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Abstract: 
 
Background: Alzheimer’s disease (AD) is the most common age-related dementia that promotes a 
decline in memory, thinking, and social skills. The initial stages of dementia can be associated with 
mild symptoms, and symptom progression to a more severe state is heterogeneous across patients. 
Recent work has demonstrated the potential for functional network mapping to assist in the 
prediction of symptomatic progression. However, this work has primarily used static functional 
connectivity (sFC) from rs-fMRI. Recently, dynamic functional connectivity (dFC) has been 
recognized as a powerful advance in functional connectivity methodology to differentiate brain 
network dynamics between healthy and diseased populations.  
 
Methods: Group independent component analysis was applied to extract 17 components within the 
cognitive control network (CCN) from 1385 individuals across varying stages of AD 
symptomology. We estimated dFC among 17 components within the CCN, followed by clustering 
the dFCs into 3 recurring brain states and then estimated a hidden Markov model and the 
occupancy rate for each subject. Finally, we investigated the link between CCN dFC connectivity 
features with AD progression.  
 
Results: Progression of AD symptoms were associated with increases in connectivity within the 
middle frontal gyrus. Also, the AD with mild and severer symptoms showed less connectivity 

within the inferior parietal lobule and between this region with the rest of CCN. Finally, comparing 
with mild dementia, we found that the normal brain spends significantly more time in a state with 
lower within middle frontal gyrus connectivity and higher connectivity between the hippocampus 
and the rest of CCN, highlighting the importance of assessing the dynamics of brain connectivity in 
this disease.  
 
Conclusion: Our results suggest that AD progress not only alters the CCN connectivity strength 
but also changes the temporal properties in this brain network. This suggests the temporal and 
spatial pattern of CCN as a biomarker that differentiates different stages of AD. 
 
Impact Statement:  By assuming that functional connectivity is static over time, many of previous 
studies have ignored the brain dynamic in Alzheimer’s disease progression. Here, a longitudinal 
resting-state functional magnetic resonance imaging data are used to explore the temporal changes 
of functional connectivity in the cognitive control network in Alzheimer’s disease progression. The 
result of this study would increase our understanding about the underlying mechanisms of 
Alzheimer's Disease and help in finding future treatment of this neurological disorder. 
 
 
Key words:  Alzheimer’s disease, cognitive control network, dynamic functional connectivity, 
resting-state fMRI 
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Abbreviations 
AD  Alzheimer’s disease 
vmAD  very mild Alzheimer’s disease 
dFC  Dynamic functional connectivity 
sFC  Static functional connectivity 
MCI  Mild cognitive impairment 
CCN  Cognitive control network  
OCR  Occupancy rate 
CDR-SOB Clinical dementia rating scale sum of boxes 
HC  Healthy control 
EPI  Echo-planar imaging 
MNI  Montreal Neurological Institute 
FWHM Full width at half maximum 
MMSE  Mini-mental state examination  
ICA  Independent component analysis  
IC  Independent component  
 
1 Introduction 

 

Alzheimer’s disease (AD) is the most common age-related dementia, which affects 10-30% of 

individuals over 65 years of age (Masters et al., 2015). It usually promotes a decline in memory, 

cognition, everyday function, and social skills. AD usually progresses slowly in 3 stages, including 

mild cognitive impairment (early-stage), mild dementia (middle-stage), and severe dementia (late-

stage) (Ryan and Rossor, 2011). To date, there is no treatment for AD, but some  interventions, 

including pharmacological (Massoud and Léger, 2011) and non-pharmacological (Shigihara et al., 

2020; Zucchella et al., 2018)  can decelerate its progress in particular when it is detected at an early 

stage(Yiannopoulou and Papageorgiou, 2020). Predicting AD progression and differentiating 

different stages of this disease are thus essential steps in early medical intervention for this mental 

disorder (Badhwar et al., 2017; Brand et al., 2019; Gupta et al., 2019; Kruthika et al., 2019; Lee, 

Garam, 2019; Z. Wang et al., 2019). Also, knowing that the initial stages of dementia show 

heterogeneous symptoms across patients, identifying individuals at risk for progression from mild 

cognitive impairment (MCI) to early or late dementia is challenging (Komarova and Thalhauser, 

2011). 

