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Abstract 

Empirically derived amino-add replacement matrices are widely 

used in sequence comparison and database searches. We consider an 

extension of the usual Markov process model of protein evolution that 

admits site to site rate heterogeneity and demonstrate that rate het­

erogeneity can introduce a bias in estimated replacement probabilities 

and the corresponding alignment scores derived from these matrices. 

We suggest an approach to obtain unbiased estimates of replacement 

probabilities and alignment scores and derive the details for the case 

where rates are assumed to vary according to a Gamma distribution. 
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1 Introduction 

Empirically derived amino acid replacement matrices (Dayhoff et al. 1978, 

Jones at al. 1992, Gonnet et al. 1992) are widely used in problems of sequence 

comparison and alignment (Altschul 1991, 1993) and in database searches 

(Altschul et al. 1990). Replacement matrices reflect the average (over many 

sites in many protein families) probabilities with which one amino acid may 

be substituted by another over evolutionary time. Because they are empiri­

cally derived~ they should reflect exchangeability due to physical and chemical 

similarities of amino acids as well as effects due to properties of the underlying 

genetic code and the mutation processes acting at the DNA level. Empiri­

cally derived matrices are generally considered to reflect the true relationships 

among amino acids better than matrices derived from considerations of chemi­

cal or physical properties (Taylor 1986) or the genetic code (Feng and Doolittle 

1985). 

The pioneering work of Dayhoff and her collaborators (Dayhoff et al. 1978) 

has recently been updated to include the large amounts of protein sequence 

information that have accumulated since 1978 (Jones et al. 1992, Gonnet 

et al. 1992). The general pattern of the replacement probabilities appears 

to be remarkably stable i~ spite of the rather limited set of protein families 

that were available then as compared to the present (Jones et al. 1992). 

This suggests that it may be reasonable to use average replacement matrices 

although any particular family (or site within a family) may have its own 

characteristic pattern of replacements. It may be possible to develop a small 

set of distinct replacement matrices (Sander and Schneider 1991, Brown et 

al. 1993) that reflect different local environments within proteins or different 

protein families. If this is the case, the methods described here will continue 
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to be useful in deriving appropriate unbiased estimates of the replacement 

probabilities. 

The model of sequence change which is usually assumed in the construction 

of amino acid replacement matrices is a Markov process model that describes 

the pattern of replacements over time and acts independently and identically 

at each residue of a protein sequence. A critical discussion of this model is 

given by Wilbur (1985) who raises a number interesting points. 

It is commonly accepted and evident from observation that rates of change 

are not identical at each site in a sequence (Uzzell and Corbin 1971, Holmquist 

1983, Reeves 1992, Wakely 1993, Yang et al. 1994). Rate variation is probably 

present to a greater or lesser extent in every protein family. We are of the 

opinion that site to site rate variation presents one the most impo;rtant and 

challenging problems now faced by methodological researchers in molecular 

evolution and that new methods will be needed by empirical scientists to 

properly analyze and interpret sequence data. It has already been observed 

that rate variation can introduce biases into estimates of sequence divergence 

(Kelly 1991, Kelly and Rice 1994, Yang et al. 1994, Ota and Nei 1994). We 

take the point of view that the Markov model is an acceptable approximation 

to the actual process of sequence evolution at any one site and address the 

issue of estimating an average replacement matrix in the presence of rate 

heterogeneity. 

Clearly, any one pair of protein sequences will not provide sufficient in­

formation to estimate the large number of parameters required to specify a 

complete replacement matrix. Thus, many such pairs or families of sequences 

must be considered. A problem arises because not all sequence families are 

evolving at the same rates and not all pairs of sequences are separated by 

similar amounts of geological time. Thus to obtain estimates of replacement 
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probabilities over a given interval of evolutionary time t (geological time x 

rate of evolution), the observed patterns of replacements must be adjusted to 

reflect a common amount of divergence. 

Dayhoff et al. {1978) proposed measuring time in PAM units. One PAM 

unit corresponds to an average of one replacement per 100 sequence residues 

for a protein of average composition. In the past, it has been common to 

use the so called "PAM250" log-odds scoring matrix for sequence alignment 

and database searches. However, this matrix was developed for detecting very 

distant relationships (Schwartz and Dayhoff, 1978). It has been pointed out 

(Karlin and Altschul1991) that the choice of a scoring matrix implies a partic­

ular target distribution of aligned amino acid pairs and that optimal results are 

obtained when the scoring matrix corresponds to the evolutionary distance be­

tween the particular sequences being compared. Altschul (1993) recommends 

the use of a small set of scoring matrices tuned to <;listinct evolutionary dis­

tances for database searching applications. 

