPs based on the 105 

extreme values of envelope signals at a high temporal resolution. Five steps were 106 

included in the CAMP algorithm. First, the original data were bandpass filtered into 107 

the gamma frequency band (40-80 Hz) and then Hilbert transformation was used to 108 

obtain the envelope signals (Fig. 2b). Second, the envelope signals were normalized 109 
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and downsampled to improve the signal-to-noise ratio (SNR) for further analysis (Fig. 110 

2c). Third, the active points for each envelope signal channel were then defined as the 111 

extreme points of the envelope signals, including local maximum and minimum 112 

values. Afterwards, the coactive patterns (CAPs) of the brain, which were defined as 113 

brain maps in which more than one brain region displayed active points at the same 114 

time point, were introduced for all stages (Fig. 2d). Fourth, a k-means clustering 115 

algorithm was applied to all the CAPs to decompose the CAMPs and the CAMP 116 

index (Fig. 2e). Finally, the criterion based on squared Euclidean distance was applied 117 

to update the CAMP and CAMP index (Fig. 2f). The last step was employed to 118 

precisely determine the final spatial structures of all CAMPs and the CAMP index. 119 

Using the CAMP method, we decomposed three stable CAMPs from gamma activity 120 

during DMN dynamics to reveal the fast changes in DMN activity in different stages 121 

of wakefulness. A detailed description of the CAMP analysis is provided in the 122 

Supplementary Methods. 123 

The CAMP method was separately applied to the DMN activity of each segment 124 

in different stages for each rat and to the concatenated DMN activity of all rats and all 125 

stages during wakefulness and sleep. The CAMPs extracted from each rat in different 126 

stages were further employed to test their spatial stability across rats and wakefulness 127 

levels using Pearson correlation method. The results were derived from the CAMPs 128 

extracted from the concatenated DMN activities from all rats during wakefulness and 129 

sleep unless otherwise described. 130 
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Results 131 

Three CAMPs of gamma activity in the DMN during wakefulness and sleep 132 

The CAMP analysis procedure developed in the present study is schematically 133 

illustrated in Fig. 2 and described in more detail in the Supplementary Methods. The 134 

concatenated gamma activities in the DMNs of all rats and all stages during 135 

wakefulness and sleep were decomposed into three distinct CAMPs, including a 136 

common low-activity level micropattern (cDMN), an anterior high-activity level 137 

micropattern (aDMN) and a posterior high-activity level micropattern (pDMN). In the 138 

cDMN, all DMN regions exhibited similar and low levels of activity (mean 139 

normalized activity: 0.2577 ± 0.0041, Fig. 2g), indicating a potential cooperation of 140 

them in this type of CAMP. However, two different levels of activity were observed in 141 

both the aDMN and pDMN with the aDMN exhibiting relatively higher levels of 142 

activity in the anterior DMN regions (mean normalized activity: 0.3868 ± 0.0018) and 143 

lower activity in the posterior DMN structures (mean normalized activity: 0.3050 ± 144 

0.0060, Fig. 2h). In the pDMN, the posterior DMN structures displayed higher levels 145 

of activity (mean normalized activity: 0.3793 ± 0.0145), whereas the anterior DMN 146 

regions exhibited relatively lower levels of activity (mean normalized activity: 0.3073 147 

± 0.0021, Fig. 2i). Accordingly, both the aDMN and pDMN were considered 148 

high-activity micropatterns in DMN dynamics. 149 

We separately decomposed the CAMPs for each rat in every wakefulness stage 150 

individually and tested their reliability across rats and stages. All three CAMPs 151 

exhibited high stability with large correlation coefficients among different rats during 152 
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wakefulness and sleep (mean correlation coefficients: r = 0.7451, r = 0.7535, r = 153 

0.6684 for the AWAKE, SWS and REM sleep stages, respectively; Table 2). In 154 

addition, the spatial structures of these CAMPs were also similar among the AWAKE, 155 