In recent years, functional connectivity (FC) obtained from resting-state functional magnetic 

resonance imaging (rs-fMRI) has shown sensitivity to the prediction of current and future AD 
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based on brain network connectivity (Badhwar et al., 2017; Brier et al., 2014; Wang et al., 2007; Z. 

Wang et al., 2019; Zhao et al., 2020). A large body of the AD-related literature has focused on 

default mode network (DMN) FC disruption, and other brain networks are underexplored (Agosta 

et al., 2012; Balthazar et al., 2014; Miao et al., 2011; Zhong et al., 2014). But other  brain networks 

such as   the cognitive control network (CCN) are rarely investigated in AD progression. As 

previous studies showed, CCNwhich includes inferior parietal lobule, inferior frontal gyrus, middle 

frontal gyrus, hippocampus, insula, middle cingula cortex, and superior frontal gyrus, is involved 

in executive function including working memory, internal and external navigation, and attention 

(Breukelaar et al., 2017; Dhanjal and Wise, 2014; Han et al., 2018; Y. Wang et al., 2019; 

Westerhausen et al., 2010), which are impaired in AD (Masters et al., 2015). For example, a recent 

study showed that AD patients have more activation in superior frontal gyrus, middle frontal gyrus, 

and parietal region compared with normal subjects during a working memory task  (Yetkin et al., 

2006). Another one found changes in the inferior parietal lobule thickness by progression from 

normal to MCI (Greene and Killiany, 2010). Another study showed a disconnection between the 

hippocampus and other brain regions in AD patients (Allen et al., 2007). Therefore, we 

hypothesized that studying this brain network would reveal useful information about the 

fundamental neuronal mechanism of AD and its longitudinal progression.  

Unlike conventional static FC (sFC), which represents the averaged brain connections over an 

entire scan, dynamic FC (dFC) refers to brain connectivity within sub-intervals of the time series 

(Calhoun et al., 2014). In recent years, dFC from rs_fMRI time series has proven highly 

informative regarding the underlying brain connectivity patterns in different neurological 

disorders, including schizophrenia (Dong et al., 2019; Sendi et al., 2020a, 2020b), major depressive 

disorder (Zendehrouh et al., 2020), and AD (Fiorenzato et al., 2019; Fu et al., 2019). Furthermore, 

features obtained from dFC are shown to be more sensitive to brain disorders, for example, in 

classifying healthy subjects from patients, than their sFC counterparts (Rashid et al., 2016; Vergara 

et al., 2018). Any cognitive deficits and clinical symptoms associated with brain disorders likely 

depend not only on the strength of the connectivity between any pair of the specific brain regions 

but also on the patterns of temporal variation in the connectivity of those regions.  

In this work, from longitudinal rs-fMRI data (LaMontagne et al., 2019), we predicted that CCN 

dFC in AD and its correlation with behavioral scores could elucidate the pathophysiological 

mechanism of this neurological disorder. More specifically, we hypothesized that cognitive states 
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in different stages of AD could be linked to the temporal fluctuations exhibited by CCN dFC in 

this group of subjects. To find this link, we leveraged the sliding window approach followed by k-

means clustering to identify a set of connectivity states to investigate dFC within the CCN (Allen 

et al., 2014). We explored the link between symptom severity in AD with state-specific CCN FC. 

To further investigate and model the temporal changes in dFC, we estimated the occupancy rate 

(OCR) for each subject from dFC. Next, we explored the link between these features and cognitive 

scores via statistical analysis on the estimated OCR features.  