Replacement matrices at different PAM distances are typically computed 

by repeated mulitplication of a PAM1 matrix. We have noticed that there is a 

bias, due to rate heterogeneity, introduced into rescaled replacement matrices 

computed by this method. We describe the nature of this bias and suggest 

an adjustment in the case where rates are assumed to follow a Gamma distri­

bution with known shape parameter a. In section 2 of this paper, we review 

the basic concepts of Markov models of sequence evolution for the case of ho­

mogenous rates and describe an extension to the heterogeneous rates case. We 

then briefly review the calculation of alignment scores from replacement ma­

trices. In section 3 we demonstrate that the standard method of adjustment 

introduces a bias in both the replacement probabilities and their corresponding 

alignment scores. In section 4 we demonstrate these biases using data from the 
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blocks data base (Henikoff and Henikoff 1991 ). In the final section, we discuss 

some of the consequences of rate heterogeneity on the estimated replacement 

rates. 
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2 Methods 

2.1 A Homogeneous Rates Model 

We assume that the process of amino acid replacement acting at one site can 

be described as a continuous time, time homogeneous Markov process. We 

further assume that the process is reversible in time and that it is has reached 

its equilibrium state. The reader is referred to Tavare (1986) for a detailed 

description and criticisms of this model for the case of nucleotide sequences. 

Under the Markov model, a site originally occupied by amino acid i will, 

after (evolutionary) timet, be occupied by amino acid j with probability Pii( t), 

for i = 1, ... , 20 and j = 1, ... , 20 where 1, ... , 20 is an arbitrary numbering 

of the amino acids. The matrix of transition probabilities may be written 

as P(t) = [pii(t)]. Such transition matrices are commonly expressed as the 

matrix exponential of a rates matrix Q. Let Q = u-1 ~U be the spectral 

decomposition of Q. We can express P(t) as 

Dft\ .cQt 
.L \ } .._ 

where U is a matrix whose columns are the eigenvectors of Q, ~ is a diagonal 

matrix of eigenvalues,~= diag{o-1 , •.. ,o-20} and E>(t) = diag{e171 t, ... ,e1720 t}. 

This form is especially convenient for computing transition matrices at various 

times t. 

If the spectral decompostion of Q can be obtained, the transition probabil­

ity matrix can be adjusted to any other timeT by a mapping of the eigenvalues 
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The estimation and normalization procedures proposed by Dayhoff et al. (1978) 

and extended by Jones et al. (1992) are essentially discrete time approxima­

tions of this process. 

2.2 A Heterogeneous Rates Model 

To model the evolution of a sequence of sites where the rate of evolution may 

vary from site to site, we propose the following generalization of the Markov 

model (also see Kelly 1991, Kelly and Rice 1994, Yang 1993). Let .>..h be a 

multiplicative rate factor associated with site h in the sequence h = 1, ... , n. 

We assume that .>..h are independent and identically distributed realizations of 

a random variable A. For identifiability, we assume the distribution of A has 

mean one. The evolution at site h may now be described as a Markov process 

with transition matrix 

p(h)(t) _ eQt>.h 

u-1 e'Et>.h u. (1) 

An "average" replacement matrix that describes the mean behavior across 

many sites can be obtained by taking the expectation of P with respect to A, 

where 

u- 1 EA ( e'Et>.h) u 

u-1ci>(t)U (2) 

and ¢( x) is the moment generating function of A evaluated at x (Kelly and 

Rice 1994). 
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Under this model, a replacement matrix can be adjusted to a time T by 

the mapping 

For example, if the rates are gamma distributed with both scale and shape 

factors equal to a (this gives us a mean rate of one), then the mapping is 

( 
T ) -O< 

ai -t 1- t(l- af)) 

