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Abstract

The relative abundance and rarity of DNA words have been recognized in previous biological

studies to have implications for the regulation, repair, and evolutionary mechanisms of a genome.

In this paper, we review several different measures of abundance and rarity of DNA words,

including z-scores, representation ratios, and cross-ratios, that have appeared in the recent

literature, and examine the concordance among them using the human cytomegalovirus genome

sequence. We then rank all words of length k = 2, …, 5 of seven herpesvirus genomes according to

their abundance, as measured by one of the z-scores based upon a stationary Markov model of

order k − 2. Using a simple metric on the ranks of 2-words of the seven herpesvirus sequences, we

construct an evolutionary tree. Several 3-words are observed to be consistently over- or

underrepresented in all seven herpesviruses. Furthermore, clusters of some of the most over- and

underrepresented 4- and 5-words in the genomes are identified with functional sites such as the

origins of replication and regulatory signals of individual viruses.
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INTRODUCTION

A short DNA segment comprising k nucleotide bases will be called a k-word (e.g., AA and

TC are 2-words, ATA and GCT are 3-words). The present study focuses on the relative

abundance of short (k ≤ 5) DNA words, which has been implicated in the molecular

structure and stability of DNA, as well as in recombination, replication, regulation, and

repair activities (see, e.g., McClelland, 1985; Bhagwat and McClelland, 1992; Burge et al.,

1992; Merkl et al., 1992; Karlin and Ladunga, 1994). Although the abundance or rarity of a

word can be directly measured by its relative frequency, unequal base composition and
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interdependence of neighboring bases in DNA (Nussinov, 1981; Blaisdell, 1985) preclude a

meaningful comparison of relative abundance of different words by frequency alone.

Instead, DNA sequence analysts often prefer to assess a k-word by comparing its observed

frequency to that expected under a probability model that reflects the composition of the

data sequence in its representation of shorter (length ≤ k − 1) words.

Following the terminology of Phillips et al. (1987a,b), we call a word over- (or under)

represented if it is observed more (or less) frequently than expected, under some specified

probability model. While it is generally accepted that the over-and underrepresentation of

short words are statistical aspects of DNA sequences with potential biological relevance, the

methods of quantifying over- and underrepresentation are quite varied. In this paper, we first

describe one representation measure, the z-score, based on a Markov chain model. Several

other representation measures are then reviewed and compared with one another. Finally, we

use the z-score to explore evolutionary relationships, family commonalities, and individual

genome features in seven herpesviruses.

STATISTICAL MEASURES OF OVER- AND UNDERREPRESENTATION

For any k-word W in a DNA sequence, a standardized frequency can be defined by

(1)

where NW is the observed count of word W, while E(NW) and V(NW) are, respectively, the

mean and variance of NW, these being calculated under a probability model for random

sequences which resembles the data sequence in the occurrence frequencies of all words

with lengths 1, …, k−1. For example, if W is a 2-word, we can use an independent and

identically distributed (i.i.d.) sequence model with probabilities equal to the relative

frequencies of the bases (1-words) in the data sequence. For 3-words, we can use a Markov

chain model with transition probabilities estimated from the base counts and dinucleotide (2-

word) counts.

If E(NW) and V(NW) are known, then under rather general conditions the statistic z(W) is

asymptotically normally distributed with zero mean and unit variance as the sequence length

n → ∞, assuming the validity of the model in question (see Billingsley, 1995 for the

Markov chain case). In practice E(NW) and V(NW) are seldom known, but will be estimated

from the DNA sequence under study. When we replace these quantities by consistent

estimates Ê(NW) and V̂(NW), the quantity  will in general no

longer be asymptotically distributed as a standard normal. This is because the differences

NW − E(NW) and Ê(NW) − E(NW) will typically have the same asymptotic rate, and so their

difference is not properly standardized by  (see Prum et al., 1995, Waterman,

1995, chapter 12).
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z-scores in Markov models I

A stationary Markov chain model for a DNA sequence is specified by a matrix of transition

probabilities p(a, b), a, b ∈  = {A, G, C, T} with a stationary probability distribution [π(a),

a ∈ ] satisfying  π(a)p(a, b) = π(b), b ∈ . It has been long known that under such a

model, a word W = w1w2…wk−1wk appears in a sequence of length n with a frequency NW

whose expectation is

A natural consistent estimate of this quantity is

(2)

which has been used in many studies of word abundance in DNA sequences.