 

2 Methods 
 

In this study, ethical approval was granted by the relevant ethics committees, and informed consent 

was obtained from each subject prior to scanning according to the institutional review board of 

Washington University School of Medicine.  

 
Participant 
 
The data is from the Open Access Series of Imaging Studies (OASIS)-3 cohort, which contains 

imaging and related clinical data of 1098 participants. The data are collected across several 

ongoing studies in the Washington University Knight Alzheimer Disease Research Center over 15 

years. This study used 1385 rs-fMRI and clinical and demographic information at scanning (from 

910 subjects) with the age range of 42 to 95 years (LaMontagne et al., 2019). The clinical 

dementia rating scale sum of boxes (CDR-SOB) scores is used to assess the cognitive stage of the 

participant at the time of scanning. All subjects must have CDR≤1 at the time of the clinical core 

assessment and once the participant reached CDR=2 or CDR-SOB>9, they were no longer 

eligible for the study (LaMontagne et al., 2019). Using CDR-SOB, we categorized all subjects 

into two groups, including healthy control or HC(CDR-SOB=0), and very mild AD or vmAD 

(CDR-SOB>0) (O’Bryant et al., 2008). In total, we had 1028 scans of HC, 357 scans of vmAD 

patients. The demographic information is provided in Table 1.  

Data Acquisition  
 

MRI data were collected from two scanners of TIM Trio 3T with a 20-channel head coil and foam 

pad stabilizers placed next to the ears to decrease motion (Siemens Medical Solutions USA, Inc). 
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High resolution T2*-weighted functional images were acquired using echoplanar imaging  or EP 

sequence with TE =27 ms, TR = 2.2 s, flip angle = 90˚, slice thickness = 4mm, slice gap (center-

to-center) = 4 mm, matrix size = 64, and  field of view (FOV)= 256×256×128 mm3. The duration 

of the scanning was 6 minutes.   

 
Data processing  
 
We processed the fMRI data using statistical parametric mapping (SPM12, 

https://www.fil.ion.ucl.ac.uk/spm/) in the MATLAB2019 environment. The first five dummy scans 

were discarded before preprocessing, and a slice-timing correction was performed on the fMRI 

data. To account for the subject’s head motion, we used rigid body motion correction. Next, the 

imaging data underwent spatial normalization to echo-planar imaging (EPI) template in the 

standard Montreal Neurological Institute (MNI) space and was resampled to 3×3×3 mm3. Finally, 

we used a Gaussian kernel to smooth the fMRI images using a full width at half maximum 

(FWHM) of 6 mm.  

We used the Neuromark automated independent component analysis (ICA) pipeline, which uses 

previously derived component (region) maps as priors for spatially constrained ICA (Du et al., 

2019), to extract reliable CCN independent components (ICs) or components. In Neuromark, 

replicable components were identified by matching group-level spatial maps from two large-

sample healthy control (HC) datasets. Components were identified as meaningful regions if they 

exhibited peak activations in the gray matter within CCN. Seventeen data-driven CCN components 

were identified. These components are shown in Table 2.  

 

Dynamic functional connectivity (dFC)  
 
For each subject, i = 1 … N, the dFC of the 17 CCN components was estimated via a sliding 

window approach, as shown in Fig. 1. A tapered window obtained by convolving a rectangle 

(window size = 20 TRs = 44 s) with a Gaussian (σ = 3 s) was used to localize the dataset at each 

time point. A correlation matrix, based on Pearson correlation, was calculated to measure the dFC 

between CCN components (Step 1 in Fig. 1). The dFC estimates of each window for each subject 

were concatenated to form a (C × C × T) array (where C=17 denotes the number of components 

and T=139 windows), which represented the changes in brain connectivity between CCN 
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components as a function of time (Calhoun et al., 2014).  