2.3 Alignment Scores 

Under the Markov model of evolution described above, the divergence time 

t measures the similarity of two protein sequences. An alternative measure 

used in sequence comparison is the alignment score, S. The calculation of 

an alignment score depends on assigning similarity scores, Sij, to each pair of 

amino acids (i,j). The total score for two protein sequences is then just the 

sum of scores for each pair of amino acids in the sequence. Karlin and Altchul 

(1990) suggest scores based on the following log-odds ratio: 

which is the log (base ,\) odds of the pair occuring by evolution as opposed to 

the pair occuring by chance. Notice that the probability of the pair occuring 

by evolution is 

where { 'lri, i = 1, 20} are the amino acid frequencies. This method of calculat­

ing alignment scores thus requires a replacement matrix P(t). 
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3 Results 

3.1 Bias in Replacement Matrices 

If there is rate heterogeneity across the sites in a sequence, then adjusting a 

PAM matrix to timet by multiplying the PAM1 matrix t times will introduce 

a bias in the resulting replacement matrix. From Section 2.2, the average 

PAMl matrix, assuming heterogeneous rates, can be written 

Assuming homogeneous rates, a replacement matrix P(t) is obtained by mul­

tipling out the PAMl matrix t times. When rates vary across the positions in 

a sequence, this method of adjustment introduces the following bias. 

bias P(1)t - P(t) 

u-1 (~(1)t- ~(t))U 

The diagonal matrix ~(1)t - ~(t) has entries cp(ai)t - cp(ait). Jensen's in­

equality implies these eigenvalues will be underestimated when t > 1 and 

overestimated when t < 1. 

= EA(exp(Aai))t- EA(exp(Aait)) 

{ 
:::; EA(exp(Aait))- EA(exp(Aait)) = 0 

~ EA(exp(Auit))- EA(exp(Aait)) = 0 

Equality holds above only when the rates are homogeneous. 

if t > 1 

if t < 1 

An overall measure of the difference between the two replacement matrices 

is Barry and Hartigan's measure of distanced= -1/20log(det(P(t))). The 

bias in this distance is 

bias(d) = -1/20(log(det(P(1)1)) -log(det(P(t)))) (3) 
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20 

-1/20 2)1og(<.p(o-d) -log(<.p(o-;t)) (4) 
i=l 

20 

-1/20 l:(t log(<.p(o-i)) -log(<.p(o-it)). (5) 
i=l 

As in Kelly and Rice (1994), a Taylor's series expansion gives an expression 

for this bias: 

bias(d) = _ 1120 f f(Kni(~i)n _ Kn(~;i)n) (6) 
i=l n=l n. n. 
20 oo K (t _ in)(o-·)n 

-1120 I: I: n , ' (7) 
i=l n=2 n. 

1/40Var(A)(t2- t)tr(Q2 ) + 1/120K3 (t3 - t)tr(Q3 ) +... (8) 

Thus when t > 1 the bias in distance is positive and increases with increasing 

time and increasing rate variability. When t < 1, the bias is negative and 

increases with decreasing time and increasing rate variability. 

If the rates have a Gamma distribution with parameter a, the cumulants 

are Kn = (n -1)!a1-n (cf. Kendall p.91), and the bias simplifies to 

(9) 

Figures 1 and 2 plot this bias (as a percentage of the Barry and Hartigan 

distance) against t for various values of a using-·ei-genvalues··estimated from · 

Henikoff and Henikoff's (1991) data (see Section 4.1). 

3.2 Bias in Alignment Score 

Because the alignment scores are functions of the replacement probabilities, 

they ~ill also be biased when heterogeneous rates are not accounted for. In 

this section we illustrate the bias in the expected total alignment score for 

sequences of length n. Suppose that two sequences are produced by evolution 
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according to the heterogeneous rate model with gamma(a) distributed rates 

and divergence timet, then the expected data matrix is 

E(N) = nDP(t, a) 

where Dis a diagonal matrix with entries 1ri and P(t, a) is the average replace­

ment matrix calculated from Equation (2). Suppose also that a divergence time 

ihomo is estimated assuming the homogeneous rate model using the method of 

maximum likelihood, and that a total alignment score, S, is calculated for the 

sequences using P(ihomo)· Then the total score will have the following bias on 

average: 

bias(S) f E(Nii) log(pij{ihomo)) _ f E(Nii) log(Pii(t, a)) 
i,j=l 1!"j i,j=l 11"j 

f E(Nij)log(Pii(ihomo)). 
i,j=l Pij{t,a) 

The bias in the average alignment scores for a sequence of length n = 1000 

with a = 1 is plotted in Figure 3. 
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4 Example 

In this section we illustrate the bias problems described above using Henikoff's 

blocks database Version 8.0 (Henikoff and Henikoff (1991 )). This database 

contains 2880 blocks of aligned protein sequences from a number of species. 