SWS and REM sleep stages (mean correlation coefficients: r = 0.6229, r = 0.7882, r = 156 

0.8600 for the cDMN, aDMN and pDMN, respectively; Table 3). These findings 157 

demonstrated the high reliability and robustness of these CAMPs. 158 

Temporal features and activity levels of each CAMP during wakefulness and 159 

sleep 160 

We computed several temporal measurements, including the total occurrence 161 

(occurrence probability), total duration (duration probability) and mean duration, to 162 

characterize the features and dynamics of these CAMPs during wakefulness and sleep. 163 

All these features represented the temporal properties of these CAMPs in different 164 

stages. Based on the comparisons, all features of cDMN displayed the largest values 165 

in the SWS stage and the smallest values in the REM sleep stage, and the two 166 

high-activity micropatterns (aDMN and pDMN) exhibited the largest values for all 167 

features in the REM sleep stage and the smallest values in the SWS stage (Fig. 3a-3c). 168 

These opposite alterations in features between low- and high-activity micropatterns 169 

suggests that these two types of CAMPs might play different physiological roles for 170 

wakefulness. Besides, all the features in three stages were remarkably different among 171 

CAMPs, improving our knowledge of the changes in wakefulness levels during 172 

wakefulness and sleep. 173 

However, all of these CAMPs displayed different activities in DMN regions 174 
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during wakefulness and sleep. In particular, all DMN regions exhibited reduced 175 

activity during SWS stages in all CAMPs (Fig. 3e-3g). Moreover, the posterior DMN 176 

structures exhibited significantly reduced activity in the aDMN, while the anterior 177 

DMN regions exhibited significantly reduced activity in the pDMN. All of these 178 

regions showed relatively lower activity in the AWAKE stage, indicating a 179 

preservation of the major activity in these two micropatterns during deep sleep (Fig. 180 

3f-3g, red stars). However, all CAMPs displayed increased activity in most DMN 181 

regions during the REM sleep stage. The activities in the HIP, OFC and RSC regions 182 

were significantly increased during the REM sleep stage in all CAMPs, implying the 183 

importance of these DMN regions for REM sleep (Fig. 3h-3j, red stars). In addition, 184 

the mean activity level of each CAMP exhibited similar variation trends across 185 

different stages of wakefulness. The lowest mean activity of CAMPs was observed in 186 

the SWS stage, whereas the highest mean activity was observed in the REM sleep 187 

stage (Fig. 3d). 188 

The features and transitions of CAMPs during wakefulness and sleep 189 

The configurations of these CAMPs involved in DMN dynamics in different 190 

stages were also distinct (Fig. 4a-4c). All CAMPs presented similar features in the 191 

AWAKE stage (occurrence probabilities: 32.12%, 34.12% and 33.75%; duration 192 

probabilities: 31.68%, 34.15% and 34.17%; and mean duration: 29.79 ms, 24.41 ms 193 

and 24.37 ms for the cDMN, aDMN and pDMN, respectively). No significant 194 

differences of the features among three CAMPs were observed, indicating that their 195 

roles were equivalent and that a dynamic balance in DMN activity might exist among 196 
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CAMPs at wakeful rest. However, the cDMN became the dominant activity pattern of 197 

DMN dynamics in the SWS stage as it had the largest occurrence probabilities 198 

(62.66%, 17.56% and 19.78% for the cDMN, aDMN and pDMN, respectively), 199 

duration probabilities (61.47%, 18.02% and 20.51% for the cDMN, aDMN and 200 

pDMN, respectively) and mean duration (55.58 ms, 21.89 ms and 22.78 ms for the 201 

cDMN, aDMN and pDMN, respectively) among all CAMPs. The predominant 202 

constituent of the low-activity micropattern suggests that all the DMN regions might 203 

have been in a stage of low activity and that DMN activity preferred a silent pattern 204 

during deep sleep. However, the two high-activity micropatterns were the main 205 