 

Clustering and Latent Feature Estimation 
 
A k-means algorithm was applied to the dFC windows to partition the data into a set of separated 

clusters. The optimal number of centroid states was estimated to be 3 using the elbow criterion 

based on the ratio of within to between cluster distance. This optimal number was found by 

searching between 2 to 9. We used the Euclidean distance metric in the clustering algorithm with 

1000 iterations (Allen et al., 2014; Calhoun et al., 2014). The clustering output was 3 states for all 

subjects and state vector for each subject (Step 2 in Fig. 1). Next, to model the temporal changes of 

dFC for each subject using the state vector, we computed the OCR of dFCs in each state. OCR 

represents the proportion of time each subject occupies a given state. (Step3 in Fig. 1). From 3 

states, we calculated 3 OCR features for each subject. 

 

Statistical Analysis 
 
To find a link between dFC features, including OCR, and the cell values of the dFC in each state 

with mini-mental state examination (MMSE) score, we used partial correlation accounting for age 

and gender. We performed statistical analysis on the link between 136 state-specific CCN features 

obtained from 17 CCN components of each subject and clinical score, and between 3 OCR features 

obtained from state vectors of each subject and the clinical score, separately. All p values (3 p-

values for the OCR and 136 p-values for state-specific CCN features with clinical score)  have 

been adjusted by the Benjamini-Hochberg method for false discovery rate or FDR (Yoav 

Benjamini�; Yosef Hochberg, 1995). 

 

3 Results 

 

Clinical and demographic results  
 

The mean CDR-SOB of HC and vmAD  were 0±0, 2.59±1.92, respectively. The mean MMSE of 

HC and vmAD were 28.88±1.34, 25.94±3.60, respectively. Using a two-sample t-test, we found 

significant differences in MMSE between HC and vmAD (p<1e-5). The mean age of HC and 
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vmAD were 69.83±8.64 and  75.18±7.77, respectively. Using the two-sample t-test, we found 

significant differences between HC and vmAD age (t(1384)= -10.62, uncorrected p= 3.91e-24).  It 

worth noticing that due to the significant age differences among the groups, we controlled the age 

and gender in all correlation analysis we did in this study. 

 

Overview of dFC states 
 
Fig. 2 shows the 3 reoccurring dFC states, including state 1, state 2, and state 3 identified by k-

means clustering. In all states, FCs within inferior parietal lobule, inferior frontal gyrus, the middle 

frontal gyrus, and the hippocampus were positive. In all states, among all subregions of CCN, the 

hippocampus had the lowest connectivity with the rest of CCN. Also, among all states, state 1 

showed the strongest negative connectivity between the hippocampus and the rest of CCN. In 

addition, state 2 showed the least within the middle frontal gyrus comparing with that of other 

states. This state relatively showed more connectivity between hippocampus and the rest of CCN 

compared with that of other states. Also, state 3 showed the strongest positive connectivity within 

the inferior frontal gyrus. Finally, we measured the OCR of each subject in state1, state2, and state 

3. OCR represents the amount of time each subject spends in each state. We found subjects spend 

33.68 %, 28.02 %, and 38.30 % in state 1, state 2, and state 3, respectively. In addition, using a 

paired t-test , we found a significant difference between the OCR of state 1 and state 2 (t(1384)= 

4.62, FDR corrected<1e-4) and between state 1 and state 3 (t(1384)= 3.73, FDR corrected p<1e-4), 

and between state 2 and state 3 (t(1384)= 8.62, FDR corrected p<1e-4).  

  
Correlation between dFC cell features and MMSE  
 
In each state, we averaged the connectivity  features of all dFC for each subject. In more detail, 

each subject has multiple dFC in each state. Then, in each state, we used the average of dFC 

features (i.e., the average of 136 connectivity features) of each subject as her/his state-specific FC. 