4.1 Bias in the Replacement Matrix 

Using pairs of sequences with more than 85% similarity, we estimated a PAM1 

matrix using the method described in Jones et al. (1992). This matrix is shown 

in Table 1. Tables 2 and 3 compare the P AM250 matrix calculated assum­

ing a homogeneous rate model to the PAM250 matrix calculated assuming a 

heterogeneous rate model with a gamma rate distribution (a= 1). The most 

noticable difference between these matrices is the overall rate of replacement. 

The probability of replacing any amino acid for another is the probability of 

observing amino acid i multiplied by the probability that amino acid i does 

not change: 

E 11"i(1- Pii(t)) 
' 

For the homogeneous rate model replacement matrix this probability is . 7819; 

for the heterogeneous rate model replacement matrix the probability is .6281. 

In order to compare replacement matrices with equal rates of change, we de­

termined the divergence timet in the heterogeneous rate model (with a = 1 

that yielded a probability of change = .7819; this time is t = 658 PAMs. In 

comparing P(658, 1) to the PAM250 matrix, we note that rare replacements 

(those with zero entries in the PAM1 matrix) are much more likely under the 

heterogeneous rate model. Results obtained with larger values of a are similar 

in nature but more extreme. 
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4.2 Testing for Heterogeneous Rates 

As discussed in Section 3, the severity of the biases encountered depends not 

only on whether rates are heterogeneous, but also on the extent of the variabil­

ity. To illustrate that rates are typically heterogenous with a variability that 

will cause significant biases, we considered a subset of the blocks database. We 

fit both models to concatenated block sequences from E. coli and Homo sapiens 

from the Henikoff and Henikoff data set. The total length of the concatenated 

sequence was 958 amino acids, and the observed proportion of changes was 

.60. We estimated the divergence times for the two models, thomo and theter 

and the heterogeneous rate model parameter a using the method of maximum 

likelihood. Maximizing the likelihood is equivalent to minimizing the goodness 

of fit statistic 
· 20 20 N·· 

X~omo = 2 ~ _?; N;j * log(mri~:(t) ). (10) 

in the homogeneous rate model, and 

20 20 N·· 
X~eter = 2 L L N;j *log( ~ t~.L -) ). 

i=l j=l n7r; ij\~, u 
(ll) 

in the heterogeneous rate model. Here n is the length of the sequence, { 'il"i, i = 

1, ... , 20} are the amino acid frequencies, and P(t) and P(t, a) are the re­

placement matrices in the homogeneous rate and heterogeneous rate models, 

respectively. 

For the E.coli - Homo sapiens data set: 

thomo = 137.66 xLmo = 486.8 

theter = 276.61 xleter = 412.9 

a= 1.432 
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The difference in the chi-square statistics is 

xLmo - X~eter = 73.9 (12) 

which is highly. significant if the statistic is chi-square distributed with one 

degree of freedom. 

The sparseness of the raw data matrix (N), may make the chi-square ap­

proximation to statistic (12) questionable (see for example Goldman (1993)). 

To assess the distribution of this statistic, a parametric bootstrap confidence 

interval was calculated in the following way (also described in Goldman (1993)). 

To test 

H0 : rates are homogeneous 

versus 

HA : rates are heterogeneous 

we simulated one thousand data matrices, or one thousand multinomial ran­

dom variables with parameters n = 958 and p = DP(thomo)). For each boot­

strap matrix, the difference in chi-square statistics (12) is calculated. A his­

togram of this statistic is shown in Figure 4. An upper 95th percentile of 

2.80 and an upper 99th percentile of 5.68 was obtained from the bootstrapped 

statistics. This provides significant evidence that the heterogeneous rate model 

with a = 1.432 fits significantly better than the homogeneous rate model. 