CAMPs during the REM sleep stage. All the features of aDMN and pDMN were 206 

significantly larger than those of cDMN (occurrence probabilities: 19.42%, 42.05% 207 

and 38.53%; duration probabilities: 19.33%, 41.84% and 38.83%; and mean duration: 208 

21.88 ms, 26.92 ms and 26.01 ms for the cDMN, aDMN and pDMN, respectively). 209 

The greater percentage of high-activity micropatterns during REM sleep suggests a 210 

reactivation of DMN activity in this stage. In addition, comparisons of features within 211 

two high-activity micropatterns demonstrated that the aDMN displayed significantly 212 

larger values for the three features, implying that it played a more important role in 213 

REM sleep. 214 

Furthermore, the temporal concatenations of these CAMPs (i.e., the CAMP 215 

indices) in different stages also exhibited specific changes. We first performed a 216 

randomization test to examine the transition structures of these CAMP indices in 217 

different stages. The transitions among CAMPs occurred randomly in the AWAKE 218 
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stage (p = 0.8157), indicating that the transition probabilities (TPs) of pairs of CAMPs 219 

in the resting stage were proportional to their occurrences. However, these transitions 220 

did not occur randomly in the SWS (p<0.0001) or REM sleep stages (p<0.0001), 221 

suggesting the stabilization of the CAMP index structures during the sleep cycle and 222 

further implying the existence of several preferred transitions among CAMPs in both 223 

SWS and REM sleep stages. 224 

Next, we compared the TPs for pairs of CAMPs between the two sleep stages and 225 

the AWAKE stage. We revealed similar TPs in the AWAKE stage (no significant 226 

differences among all TPs, Fig. 4d), suggesting the presence of balanced transitions 227 

among all CAMPs at rest. However, the TPs within the two high-activity 228 

micropatterns showed significant reductions in the SWS stage, whereas those between 229 

the high-activity micropatterns and the low-activity micropattern increased 230 

significantly (Fig. 4e). These changes in TPs emphasized the functional role of 231 

inhibitory activity in DMN regions in deep sleep. On the other hand, TPs in the REM 232 

sleep stage displayed different alterations, including significantly increased TPs 233 

within the high-activity micropatterns and remarkable decrease in TPs between the 234 

high-activity micropatterns and the low-activity micropattern (Fig. 4f). The increased 235 

transitions within two high-activity micropatterns revealed activation of DMN regions 236 

during REM sleep. Based on these findings, the CAMP indices and the functional 237 

roles of these CAMPs were specific for different stages. The alterations in DMN 238 

activity during wakefulness and sleep might be attributed to the specific temporal 239 

combinations of the CAMPs constituting the activity in different stages rather than the 240 
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spatial structures of CAMPs themselves, which were rather stable across different 241 

stages. 242 

Strong phasic relationships between CAMPs and up-down states in the SWS 243 

stage 244 

Up-down states are considered the predominant pattern of slow oscillations (0.5-2 245 

Hz) during the SWS stage. Estimations of the phase distributions of each CAMP in 246 

the anterior and posterior DMN slow activity regions with the Hilbert transformation 247 

demonstrated that these CAMPs displayed strong phasic relationships with the 248 

up-down states in the SWS stage. The cDMN preferred the down state of anterior 249 

DMN activity (Fig. 5a, significant directionality: 1.97 π, red line) and the up state of 250 

posterior DMN activity (Fig. 5d, significant directionality: 1.16 π, red line). 251 

Additionally, both the aDMN and pDMN were phase locked to the up state of anterior 252 