It is only relatively recently that an exact expression for the variance V(NW) has been given

by Kleffe and Borodovsky (1992). As the formula is quite lengthy, we refer the readers to

their original paper. V(NW) too has a natural “plug-in” estimator V̂(NW) based upon the

maximum likelihood estimates p̂(a, b) = Nab/Na and the consistent estimates π̂(a) = Na/n.

Applying these one can calculate what we term the maximum likelihood plug-in z-score

(3)

For long sequences like the herpes genomes where n > 105, the distribution of zL(W) should

be normally distributed with mean zero. Indeed, the q − q plot (Venables and Ripley, 1994)

of the zL-scores for any specific 3-word in 100 simulated Markov sequences against the

standard normal distribution does have a straight line appearance (e.g., Fig. 1a shows the q −

q plot for the word TTG). Furthermore, when the zL-scores of all 3-words in a simulated

sequence are considered together, they also appear to be normally distributed, as

demonstrated by Fig. 1b. These suggest that zL(W) may still be useful in identifying over-or

underrepresented words even though we know that it does not have an asymptotic standard

normal distribution as n → ∞.

In general, a representation measure for k-words requires a Markov model of order k − 2 to

represent words with a length ≤ k − 1 according to their observed frequencies. For k > 3, this

higher order Markov chain can be converted to a first-order chain by expanding the state

space. For instance, the 4-word CTAG in a second-order Markov sequence is the same as the

3-word (CT)(TA)(AG) in a first-order sequence with the 16 member alphabet {AA, AC, …,

TT}. The 16 × 16 transition probability matrix will have elements p(ab, cd), which are

nonzero only when b = c. The zL-scores can be obtained in the same way by applying Eqs.

(1)–(3) to the expanded chain.
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It is already well known that DNA sequence data do not agree well with any homogeneous

Markov chain model (see, e.g., Karlin and Brendel, 1993; Pevzner, 1992). Thus it is not

entirely surprising to see that the zL-scores in the human cytomegalovirus (HCMV), one of

the herpesviruses in our data set, are distributed quite differently from those of the simulated

Markov sequences. Figure 2 shows that 14 out of 16 2-words and 40 out of 64 3-words have

zL-scores outside the range of the 100 simulated values. The q − q plots in Figure 3a–c also

indicate a nonnormal distribution for the totality of zL-scores. The zL-score distribution for

5-words appears to be much closer to normal (Fig. 3d), suggesting that as k increases, the k

− 2nd-order Markov chain model may fit better with the data sequence.

Despite the nonconformity of DNA to homogeneous Markov models, extremely over- or

underrepresented words found by statistical analyses on E. coli DNA data using such models

have provided valuable qualitative insights in biological investigations (e.g., see Phillips et

al., 1987a, b; Merkl et al., 1992). It would, therefore, seem appropriate to use zL(W) as an

index of over- and underrepresentation to provide a ranking of the abundance of W among

words of equal length in a DNA sequence.

z-scores in Markov models II

A Markov model for DNA restricted to those sequences preserving the original dinucleotide

counts was first considered by Cowan (1991), making use of a formula proved by Whittle

(1955). For a (first-order) Markov sequence (X1, …, Xn) we denote by N the 4 × 4 matrix

of dinucleotide counts in the sequence. Next we let S denote the class of all sequences of

length n with the same initial base X1 and the same matrix N of 2-word counts.

Whittle (1955) proved that under the first-order Markov model, the conditional distribution

of (X1, …, Xn) given X1 and N is uniform on the class S, and he derived a formula for the

number of sequences in S. Cowan (1991) obtained the conditional expectation of NW given

S, showing that E(NW|X1, N) can be calculated relatively straightforwardly in terms of

Whittle’s formula. Prum et al. (1995) gave an expression for the conditional V(NW|X1, N)

and ascertained the asymptotic standard normal distribution of the quantity

as n → ∞ under the first-order Markov model. Schbath et al. (1995) further showed that by

expanding the Markov chain states as previously discussed, it is possible to calculate zC(W)
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for any k-word W, conditional upon the matrix N of counts of (k − 1)-words and the first (k −

2)-word of the sequence.