4.3 Bias in Alignment Scores 

In this section we illustrate the biases in alignment scores that occur when 

heterogeneous rates are ignored using the concatenated Homo sapiens and 

E.coli sequences described above. We calculated the total alignment score 

for this pair of sequences for various times first using the homogeneous rate 
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replacement matrix and then using a heterogenous rate replacement matrix 

assuming gamma distributed rates with a= 1.432. These scores are displayed 

in Figure 5. As in the previous analysis, the homogeneous rate model suggests 

a divergence time of approximately 138 PAMs (which gives a maximum score 

of 536.6); whereas the heterogenous rate model suggests a divergence time of 

approximately 277 PAMs (which gives a maximum score of 573.5). Certainly, 

estimating divergence time with alignment scores will introduce a significant 

bias if heterogeneous rates are not considered. 
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5 Discussion 

In an exhaustive matching of the entire protein sequence database, Gonnet et 

al. made the intriguing observation that "mutation matrices (normalized to a 

distance of 250 PAM ... ) were found to differ, depending on whether they were 

derived from protein pairs that are distantly homologous or from protein pairs 

that ar.e closely homologous." This observation may be interpreted as giving 

evidence that the PAM matrix is inadequate for aligning distantly related 

proteins. Results presented here, however, provide an alternate explanation for 

these findings. We demonstrate that the bias in normalizing a mutation matrix 

to 1 PAM may be positive or negative depending on whether the distance 

between the proteins is larger or smaller than 1. Gonnet et al. normalized to 

250 PAMs, but the results are qualitatively equivalent: distantly homologous 

protein pairs (t > 250 PAMs) will have a positive bias and closely homogous 

pairs (t < 250 PAMs) will have a negative bias. 

We note that Yang (1993) has found a heterogeneous rate model with 

a = 4 provides a good fit to nucleotide sequences. Our results suggest that 

there is less rate variability in amino acid sequences (a < 2) than in nucleotide 

sequences. This result might be expected since the amino acid model does not 

have to account for the rate differences in different c-odon -pOsitions.-· Estimates · · · ·· · 

of rate variation in amino acid repalcements obtained by other methods (Uzzell 

and Corbin 1971, Ota and Nei 1994) suggest a value of approximately a= 2. 

The true value of a will depend on the particular set of sequences under study. 

Thus it may not be possible to obtain a definitive value of a that is applicable 

to all amino acid sequences. 

The results presented here demonstrate that there is a bias introduced 

into estimated replacement matrices due to rate heterogeneity. A method for 
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correctly extrapolating replacement matrices estimated from closely related se­

quences to matrices appropriate for longer divergence times is provided. The 

evolution of protein sequences is a complex process and the methods described 

here are based on a number of simplifying assumptions. For example, the mu­

tational spectrum as defined by the rate matrix Q in Equation (1) is likely to 

vary from site to site. This leads us to ask, does it make sense to estimate an 

average replacement matrix? For many practical purposes, such as database 

searching and sequence alignment, scoring methods based on average replace­

ment matrices have proven to be very effective. We are hopeful that the bias 

correction proposed here will serve to improve their utility. 
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A c 0 E F a H I K L M N p Q R s T v w y 
9872 5 3 • 0 20 1 2 3 3 I • 6 4 2 41 19 10 0 1 

19 9907 0 0 2 3 0 7 0 2 1 2 0 0 2 15 12 22 0 2 
4 0 9901 56 0 4 3 0 1 0 0 18 1 2 1 5 2 1 0 1 
5 0 47 9909 0 3 1 1 11 0 0 2 1 12 1 3 2 2 0 0 
0 1 0 0 9935 0 0 3 0 17 3 0 0 0 0 2 0 1 1 34 

18 1 3 2 0 9951 1 0 1 0 0 5 0 1 2 13 2 1 0 0 
1 0 4 2 1 2 9925 0 3 1 0 15 1 15 9 2 0 1 10 
2 3 0 1 3 0 0 9833 1 33 13 1 0 0 1 9 98 0 0 
5 0 1 13 0 2 2 1 9914 3 1 6 1 11 30 3 5 1 0 0 
2 0 0 0 8 0 0 18 2 9929 18 1 1 2 2 2 12 0 0 
3 1 0 0 6 1 0 34 3 86 9822 1 0 • 1 2 11 23 0 0 
9 1 26 3 0 11 13 2 9 2 0 9862 1 7 2 29 17 3 0 2 

10 0 1 1 0 1 1 1 1 2 0 1 9963 2 2 9 5 1 0 0 
9 0 3 24 0 3 16 1 19 6 3 8 3 9879 6 7 2 0 4 
3 1 0 1 0 3 0 31 5 1 2 2 • ~9'3~ 2 0 2 0 