DMN activity (Fig. 5b, significant directionality: 1.21 π for aDMN; Fig. 5c, 253 

significant directionality: 1.18 π for pDMN) and the down state of posterior DMN 254 

activity (Fig. 5e, significant directionality: 0.23 π for aDMN; Fig. 5f, significant 255 

directionality: 0.18 π for pDMN). These similar phasic relationships implied that two 256 

high-activity micropatterns might belong to the same activity pattern of slow 257 

oscillations during deep sleep. Thus, our proposed CAMPs may reflect the up-down 258 

states of DMN slow activity in the SWS stage, and a close physiological association 259 

existed between the up-down states with DMN dynamics. 260 

Discussion 261 

In the present study, we proposed a coactive micropattern (CAMP) algorithm to 262 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.07.29.226647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226647


16 

 

reveal the dynamics of DMN based on the direct physiological recordings in rat 263 

during wakefulness and sleep. Our results indicated that the fast dynamics of DMN 264 

gamma activity could be decomposed into three different CAMPs. These CAMPs 265 

exhibited stable spatial structures across wakefulness and sleep, while their dynamic 266 

configurations were specific to different stages. In addition, all these CAMPs were 267 

strongly phase locked to the up-down states of slow DMN activity in the SWS stage, 268 

suggesting the temporal sequence of the neural relationship between up-down states 269 

and DMN dynamics. Our findings described the distinct dynamic configurations of 270 

DMN activity during wakefulness and sleep. The proposed a three-state model may 271 

reveal a neural mechanism by which DMN dynamics mediated wakefulness and 272 

alertness. 273 

Physiological significance of the three CAMPs  274 

Previous studies have reported a strong correlation between electrophysiological 275 

gamma activity and blood oxygen level-dependent (BOLD) signals (N. K. Logothetis, 276 

Pauls, Augath, Trinath, & Oeltermann, 2001; Nikos K. Logothetis, 2002; Magri, 277 

Schridde, Murayama, Panzeri, & Logothetis, 2012; Scheering, Koopmans, Van 278 

Mourik, Jensen, & Norris, 2016). In addition, DMN regions have also shown 279 

deactivation at gamma frequency during the performance of external tasks in several 280 

human electroencephalography (EEG) studies (Karim Jerbi et al., 2010; Ossandon et 281 

al., 2011), indicating the importance of gamma oscillation in DMN activity. Hence, 282 

we specifically focused on the fast dynamics of DMN gamma activity in the current 283 

study. The gamma activity in the rat DMN was decomposed into three stable CAMPs 284 
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during wakefulness and sleep. We also showed the CAMPs decomposed from DMN 285 

alpha (8-13Hz) and beta (13-30Hz) activity, which exhibited similar structures with 286 

those found in gamma band (Supplementary Fig. 5). The differences across these 287 

CAMPs further provided direct electrophysiological evidence that the DMN regions 288 

might not be simultaneously activated. Besides, different CAMPs had distinct mean 289 

durations. These phenomena revealed the differences in the activation times of 290 

anterior and posterior DMN structures in the fast dynamics and further illustrated the 291 

diversity in the latencies for both the excitation and inhibition of DMN regions (Brett 292 

L. Foster, Mohammad Dastjerdi, 2012; Foster, Rangarajan, Shirer, & Parvizi, 2015). 293 

Indeed, both human and animal studies found that the DMN structure could be 294 

separated into two subnetworks, i.e., a parietal subnetwork and a prefrontal 295 

subnetwork (Cui et al., 2018; Hagmann et al., 2008; Lu et al., 2012; Wu et al., 2017). 296 

In the present study, we not only reinforced this finding from the aspect of fast DMN 297 

dynamics but also provided a possible dynamic substrate for this separation of the 298 