When n is large, the standard normal approximation for the distribution of zC(W) would, in

principle, allow us to set criteria for discerning whether a word is significantly over- or

underrepresented. For instance, at significance level α, a conservative critical value can be

set at

where Φ is the standard normal distribution function. This critical value comes from the

simple union bound

the maximum being taken over all k-words W.

With α = 0.05, ck for k = 2, 3, 4, and 5 are respectively 2.96, 3.36, 3.73, and 4.06. When the

zC-scores for HCMV are compared with these critical values, we find that the majority of the

2-, 3-, and 4-words would be deemed significantly over- or underrepresented! So, statistical

significance of the zC-scores in DNA data may not indicate anything unusual. The

unexpectedly large number of statistically significant zC-scores for the 2- to 4-words is, most

likely, due to the lack of fit of the homogeneous Markov model with the data mentioned

before. We have already seen that the (3rd-order) Markov model fits better as k increases to

5. Indeed, the percentage of 5-words with absolute zC-scores exceeding c5 reduces to 4.5%.

It is worth noting that the asymptotic analysis of Cowan’s formula by Prum et al. (1995)

shows that as n → ∞,

where Ê(NW) is given by Eq. (2) above. Consequently, the appropriate normalizing factor

for NW − Ê(NW) is . One can replace V̂(NW) in expression (3) by V(NW|X1,

N) and the resulting zL will have an asymptotic standard normal distribution. We choose not

to do so for the present application mainly because of the excessive amount of time required

to compute the conditional variances (it takes more than 16 h on a Silicon Graphics Indy

station to compute V(NW|X1, N) for the 3-, 4-, and 5-words of the HCMV sequence); and in

all the test cases we have tried, the resulting word rankings are almost identical to the

original.
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z-scores in Markov models III

Prum et al. (1995) introduce a slightly different kind of z-score, which in essence tests

whether the last base in the word W = w1w2 … wk appears with a frequency that is consistent

with a Markov chain of the given order. The statistic used is a normalized version of the

difference

where W[−1] = w1 … wk−1 is the word W with its last letter deleted. The asymptotics they

develop for this difference make use of a martingale central limit theorem. We therefore call

the corresponding abundance measure the martingale z-score, and denote it by zM. The full

expression for zM is

where  is any consistent estimate of the limiting variance given in Prum et al. (1995). In

that article, we can also find a proof that zM(W) is asymptotically standard normal as n →

∞, assuming the correctness of the Markov chain model.

Other representation measures in Markov models

The representation of short words in DNA sequences has also been examined using two

rather different measures, both based upon stationary Markov chain models for the entire

sequence.

Merkl et al. (1992) use the simple ratio of the observed to the expected frequency of

occurrence of W

which we will call the representation ratio. In practice E(NW) is replaced by a consistent

estimator Ê(NW) of E(NW), typically expression (2) above or another expression

asymptotically equivalent to it. We note that Cuticchia et al. (1992) have also used ratios,

and no doubt others have done so as well. As pointed out by Prum et al. (1995), for longer

and hence rarer words, the variance will often be quite close to the mean, and in such cases

the ratio r(W) and the z-score zL will differ by unity. (Self-overlap is also an issue here, see

Prum et al., 1995.)

Phillips et al. (1987a,b) fit stationary Markov chain models of various orders to examine the

abundance of k-words, k = 2, …, 6. As a measure of abundance, they use signed likelihood
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ratio “residuals,” i.e., the separate terms in a likelihood-ratio test of the fit of the Markov

chain model. For the word W this takes the form

where

Cross-ratios

Burge et al. (1992) define the term “odds ratio” for examining word representation in DNA

sequences. Their expressions are more closely related to what are called cross-product

ratios, or simply cross-ratios in the literature on categorical data (Agresti, 1990) rather than

odds ratios. We will, therefore, use the term cross-ratio in the sequel. For a 2-word ab the

corresponding cross-ratio is

(4)

while for 3-words abc and 4-words abcd the cross-ratios are

and

In these expressions a subscript + denotes the sum over all possible bases in that position,

e.g., Na+c =  Naxc.