60 6 5 3 2 21 1 • 3 1 19 7 3 3 9805 48 2 0 2 
24 • 1 2 0 2 1 8 5 3 4 10 3 3 2 42 9874 11 0 0 
10 6 1 2 1 1 0 75 1 17 7 1 1 1 0 2 9 9865 0 0 

0 0 0 0 2 1 1 0 0 2 0 0 0 0 7 2 0 1 9980 3 
1 1 0 49 1 10 1 0 1 0 2 0 3 3 0 0 1 9923 

Table 1: PAM1 Matrix estimated using Henikoff and Henikoff's data. 
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A c D E F G H K L M N p Q R s T v w y 
1374 288 433 491 171 1293 245 432 424 605 150 418 519 271 351 831 899 633 37 137 
1039 1194 240 268 311 733 183 744 290 862 211 312 260 182 298 683 835 1092 52 212 
658 101 2011 2032 101 719 342 184 562 273 70 606 208 416 315 496 479 280 21 123 
623 94 1699 2297 91 626 305 198 749 305 78 481 209 513 418 444 441 298 23 107 
280 141 109 117 3139 190 288 470 136 1411 247 144 95 150 143 241 249 519 128 1804 

1159 182 424 442 104 3515 214 212 334 310 81 409 271 216 306 751 607 335 32 97 
582 121 535 571 417 566 1875 199 572 416 94 574 280 583 644 526 487 274 97 588 
594 284 166 215 395 325 115 1444 229 2026 445 195 188 152 208 376 605 1832 38 169 
608 115 530 846 119 533 345 239 1928 524 119 388 265 506 1463 446 509 322 77 118 
445 176 132 176 633 254 129 1082 269 3048 528 159 182 170 296 295 443 1259 61 261 
529 206 163 216 530 318 140 1139 292 2530 557 190 181 189 281 353 547 1368 49 224 
902 187 861 818 189 985 522 307 584 467 117 767 309 375 438 712 772 439 40 210 
893 124 236 284 99 520 203 235 318 427 88 246 4100 234 311 618 615 344 21 80 
687 128 695 1025 232 612 623 280 896 589 136 441 345 849 713 503 549 382 52 261 
522 123 309 490 130 509 404 225 1521 600 119 302 269 418 2587 395 418 294 237 126 

1198 273 471 504 212 1207 319 394 449 580 144 475 517 286 382 839 950 567 52 180 
1130 291 397 437 191 851 258 553 446 758 195 450 449 272 353 829 1199 766 35 141 
6"'~ 319 lq4 247 :'\~3 ~~-"' 171 1401 ::;!:;\') 1FI.Cil •nq 714 21~ ~~~ """ 4J.~ 1':~1 l8~'i 36 14'S 
176 69 68 87 373 174 195 131 258 400 67 89 60 99 764 173 132 164 6163 359 
320 137 189 197 2568 253 577 287 191 829 149 226 109 240 197 291 261 323 175 2481 

Table 2: PAM250 Matrix - Estimated Assuming Homogeneous Rates. 
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A c D E F G H K L M N p Q R s T v w y 

3033 233 327 381 145 999 180 323 329 475 116 320 396 216 271 837 755 513 34 115 
841 3150 189 216 247 535 142 553 224 622 150 234 196 138 244 566 650 885 46 173 
496 80 3606 1703 100 ... 253 160 393 258 61 536 172 289 242 385 355 237 24 104 
485 76 1424 3845 93 480 216 173 586 274 67 335 173 429 304 333 331 260 26 92 
238 112 108 120 4544 187 201 360 128 1078 189 117 94 117 131 207 206 392 99 1372 
896 133 321 339 102 4919 163 177 259 283 70 311 209 165 245 590 426 272 31 87 
427 93 396 404 291 432 3703 172 405 353 79 491 219 496 486 427 357 233 77 459 
445 211 145 187 302 271 100 2827 190 1554 380 156 156 120 172 281 481 1851 36 137 
472 89 371 661 112 414 245 198 3665 426 99 312 209 416 1144 343 - 401 263 61 100 
349 127 125 159 483 232 109 831 219 4504 472 131 156 1<2 242 236 332 909 53 191 
409 147 142 185 406 273 117 973 244 2262 2127 151 148 168 224 277 464 1072 43 168 
690 1<0 762 570 155 750 446 245 470 384 93 2548 232 301 325 677 661 346 37 170 
682 94 195 234 99 401 159 195 251 365 73 185 5315 185 248 483 458 281 24 76 
549 97 482 857 181 468 530 221 737 490 121 354 272 2717 532 393 435 305 45 212 
404 101 237 356 119 408 305 187 1189 490 95 224 214 312 4204 310 318 244 176 106 