DMN structure. As a key component of the DMN, the orbital frontal cortex (OFC) has 299 

historically been posited to integrate interoceptive and exteroceptive information from 300 

multisensory stimuli to process information about the internal and external bodily 301 

milieu (Ongur & Price, 2000). Accordingly, we hypothesized that the high-activity 302 

micropattern aDMN might play an important role in making inferences and guiding 303 

actions in a timely and environmentally relevant manner. 304 

Furthermore, the retrosplenial cortex (RSC), another key area in the DMN, has 305 

extensive connections with the hippocampal formation. The projections between the 306 
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RSC and hippocampal formation provide an important pathway that regulates learning, 307 

memory and emotional behavior (Wyss & Vangroen, 1992). Furthermore, the 308 

hippocampal formation is a limbic structure that forms direct or indirect connections 309 

to other DMN regions. Therefore, the high-activity micropattern pDMN detected in 310 

the present study might be associated with memory and emotional behavior. 311 

Additionally, both the aDMN and pDMN were strongly phase locked to the up state 312 

of anterior DMN activity and the down state of posterior DMN activity during the 313 

SWS stage, indicating that they may reflect similar performances for the up-down 314 

states of slow oscillations during DMN dynamics. Moreover, these two high-activity 315 

micropatterns together accounted for more than 70% of the time in the resting state, 316 

which helps explain why the brain requires high basal cerebral blood flow and 317 

metabolism for spontaneous activity (Marcus E Raichle & Mintun, 2006). It should be 318 

noted that the DMN structure could also be split into dorsal and ventral branches 319 

according to the dorsal and medial temporal regions of RSC and hippocampus in 320 

human brain (Chen, Glover, Greicius, & Chang, 2017; Shirer, Ryali, Rykhlevskaia, 321 

Menon, & Greicius, 2012). However, the rat DMN is commonly divided into the 322 

anterior and posterior subsystems for the anatomical difference with human DMN 323 

(Marcus E Raichle, 2015).  324 

We also observed a low-activity micropattern (i.e., cDMN) in DMN dynamics 325 

that was widely distributed in all wakefulness stages. In the cDMN, all DMN regions 326 

displayed lower activity, indicating that the cDMN could represent the silent state for 327 

DMN activity in which all the DMN regions prefer relaxations and are prepared for 328 
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the next excitation. Moreover, the cDMN was the only coactive micropattern in which 329 

all DMN regions operated in the same manner in DMN dynamics. Thus, the 330 

appearance of cDMN suggested a working mode for DMN with low energy, but this 331 

concept requires further study. 332 

The balance of dynamic DMN configurations supports wakefulness and alertness 333 

during wakefulness  334 

Based on accumulating evidence, DMN activity is tightly correlated with 335 

wakefulness levels in health and disease (Buckner, Andrews-Hanna, & Schacter, 2008; 336 

Kapogiannis et al., 2014; Panda et al., 2016). In the AWAKE stage, all the CAMPs 337 

exhibited similar features, and the dynamic transitions among them were not 338 

significantly different. These similarities illustrated a balanced dynamic configuration 339 

among these CAMPs during fast gamma activity in the DMN at rest. The DMN is a 340 

key network involved in integrating high-order information from multiple sensory 341 

modalities based on numerous projections from variable somatic cortex and core 342 

limbic structures (HIP and amygdala) to the DMN regions (Heidbreder & 343 

Groenewegen, 2003; Reep, Chandler, King, & Corwin, 1994). These projections 344 

might provide the anatomical substrate for the correlation of DMN activity with 345 

alertness levels, which are largely believed to be determined by global levels of 346 

arousal regulated by the brainstem via the reticular activating system (RAS) 347 

(Delano-Wood et al., 2015). Accordingly, the identified balance of DMN dynamics 348 

might be a competitive product between the integration and differentiation of DMN 349 

activity in maintaining wakefulness and alertness during resting state (Cavanna, Vilas, 350 
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Palmucci, & Tagliazucchi, 2018; Tononi, 2004). Furthermore, this balance of dynamic 351 

configurations also indicated that the DMN might function in multistable regimes and 352 

revealed the potential neural mechanism by which DMN activity supported 353 

wakefulness and alertness in the resting state (Andrews-Hanna, 2012; Buckner et al., 354 