These statistics appear to be inspired by expressions in the theory of log-linear models (see

Agresti, 1990), which estimate interaction parameters within multidimensional contingency

tables, but they are not modified in any way to take into account the sequential nature of

DNA data. The 2-word cross-ratios (tab) have clear interpretations as measures of

dependence, and can be considered against an i.i.d. model for the sequence of bases. By

contrast, the 3-word measures (tabc) are reminiscent of estimates of 3-way interaction in

contingency tables, and the so-called “perfect” 3-way tables (πabc) of probabilties, for which
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(Darroch, 1962). The main features of interest in such tables are (1) the absence of 3-way

interaction, and (2) a compatibility between the 2-way parameters in the 3-way table and the

analogous parameters in the corresponding 2-way subtable. However, neither of these issues

seems to be relevant to frequencies generated by sequence data, at least not without some

modification. Similar remarks apply to the 4-word measures (tabcd).

Concordance among different representation measures

Using the HCMV sequence as an example, Table 1 gives the Spearman rank correlation

coefficients between various pairs of the representation measures we have discussed. They

are calculated in the following way: For k = 2, 3, 4, 5, every k-word is assigned a rank from

1 to 4k by each of two different representation measures, and the rank correlation coefficient

between these sets of 4k ranks is then calculated using Spearman’s formula (see, e.g.,

Daniel, 1995, chapter 13).

The Spearman rank correlation coefficients in Table 1 indicate that concordance among

various representation measures are rather high, with the exception of the cross-ratios t for

3- and 4-words. To better visualize the inconsistency, we make a scatter plot (Fig. 4a) of zL-

ranks against t-ranks for the 4-words in HCMV. The random scattering of points is not

observed in similar plots for more concordant pairs of statistics such as zL and r (see Fig.

4b).

Fig. 4a shows that a fair number of words are classified overrepresented by t but

underrepresented by zL, and vice versa. In fact, a total of 19 words are ranked above the

upper quartile by one measure but below the lower quartile by the other. Two extreme

examples are AGTA (t-rank 14, zL-rank 207) and TCTG (t-rank 212, zL-rank 22). These

observations demonstrate that different statistical measures can lead to quite different

conclusions regarding the abundance of a particular word. Such differences may affect any

biological inferences being made.

Pevzner et al. (1989a) note that the effect of the self-overlapping structure of words on their

frequencies of occurrence cannot be adequately reflected by its expected count. For

example, in an i.i.d. sequence with equal probabilities of observing any of the four bases,

E(NAA) = E(NAC). However, while NAA = 4 in the 5-base sequence “AAAAA,” it requires a

sequence of length at least 8 to observe AC four times. In contrast, the variance V(NW) does

take the self-overlapping structure of W into consideration. This can be easily seen in both

the unconditional and conditional calculations for a Markov chain model where terms

involving words formed by overlapping W with another copy of itself are involved in the

formulas of the second moments of NW (Kleffe and Borodovsky, 1992; equation (7), Prum

et al., 1995; Theorem 4). For this reason, z-scores may be preferred over the representation

ratio r, the residual s, as well as the cross-ratio t.
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The z-scores zL, zC, and zM will produce almost identical word rankings as they are highly

concordant (see Table 1 and also Prum et al., 1995 for a comparison of zC with zM). Among

the three statistics, zC is the only one derived from a model that faithfully reflects the shorter

word composition of the data sequence. This statistic is perhaps the best among all the z-

scores for 2- and 3-words. However, its computation for 4- and 5-words, which involves

numerous determinant evaluations, is still rather slow on most of today’s computers. Both zL

and zM can be computed very efficiently, giving them an advantage over zC. For the present

application, we have chosen to use zL since the conceptual simplicity of the maximum

likelihood estimates can probably be better appreciated by biologists than the martingale

formulation of zM.

OBSERVATIONS ON SEVEN HERPESVIRUS GENOMES

The genome of a herpesvirus consists of a single DNA molecule that is packed into a dense

donut-shaped core covered by an icosahedral capsid and the envelope. Between the capsid

and envelope is a compartment called the tegument, which is composed of structural and

regulatory viral proteins. A virus infects the host by introducing its genome into a suitable

host cell. Inside the cell, herpesviruses may stay dormant for most of the time, and only

become harmful after entering a lytic cycle in which they grow and replicate thousands of

copies. Several human herpesviruses like herpes simplex, varicella-zoster, Epstein–Barr, and

cytomegalovirus are associated with life threatening diseases such as AIDS and various

cancers (Labrecque et al., 1995; Vital et al., 1995).