1200 226 .365 378 182 949 259 295 345 463 113 452 404 223 300 2253 965 424 47 150 
949 227 294 328 158 598 189 439 352 569 166 385 334 '215 ?~8 A42 'l~:34 ~(I!' ,. 11'5 
540 258 164 210 252 319 103 1415 193 1300 320 168 172 126 172 309 506 3310 35 121 
165 61 77 97 289 168 155 124 202 343 59 81 66 85 568 156 125 158 6748 274 
269 112 160 169 1953 226 451 233 163 607 111 183 103 194 166 243 21< 269 133 4043 

Table 3: PAM250 Matrix - Estimated Assuming Heterogeneous Rates with 

a= 1 
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A c D E F G H K L M N p Q R s T v w y 
1818 233 425 499 264 1007 250 433 <33 718 161 352 447 262 386 712 717 617 72 195 

839 1592 322 378 347 706 221 594 358 859 192 295 311 211 358 569 662 863 82 240 
645 136 2077 1332 219 728 305 305 501 532 118 482 291 325 381 471 485 421 63 182 
634 133 1113 2271 214 682 284 313 611 545 122 378 291 398 426 441 469 434 65 174 
433 158 236 276 2718 405 270 479 268 1181 221 206 207 190 267 328 363 571 139 1084 
902 176 429 482 222 3026 240 325 392 560 126 354 326 234 368 604 543 456 68 169 
594 145 476 531 392 635 1979 322 499 623 134 448 321 430 534 487 481 427 113 430 
596 227 276 339 402 499 186 1673 324 lof78 334 237 270 194 305 395 554 1411 74 227 
620 143 472 690 235 627 301 337 208<1 663 145 348 317 389 951 441 506 447 102 183 
528 175 257 316 530 459 193 790 340 2874 386 219 264 204 347 360 464 929 90 274 
568 188 274 337 474 494 198 855 357 1849 1080 234 264 220 339 388 537 1009 82 254 
760 177 684 643 271 851 407 373 525 643 143 1344 337 317 429 625 657 506 76 231 
769 148 329 394 218 626 233 338 381 619 129 269 3161 242 367 536 557 462 61 159 
665 149 543 796 294 663 459 357 688 706 158 373 357 1404 565 471 527 478 85 260 
57-l 148 374 499 242 612 335 330 988 704 144 296 318 332 2411 418 455 434 197 189 

1026 227 447 501 288 971 295 414 444 707 159 417 449 ?6. 40'! 1")0<'\ 815 ~57 82 2iS 
"v1 231 402 . ., 278 761 255 506 444 794 192 382 407 261 384 711 1676 682 72 198 
649 252 292 359 367 535 189 1079 328 1330 301 247 282 198 306 414 571 2016 73 213 
346 109 198 244 408 365 228 259 341 588 112 168 169 161 633 273 273 333 4447 344 
454 155 280 320 1542 440 423 384 298 870 168 249 216 239 297 352 367 413 167 2306 

Table 4: PAM658 Matrix - Estimated Assuming Heterogeneous Rates with 

0' = 1 
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Figure 1: Bias in Barry and Hartigan's distance measure as a percentage of the 

distance for divergence times > 1. A heterogeneous rate model with gamma 

distributed rates was assumed (a = 1: - - , a = 2: - . , a = 4: -). 
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Figure 2: Bias in Barry and Hartigan's distance measure as a percentage of the 

distance for divergence times < 1. A heterogeneous rate model with gamma 

distributed rates was assumed (a= 1:--, a= 2:-., a= 4: -). 
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Figure 3: Bias in the expected alignment score for sequences of length n = 1000 

as a function of divergence time when rates have a gamma( a = 1) distribution. 
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Figure 4: Histogram of bootstrapped chi-square statistics. 
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Figure 5: Alignment scores versus divergence time calculated for the Homo 

sapien - E.coli dataset assuming a homogeneous rate model ( - . ) and a 

heterogeneous rate model with a= 1.432 (- ). 
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