2008). 355 

Functional reorganization of dynamic DMN configurations during sleep  356 

Compared to the resting state, the SWS stage was consistently accompanied with 357 

reduced brain activity, whereas commensurate brain activity has been reported in the 358 

REM sleep stage (Horovitz et al., 2008). Consistent alterations in the average brain 359 

activity associated with CAMPs during DMN dynamics were also observed in our 360 

study, suggesting that the activities of CAMPs might also reveal the changes in 361 

wakefulness during wakefulness and sleep. However, the reduced activities of all 362 

CAMPs might not sufficiently explain the decrease in DMN activity observed during 363 

deep sleep due to the stable spatial structures of these CAMPs during wakefulness and 364 

sleep. The decrease in activity might result from the increased occurrence probability 365 

of the cDMN and the decreased probabilities of other two high-activity CAMPs. 366 

These inversely changed occurrence probabilities in different CAMPs revealed the 367 

neural mechanism of reduced brain activity given that the DMN regions were shown 368 

to prefer the low-activity state during deep sleep (Bazhenov, Timofeev, Steriade, & 369 

Sejnowski, 2002; Diekelmann & Born, 2010). 370 

The balance of dynamic DMN configurations was also disrupted during sleep, 371 

indicating the functional reorganization of DMN dynamics. The reorganization of 372 
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DMN activity might be associated with the alteration of different wakefulness levels 373 

in different sleep stages (Tononi, 2004). In the REM sleep stage, the dynamic 374 

transitions between the aDMN and pDMN increased, indicating more communication 375 

between anterior and posterior DMN regions. The communications displayed the 376 

top-down and bottom-up mechanisms in DMN structure, both of which are important 377 

for the information processing in the brain (Buschman & Miller, 2007; Theeuwes, 378 

2010). Thus, we speculate that the communications between anterior and posterior 379 

DMN regions might help elucidate the neurophysiological basis underlying the 380 

preservation of the wakefulness level in the REM sleep stage. 381 

In the SWS stage, the dynamic transitions between the low-activity micropattern 382 

and two high-activity micropatterns increased significantly. Moreover, different types 383 

of micropatterns corresponded to distinct up-down states in slow oscillations among 384 

DMN regions. Accordingly, the transitions between the low-activity micropattern and 385 

two high-activity micropatterns in DMN dynamics could be deemed as the transitions 386 

within up-down states. The dominant transitions of up-down states in deep sleep 387 

further suggested the physiological importance of these increased dynamic transitions. 388 

However, the dynamic transitions within the two high-activity micropatterns 389 

decreased in the SWS stage. These reductions supported our hypothesis that 390 

communications between anterior and posterior DMN regions are important for levels 391 

of wakefulness and alertness given that wakefulness and alertness are almost lost 392 

during deep sleep. The loss of wakefulness and alertness might not be caused by the 393 

change in a single type of dynamic transition within pairs of CAMPs. We 394 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.07.29.226647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226647


22 

 

hypothesized that the balance of dynamic DMN configurations was the underlying 395 

key neural mechanism supporting wakefulness and alertness, which emerged during 396 

wakefulness and disappeared during sleep. The coordination and cooperation of all 397 

CAMPs played a core role for the ability of the DMN in supporting wakefulness and 398 

alertness. 399 

Based on these findings, we propose a three-state model to describe the 400 

relationship between DMN micropatterns and wakefulness levels observed during 401 

wakefulness and sleep. As shown in Fig. 6, the three CAMPs involved in DMN 402 

dynamics are the basis of this model, and their interactions refer to the underlying 403 

mechanism regulating the wakefulness level observed in distinct stages. Equal 404 

communications among the three CAMPs support conscious awareness in the 405 

AWAKE stage. The communications between the low-activity micropattern (i.e., 406 

cDMN) and each high-activity micropattern (i.e., aDMN and pDMN) are important 407 