Herpesviruses have been classified into the α, β, and γ subfamilies according to biological

properties such as range of hosts, types of infected cells, etc. (Cann, 1993, chapter 3). In this

section, we analyze the full DNA sequences of seven herpesviruses. Table 2 lists their sizes,

hosts, C + G contents, and classifications. The zL-scores of 2-, 3-, 4-, and 5-words are used

to explore sequence features that may be of biological interest. We are able to construct an

evolutionary tree, and find several over- and underrepresented words common to all seven

herpesviruses in our data set, which may possibly generalize to other large DNA molecules.

Furthermore, clusters of some extremely over- or underrepresented words in individual

genomes are located and identified with functional sites of these viruses.

Evolutionary tree by 2-word representation

Table 3 gives the zL-scores of all 2-words and their corresponding ranks. We now convert

this list of ranks into a set of pairwise distances with a view to clustering the viruses. More

fully, if r = (rAA, rAC, …, rTT) is the vector of ranks of one virus, and 

is that of a second, then we define the distance between these two viruses as the quantity

This gives a matrix of distances between each pair of viruses. We then apply an

agglomerative hierarchical clustering algorithm (Johnson and Wichern, 1992, chapter 12), as

implemented in the S-plus “hclust” function (Statistical Sciences Inc., 1993), on these
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pairwise distances. The result is the tree depicted in Figure 5a. In this tree, members within

the α and γ subfamilies are grouped close together. The β virus HCMV is classified closer to

the α family than the γ. HSI, whose classification is uncertain, turns out to be distant from

all others. Unlike evolutionary trees inferred on the basis of the DNA sequences of specific

genes or their amino acid sequences, this tree is founded on characteristics of entire

genomes.

For comparison, we also construct a tree (Fig. 5b) in the same manner using the ranks of 2-

word frequencies instead of the zL-ranks. This grouping seems to express the similiarity in C

+ G content of the genomes (e.g., the two viruses low in C + G are grouped close together)

rather than their biological classification. This confirms the value of word representation

measures for revealing properties of genomes that are not necessarily indicated by the word

frequencies directly.

The relationship among the seven genomes displayed in Fig. 5a agrees well with that

implied by the star diagram presented in Karlin et al. (1994, Fig. 1). In that paper, the

evolution of herpesviruses is studied using symmetrized cross-ratios for a large collection of

herpes sequences, including those in our data set. The symmetrized ratios are the same as

those defined in Eq. (4) above, except that the word frequency NW is replaced by (NW +

NW′)/2, where W′ is the reverse complement of the word W (e.g., if W is AC, W′ will be GT).

The symmetrization is necessary because their data set contains some DNA fragments of

unknown relative orientation from one of the two strands of the genome. Given the high

concordance of t with zL for 2-words, and the similarity in base composition in the two

strands of DNA as noted by Rogerson (1991) and Fickett et al. (1992), such agreement is

not unexpected.

Pervasively over- and underrepresented 3-words

Common trends in 2-word representation of the herpesviruses and other DNA have been

noted and discussed in a number of studies (see, e.g., Burge et al., 1992; Cardon et al.,

1994). Since our results using 2-word zL-scores are very similar, we do not repeat them here.

Among the 3-words, six of them, namely AAA, TTT, AGA, TCT, ATA, TAT, are consistently

ranked above the upper quartile (AUQ), and one other, ACT is consistently below the lower

quartile (BLQ) for all seven genomes. No such consistency is found using word frequencies.

The six AUQ words form three complementary pairs. AGT, the reverse complement of the

BLQ word ACT, is BLQ for all except one (HSE1) of the viruses, where it is ranked 18.

Table 4 displays the zL-scores and ranks of these words.

Had the words been ranked independently and randomly in each individual virus, it would

be very unusual to find any 3-word ranked AUQ or BLQ in all seven genomes (the

probability is less than 1%). Is it possible that these AUQ and BLQ words are in some sense

characteristic of the herpesviruses? Alternatively, could this representation pattern be a

general property of DNA sequences? Table 5 indicates the zL-rank of these words in various

DNA and RNA molecules with respect to the three quartiles. The patterns of over- and

underrepresentation of these words are similar in the other large DNA molecules found in

eukaryotic cells, including their viral, mitochondrial, and chloroplast genomes. Some
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contrary indications are seen with the prokaryotic phages and plasmids, as well as the short

DNA and single-stranded viruses.