Then, we calculated the partial correlation between averaged cell features of each subject and 

MMSE by controlling the age and gender to explore how these features changed by progressing 

from HC stages to AD stages. These results are shown in Fig. 3. The promising correlations (FDR 

uncorrected p<0.05) are shown in red (positive correlation) and blue (negative correlation). Also, a 

significant correlation that passes the FDR correction is marked by asterisks. 
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 In state1, we observed a positive correlation between MMSE and the connectivity of inferior 

parietal lobule connection with inferior frontal gyrus. Also, we found a negative correlation 

between MMSE and the connectivity within the middle frontal gyrus. In state 2, we found that 

within middle frontal gyrus connectivity and its connectivity with inferior frontal gyrus showed a 

negative link with MMSE. In state 3, we found that the connection between inferior frontal lobule 

and the rest of CCN, including inferior frontal gyrus, middle frontal gyrus, insula, superior frontal 

gyrus, and middle cingula cortex showed a positive correlation with MMSE. Similar to state 1 and 

state 2, we observed a negative link between within middle frontal gyrus connectivity and MMSE.  

 

Correlation between dFC temporal pattern and MMSE  
 
To find a link between MMSE and temporal features of dFC, including OCR, we used partial 

correlation by controlling age and gender. By calculating the correlation between MMSE and 

OCR, we found the OCR of state2, which representing spending time in state 2, shows a positive 

correlation with MMSE (Fig. 5: r=0.073, FDR corrected p= 0.01, n=1385). This means subjects 

with more severe symptoms spent less time in state 2, which showed the least middle frontal gyrus 

connectivity.  

 

4 Discussion 
 

Recent studies proved that the brain functional connectivity obtained from rs-fMRI is exceedingly 

dynamic and can disclose the underlying mechanism differences of brain connectivity in many 

diseases groups (Damaraju et al., 2014; Dong et al., 2019; Fiorenzato et al., 2019; Fu et al., 2019; 

Garrity et al., 2007; Miller et al., 2016; Sun et al., 2019; Zhi et al., 2018). In addition, it seems that 

the cognitive control network (CNN), which plays a significant role in several cognitive functions, 

degrades as AD progress (Dhanjal and Wise, 2014). Therefore, in the current study, we posit that 

studying the spatiotemporal pattern of CCN functional connectivity would add new information 

about the progression of AD. In more detail, we investigated the dFC of several data-driven 

components of CCN, including inferior parietal lobule, inferior frontal gyrus, middle frontal 

gyrus, hippocampus, insula, middle cingula cortex, and superior frontal gyrus. We found that 

functional connectivity in CCN is indeed highly dynamic, representing flexibility in functional 

coordination in this mode. Then, in each state, we used a partial correlation between FC features 
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and MMSE to explore whether the FC features show a link with cognitive scores or not.  

We found that the connectivity of the inferior parietal lobule with other regions of CCN has a 

positive correlation with MMSE in state 3, which means by progression from the normal state to 

AD state, the FC of the inferior parietal lobule with other regions decreases. Some evidence from 

neuroimaging studies implies the role of the inferior parietal lobule in a broad range of behavior 

and function, including cognitive functionality (Bzdok et al., 2016; Caspers et al., 2013; Wang et 

al., 2017). For example, a previous study proved the vital role of an inferior parietal region in 

maintaining attentive control (Shapiro and Hillstrom, 2002). A reduction of gray matter volume in 

the inferior parietal lobule by the progression of AD is reported (Greene and Killiany, 2010; Oishi 

et al., 2018). A recent research paper reported an improvement of working memory in AD 

patients by applying transcranial direct current stimulation to the inferior parietal region (Roncero 

et al., 2017). All these studies emphasized the role of this region in AD progression. However, 

inferior parietal lobule functional connectivity is understudied.  

In our study, using a relatively large dataset, we found that inferior parietal lobule functional 

connectivity is affected as AD progresses, more so than other regions of CNN studied here, as 

well as in the early stage of AD by progression from the normal brain to AD. Therefore, this 

region could be a reasonable brain area to target for future AD studies. However, this connectivity 

does not show a significant correlation with MMSE in state 2. This aberrant spatiotemporal 

pattern in the connectivity of inferior parietal lobule and CCN subregions potentially underlined 

the importance of studying the dFC and analyzing the FC in a shorter period of time. A recent 

study showed a disrupted pattern between the inferior parietal lobule and default mode, salience, 

executive control, and sensorimotor networks (Wang et al., 2015). The current study provides new 

knowledge about the disrupted pattern between the inferior parietal lobule and the rest of CCN. 