for the SWS stage characterized by a low level of wakefulness. During the REM sleep 408 

stage, communications within high-activity micropatterns are predominant. 409 

According to the proposed three-state model, we hypothesize that preservation of 410 

wakefulness and alertness not only requires information transition between anterior 411 

and posterior DMN regions, but also need a state that all DMN regions remain silent 412 

and relaxed. Information transition within anterior and posterior DMN regions is 413 

mediated by up-down and bottom-up mechanisms and vital for supporting 414 

wakefulness and alertness. The absence of this process could lead to the loss of 415 

alertness in the SWS stage, and this process alone would result in the wakefulness 416 
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level of the REM sleep stage, which is more wakeful than the SWS stage and less 417 

wakeful than the AWAKE stage. This phenomenon highlights the importance of the 418 

silent pattern for all DMN regions during the resting state with wakefulness and 419 

alertness.  420 

Wakefulness and alertness in humans not only depend on the anterior-posterior 421 

integration with DMN regions but also involves fronto-parietal task-positive 422 

executive and attention networks. Moreover, the connections between DMN and task 423 

positive networks also play critical roles in supporting wakefulness and alertness. 424 

Given the limitation of neuroimaging measure, the current work only describes the 425 

associations between DMN dynamics and wakefulness levels. The roles of 426 

integrations between DMN and other networks could not be explored at present. 427 

Further work could validate our model with DMN activity during the 428 

wakefulness-sleep cycle and further track the roles of integrations among different 429 

ICNs across different levels of wakefulness and alertness with human EEG signals. 430 

Methodological perspectives 431 

Consistent with the promising microstate analysis of EEG/LFP signals (Michel & 432 

Koenig, 2018), the CAMP analysis reported herein also assumes that brain activity 433 

consists of several distinct instantaneous patterns. The difference is that the CAMP 434 

method focuses on the nature of brain activity in different regions and extracts 435 

micropatterns from the envelope signals. Envelope signals imply temporal alterations 436 

of brain power, and their decomposition directly reveals brain rhythm dynamics. In 437 

addition, the coactive patterns analyzed in the CAMP method were selected based on 438 
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the distributions of extreme values in the envelope signals, which differs from the 439 

method used in microstate analysis. Local extreme values in envelope signals 440 

represent the instantaneous higher/lower activities of brain regions followed by 441 

contrasting changes in activity. The derived coactive patterns were thus considered to 442 

represent the activity patterns leading to inversion of activity among regions in 443 

specific brain networks. Therefore, we postulate that the proposed CAMP method will 444 

help researchers elucidate coactive micropatterns in specific brain networks and 445 

reveal additional underlying information about fast brain dynamics. 446 

Limitations 447 

Although we reveal several interesting findings in the current work, some 448 

limitations exist that should be taken into consideration. First, the rat DMN is slightly 449 

anatomically different from the human DMN, and our findings in rat DMN dynamics 450 

need to be validated in the human DMN during wakefulness and sleep. In addition, 451 

the present work reveals the dynamic configurations of DMN activity exclusively in 452 

the gamma band, and different frequency bands have distinct physiological roles. The 453 

relationships between the DMN dynamics in other frequency bands with wakefulness 454 

levels should be investigated in future studies. 455 

Conclusion 456 

The DMN is believed to be associated with neural mechanisms of wakefulness 457 

and alertness levels, whereas fast dynamics of DMN activity based on direct 458 

physiological recordings in different stages of wakefulness remain unclear. We 459 

highlighted that the fast dynamics of DMN activity during wakefulness and sleep 460 
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shared structurally stable CAMPs, whereas their dynamic configurations were specific 461 

to different levels of wakefulness. Our results indicated the reorganization of DMN 462 

dynamics during wakefulness and sleep, and provided a three-state model to reveal 463 

the fundamental neural associations between DMN activity and wakefulness levels. 464 
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 708 