The pervasive overrepresentation of AAA had been reported by Nussinov (1980) and

Brendel et al. (1986). They suggested the possibility of a connection with the molecular

structure of DNA. In their study of E. coli data, Phillips et al. (1987b) proposed an

explanation for the overrepresentation of AAA by codon usage (i.e., the preferential use of

triplets of DNA bases to code for amino acids). It is also interesting to note that the words

TAT, ATA, and AAA are frequently present in promoter sequences of herpesviruses (Wagner,

1991; Stinski et al., 1991), eukaryotic cells (Bucher and Trifonov, 1986), and even bacterial

sequences (Waterman, 1989). These observations indicate that the overrepresentation of

those three 3-words in the herpesviruses may be a consequence of some general biological

properties of large DNA molecules.

On the other hand, Pevzner et al. (1989b) demonstrated that DNA words of the poly-A/T and

poly-C/G forms are “nonstationary” in the sense that their occurrence frequencies fluctuate

from one region of the genome to another. These authors suggested that deviations of

occurrence frequencies of poly-A/T and poly-C/G words from their supposed expected

values might not necessarily have any “biological significance,” but could simply be

attributable to the zonal structure of DNA, which was not accounted for by a homogeneous

probability model. Four of our AUQ words, namely AAA, TTT, ATA, and TAT, would fit the

poly-A/T characterization. However, the remaining AUQ words AGA and TCT, and the BLQ

words ACT and AGT, alternating in A/T and C/G nucleotides, are neither poly-A/T nor poly-

C/G. So far, we have not been able to relate any possible biological properties with the

overrepresentation of AGA and TCT or the underrepresentation of ACT and AGT in the

herpesviruses.

Clusters of extremely over- or underrepresented words

No distinctive across-family commonalities are shown among the zL-scores for 4- and 5-

words of the herpes genomes. Nevertheless, interesting studies relating over- and

underrepresented words in an individual genome to its biological properties (e.g., the

possible connection between the extreme underrepresentation of CTAG in E. coli and its

DNA repair mechanism proposed by Merkl et al., 1992) has prompted us to look at those 4-

and 5-words with outlying zL-scores. We pick out the six most over- and underrepresented

4-words, and eight such extremal 5-words in each virus to examine their distributions in the

genome. Their frequencies along different parts of the DNA sequence can be visualized

conveniently by sliding window plots (with window lengths about 0.5% of the genome

sizes) like those in Figure 6.

Over 80% of these extremal 4- and 5-words appear to be distributed fairly uniformly

throughout the entire DNA sequence (see Fig. 6a for a typical sliding window plot). A

number of them, however, exhibit very unusual clusters (Fig. 6b–n). These clusters drew our

attention to 15 repetitive regions of the herpes genomes, whose locations are listed in Table

6. These segments either harbor numerous copies of a word that is extremely avoided in the

rest of the genome, or are the main contributing factors to the extreme overrepresentation of

a word.
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Much information about the four human herpesviruses, especially HSV1 and EBV, can be

found in the biological literature (e.g., McGeoch and Schaffer, 1993; Farrell, 1993; Masse et

al., 1992; Kornberg and Baker, 1992; and the annotations of these genome sequences in

their GenBank files). As a result, we are able to associate some of the sequence segments in

Table 6 with known functional sites. For example, the clusters of GAGGA and CCGCT in

HSV1 are found in the same locations as the repetitive “a sequences” responsible for the

processing and packaging of newly synthesized viral DNA. The clusters of CCCGC in EBV

and CCGG in HCMV are found around their lytic origins of replication. Other clusters are

found in genes coding for tegument proteins and replication origin binding proteins.

CONCLUDING REMARKS

We have investigated several different representation measures as quantifiers of the relative

abundance of short DNA words. They are shown to be highly concordant with one another

for 2-words. With 3-and 4-words, the cross-ratio t gives a representation ranking rather

different from other representation measures. Such contrasts may allow information encoded

in the genome sequences to be interpreted from different perspectives.