The inferior frontal gyrus also showed a disrupted pattern. Although we found that the 

connectivity between inferior frontal gyrus and inferior parietal lobule in state 1 and state 3 

decreases by progression from healthy to AD, the connectivity between inferior frontal gyrus and 

middle frontal gyrus of state 2 increases in this progression. In a pilot study, the inferior frontal 

gyrus was stimulated by transcranial magnetic stimulation for improving attention in the early 

stage of AD. However, the result was not consistent and significant in all tests (Eliasova et al., 

2014). Our result of having multiple distinct patterns in the inferior frontal gyrus connectivity 

further highlights the importance of additional studies evaluating the potential of AD intervention 
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by modulating these connectivity patterns. 

Interestingly, we found that the increase within middle frontal gyrus connectivity positively 

correlates with cognition decline in AD with mild symptoms. A previous study introduced a 

compensatory mechanism of neural resources in AD by showing more activation of the middle 

frontal gyrus in AD patients introduced as (Woodard et al., 1998). In the current study, a higher 

middle frontal gyrus connectivity in AD would further support the compensatory mechanism to 

reduce the impact of the decrease of connectivity in other regions of CCN in AD subjects 

(Gaubert et al., 2019). Also, like the inferior parietal lobule and inferior frontal gyrus, we 

observed a disrupted pattern in the connectivity between the middle frontal gyrus and CCN 

subregions. Interestingly, the hippocampus is showing the least effect among all regions in the 

CCN. This result is consistent with a previous study showing that the hippocampus connectivity 

shows fewer changes in early-onset AD (Park et al., 2017). Compared with other areas in CCN, 

these pieces of evidence might suggest that hippocampus connectivity with other subregions of 

CCN is one of the last brain areas affected by AD. However, a previous study found a 

dysconnectivity between the hippocampus and posterior cingulate cortex (PCC) as a part of DMN 

(Grieder et al., 2018). Therefore, our finding might be limited to the connectivity between 

hippocampus and CCN subregions, and the connectivity between the hippocampus and other 

brain networks beyond CCN, might be disrupted with AD progression.    

Next, to model the temporal pattern of dFC, we estimated the OCR. Also, to explore how the 

temporal pattern of dFC correlates with cognition, we calculated the correlation between OCR and 

MMSE by controlling age and gender. In this analysis, we found dwell time of state 2 showed a 

significant and positive correlation MMSE. This means that subjects participants with mild 

impairment and mild symptoms tend to stay less in a state, which showed the least connectivity 

within the middle frontal gyrus among all states, than a normal brain. This provides further 

evidence of the effect of disease on the dysregulating temporal properties of CCN FC.  

In addition, state 2 showed relatively higher connectivity between the hippocampus and the rest of 

the brain. Although we did not find any significant correlation between hippocampus connectivity 

strength and clinical rate, the temporal dysregulation effect of the AD progression might reveal 

some new information about the effect of this disease on the hippocampus, even in the early stage 

of the disease. This finding potentially highlighted the importance of the study of functional 

connectivity in a shorter period. Previous studies highlighted the effect of AD on the temporal 
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pattern on brain FC. One study with 29 AD patients and 31 HC subjects found that AD patients 

spend more time than the HC subject in a state with sparse connectivity pattern in which the motor 

network is isolated from the rest of the brain. In addition, the same study found an inability to 

switch out from a state with low inter-network connectivity into more highly connected network 

configurations in AD patients (Schumacher et al., 2019) . In another study, an altered dFC 

temporal pattern has been shown in Parkinson’s disease with dementia, consistent with the result of 

the current study (Fiorenzato et al., 2019). In the current study, we provided new evidence about 

the effect of AD progression on altering the temporal pattern of CCN.  