Figure 1. The placement of 15 intracranial electrodes.  709 

 710 
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 711 

Figure 2. Schematic of the CAMP procedure and three CAMPs of gamma activity in the 712 

DMN during wakefulness and sleep. (a) The original LFPs. (b) The envelope signals (blue 713 

lines) were extracted by applying the Hilbert transform to the bandpass-filtered signals (gray 714 

lines). (c) All the envelope signals were downsampled (blue lines), and the extreme values 715 

were detected as the active points for each channel (red dots). The dotted lines suggest the 716 

coactive points in which more than N (N=7 in the present study) active points were observed 717 

across DMN regions. (d) The coactive patterns were the maps of activity of all DMN regions 718 

at coactive points. (e) The k-means clustering algorithm was applied to all coactive patterns to 719 

detect the CAMPs. (f) A criterion was employed to remove several coactive points and 720 

increase the aggregation of the CAMPs. The final CAMPs and CAMP index detected in this 721 

step were subjected to further analyses. (g) Spatial structure of the common low-activity level 722 

micropattern (cDMN). (h) Spatial structure of the anterior high-activity level micropattern 723 
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(aDMN). (i) Spatial structure of the posterior high-activity level micropattern (pDMN). 724 
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 725 

Figure 3. Comparisons of the temporal features and activity levels of each CAMP during 726 

wakefulness and sleep. (a) Comparisons of the total occurrence of each CAMP in different 727 

stages of wakefulness. The dots represent the values obtained from 29 rats, and the black stars 728 

indicate significant differences with a corrected p<0.001. (b) Comparisons of the total 729 

duration. (c) Comparisons of the mean duration. (d) Comparisons of the mean DMN activity 730 

during wakefulness and sleep for different CAMPs. (e-j) Comparisons of activity in DMN 731 

nodes for different CAMPs across different stages of wakefulness: (e and h) cDMN, (f and i) 732 

aDMN, and (g and j) pDMN. Gray dots indicate decreased normalized activity and black dots 733 

indicate increased normalized activity. The size of the dot reflects the value of the difference, 734 

and the red stars indicate significance differences with a corrected p<0.001.  735 
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 737 

Figure 4. Characteristics of CAMPs and the transitions among them in different stages of 738 

wakefulness during wakefulness and sleep. (a) Comparisons of the occurrence probability 739 

for all CAMPs in the three stages. The black dots indicate the values of the occurrence 740 

probability obtained from 29 rats in different CAMPs and stages. The black stars indicate 741 
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significant differences with a corrected p<0.001. (b) Comparisons of the duration probability. 742 

(c) Comparisons of the mean duration. (d-f) The transition structures among CAMPs for the 743 

AWAKE (d), SWS (e) and REM sleep stages (f). All the numbers indicate the mean TPs 744 

calculated for the 29 rats and the standard deviation. The numbers in blue indicate a 745 

significantly lower transition probability than observed in the AWAKE stage, and the numbers 746 

in red indicate a significantly higher transition probability. The significance level is a 747 

corrected p<0.001. 748 
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 750 

Figure 5. Phase locking relationship between each CAMP with slow oscillations in the SWS 751 

stage. (a-c) The phase locking relationships between the cDMN (a), aDMN (b) and pDMN (c) 752 

with the slow oscillations in anterior DMN regions. (d-f) The phase locking relationships 753 

between the cDMN (d), aDMN (e) and pDMN (f) with the slow oscillations in posterior 754 

DMN regions. The red lines showed the significant directionality with Rayleigh test p<0.001. 755 
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 756 

Figure 6. The three-state model of the alertness levels during wakefulness and sleep. The 757 

AWAKE stage requires the cooperation of all three CAMPs, while the SWS stage requires 758 

communications between the low-activity micropattern (cDMN) and the high-activity 759 

micropatterns (aDMN or pDMN). The REM sleep stage requires interactions within the two 760 

high-activity micropatterns.  761 
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