 

Limitations and Future directions 

 
There are some limitations to this work. MMSE is commonly used to measure the cognitive state 

of the brain in the different stages of AD. However, a few studies suggested that MMSE is a noisy 

measure in the diagnosis of AD (Wang et al., 2015). The choice of window size is an implicit 

assumption about the dynamic behavior in that a short window captures more rapid fluctuations, 

whereas a longer window does more smoothing than a shorter one. Previous dFC studies showed 

that the window size between 30-60 s is a reasonable choice for capturing dFC fluctuation and any 

widow size above the safety limit, i.e., the largest wavelength present in the preprocessed fMRI 

time courses, would not change the result significantly (Preti et al., 2017). In addition, k-means 

clustering needs predefined knowledge for setting the clustering parameters, including the distance 

metrics. By applying different distance metrics, we did not observe a significant difference in the 

results, however applying other clustering methods such as robust continuous clustering would 

eliminate this shortcoming and might improve the clustering results (Shah and Koltun, 2017).  

As mentioned earlier, a previous study showed a dysconnectivity between the hippocampus as a 

part of CCN and DMN in AD (Grieder et al., 2018). Therefore, a prospective study on the effect of 

this dysconnectivity between CCN and DMN, and its links with AD progression is needed. 

Although in the current study we focused on the CCN based on the prior knowledge of its role in 

cognitive impairment, future studies and methods that can mechanistically remove the irrelevant 

networks in study dynamic functional connectivity are needed (Cohen et al., 2015; Qiao et al., 

2019; Schlesinger et al., 2017). 

Conclusion 
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To summarize, we explored the alteration of temporal features of CCN FC by comparing 

participants of the normal state, mild impairment, and mild dementia. We found that AD 

progression affects differently on CCN subregions. It decreases inferior parietal lobule 

connectivity with other regions and increases within- middle frontal gyrus connectivity. We found 

both decrease and increase in inferior frontal gyrus and middle frontal gyrus connectivity with the 

rest of CCN subregions. Also, we found by progression from normal to mild dementia stage 

decreases the dwell time in a state with less within middle frontal gyrus and higher connectivity 

between the hippocampus and rest of the CCN. This result further supports the role of the middle 

frontal gyrus in the progression of AD. Interestingly, while local (cell-wise) hippocampal patterns 

were not impacted by AD progression, more global (state-based) patterns linking CCN to 

hippocampus showed lower occupancy as AD progressed. Our results suggest that AD progress 

changes not only the connectivity strength but also affects the temporal properties in the brain 

network connectivity. In other words, our finding posits the temporal and spatial pattern of CCN 

as a biomarker in AD that differentiates patients based on symptom severity.  
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   HC 

N 1028 

Gender (M/F) 415/613 

Age 69.83±8.64 

CDR-SOB 0±0 

MMSE 28.88±1.34 

 
 
  
vmAD 

N 277 

Gender (M/F) 215/142 

Age 75.18±7.77 

CDR-SOB 2.59±1.92 

MMSE 25.94±3.60 

Table 1. Demographic and clinical information 

Note: HC: Healthy control ; vMAD: very mild Alzheimer’s disease; M:male; 
F:female; CDR-SOB: clinical dementia rating scale sum of boxes, MMSE: 
mini-mental state examination 
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Component name Peak coordinate (mm) 

(IC 68) Inferior parietal lobule [IPL] 45.5 -61.5 43.5 

(IC 33) Insula  -30.5 22.5 -3.5 

(IC 43) Superior medial frontal gyrus [SMFG] -0.5 50.5 29.5 

(IC 70) Inferior frontal gyrus [IFG] -48.5 34.5 -0.5 

(IC 61) Right inferior frontal gyrus [R IFG] 53.5 22.5 13.5 

(IC 55) Middle frontal gyrus [MiFG] -41.5 19.5 26.5 

(IC 63) Inferior parietal lobule [IPL] -53.5 -49.5 43.5 

(IC 79) Left inferior parietal lobue [L IPL] 44.5 -34.5 46.5 

(IC 84) Supplementary motor area [SMA] -6.5 13.5 64.5 

(IC 96) Superior frontal gyrus [SFG] -24.5 26.5 49.5 

(IC 88) Middle frontal gyrus [MiFG] 30.5 41.5 28.5 

(IC 48) Hippocampus [HiPP] 23.5 -9.5 -16.5 

(IC 81) Left inferior parietal lobue [L IPL] 45.5 -61.5 43.5 

(IC 37) Middle cingulate cortex [MCC] -15.5 20.5 37.5 

(IC 67) Inferior frontal gyrus [IFG] 39.5 44.5 -0.5 

(IC 38) Middle frontal gyrus [MiFG] -26.5 47.5 5.5 

(IC 83) Hippocampus [HiPP] -24.5 -36.5 1.5 

 Table 2. Component Labels 
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Fig. 1.  Analytic pipeline. Step1: The time-course signal of 17 components in the cognitive 

control network (CCN) has been identified using group-ICA. After identifying 17 regions in 

CCN, a taper sliding window was used to segment the time-course signals and then calculated 

the functional connectivity (FC).  Step2: After vectorizing the FC matrixes, we have 

concatenated them, and then a k-means clustering, k=3, was used to group FCs to three distinct 

states. Elbow criteria were used to find the optimal k. In addition, the Euclidean distance metric 

is used in this clustering. Step3: Then, based on the state vector of each subject, the occupancy 

rate or OCR features, in total 3 features, were calculated from the state vector of each subject.  

Then, we explored the link between the state-specific connectivity feature and the clinical rate. 

In addition, we investigated the link between OCR with the clinical rate.  
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Fig.2. Dynamic functional connectivity (dFC) states. The three identified dFC states using the 

k-means clustering method. Each state is a 17×17 matrix in which the positive connectivity is 

shown with hot, and the negative connectivity is shown in cold color. We put all 17 components 

in 9 regions including inferior parietal lobule (IPL), inferior frontal gyrus (IFG), middle frontal 

gyrus (MIFG) hippocampus (HIPP), insula (INS), Superior medial frontal gyrus (SMFG),  

supplementary motor area (SMA), superior frontal gyrus(SFG), and middle cingulate cortex 

(MCC). In all states, the hippocampus showed a connection with the rest of the CCN. However, 

the connectivity between the hippocampus and the rest of the CCN in higher in state 2.  Also, 

state 3 showed the strongest positive connectivity within the inferior frontal gyrus. We found 

subjects spend 33.68 %, 28.02 %, and 38.30 % in state 1, state 2, and state 3, respectively. 
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Fig. 3: Correlation between FC of each state and MMSE. In each state, we averaged the cell 

features of all dFC of each subject, and then we calculated the partial correlation between 

averaged cell features of each subject and MMSE by controlling the age and gender to explore 

how these features changed by progressing from normal stage to AD stages. The correlation 

with significant p value (p ≤0.05) is highlighted in red and blue. A significant group difference 

that passes the multiple comparisons is marked by asterisks (false discovery rate [FDR] 

corrected, q = 0.05). Inferior parietal lobule (IPL), inferior frontal gyrus (IFG), middle frontal 

gyrus (MIFG) hippocampus (HIPP), insula (INS), Superior medial frontal gyrus (SMFG),  

supplementary motor area (SMA), superior frontal gyrus(SFG), and middle cingulate cortex 

(MCC).  
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Fig. 4: Correlation between OCR and MMSE. The partial correlation between the occupancy 

rate of state 2 with MMSE. r=0.073, FDR corrected p= 0.01, n=1385. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.12.31.424877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.424877
http://creativecommons.org/licenses/by-nc-nd/4.0/