In this study of the herpesviruses, we have employed homogeneous Markov models for

entire DNA molecules. Since our purpose is to obtain an overview of the word

representation characteristics of these genomes, we have not attempted to model their zonal

structure (e.g., fluctuation of base composition, periodicity in the genes) in detail. However,

this exploration into the herpes sequences, and the comparison of our observation with

results from similar studies on other DNA data, have suggested several specific questions

for further research. For example, it would be of interest to find out how much of the

consistent over- or underrepresentation of the AUQ and BLQ words identified in these

herpes genomes can be explained by codon usage in the genes, whether this representation

pattern extends to long DNA sequences in eukaryotic cells, and whether viral origins of

replication and DNA packaging signal sequences are often associated with clusters of highly

over- or underrepresented words. Answers to these questions should help to relate word

representation characteristics with the biological properties of a genome, and serve as

statistical guidelines for identifying functional sites in other large DNA sequences.
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FIG. 1.
(a) Normal q − q plot of zL-scores of the 3-word TTG in 100 simulated Markov DNA

sequences each with 229,354 bases and transition probabilities estimated from the human

cytomegalovirus (HCMV) by maximum likelihood. (b) Normal q − q plot of zL-scores of all

64 3-words in one of the simulated Markov sequences.
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FIG. 2.
The zL-scores of all (a) 2-words and (b) 3-words in lexicographical order for the 100

simulated Markov DNA sequences. The broken curves envelope the simulated zL-scores.

Solid dots are the zL-scores of the HCMV sequence.
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FIG. 3.
Normal q − q plots of the zL-scores of the HCMV sequence for all 2-, 3-, 4-, and 5-words.
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FIG. 4.
Scatter plots of 4-word ranks in HCMV ordered by (a) zL-score versus cross-ratio t (the two

words showing most severe difference in zL- and t-rankings are identified); (b) zL-score

versus representation ratio r.
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FIG. 5.
Tree (a), derived from the 2-word zL-ranks, tends to group the viruses in the same family

together. In contrast, the 2-word frequency based tree (b) reflects more of the similarity in

base composition of the viruses.
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FIG. 6.
Word counts in a sliding window of length equal to 0.5% of the genome (rounded to the

nearest hundred) are kept at each occurrence of the word. A typical sliding window plot of

the extremal 4- and 5-words looks like graph (a). Graphs (b) through (n) show those

extremal words with unusual clusters. These clusters are characterized to be significant (p <

0.001) by the r-scan statistics (Dembo and Karlin, 1992). An explanation of the application

of scan statistics in evaluating clusters of special sequence patterns in a genome is given by

Leung et al. (1994).
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Table 2

Summary of the Seven Herpesviruses Analyzed

Name and abbreviation Size (kb)a Host Type C + G content (%)

Herpes simplex 1 (HSV1) 152 Human α 68

Varicella-zoster (VZV) 125 Human α 46

Equine herpes simplex 1 (HSE1) 150 Horse α 57

Cytomegalovirus (HCMV) 229 Human β 57

Epstein–Barr (EBV) 172 Human γ 60

Herpes saimiri (HSS) 113 Monkey γ 34

Ictalurid herpes (HSI) 134 Channel catfish ? 56

a
Size of genomes measured in kilobases (kb).
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Table 6

Sequence Segments Containing Significant Clusters of Extremal 4-and 5-Words

Genome Word zL (rank) Cluster location Feature

HSV1 GAGGA 3.86 (1019) 1–552
151709–152260

Terminal segments (the “a sequence”) containing signals for processing/packaging
nascent DNA

GGCT −5.52 (4) 71078–72077 Complement in UL36a, encoding a tegument protein

CCGCT −3.00 (6) 125983–126782 Contains inverted complement of the “a sequence”

TGGGT 4.29 (1024) 143674–144473

VZV GAGG 6.38 (256) 13904–14504 In ORF11a, possibly encoding a tegument protein

HSE1 TCAA
GATG

5.64 (252)
5.85 (253)

113353–114152
149036–150223

HCMV CCGG −6.86 (3) 92756–93855 In oriLytb

EBV CCCGC −5.05 (1) 50659–51558 Part of repetitive region upstream of oriLytb

EBVc GGGCA 3.90 (1024) 108239–108938 In EBNA1a gene, encoding an oriPb binding protein

HSS CTCAT
CTTC

3.90 (1020)
9.82 (256)

67575–68174
106513–107112

HSI TTATT 6.82 (1024) 6585–7284
122255–122954

a
Conventional names designated to coding segments of genomes. UL36 refers to the segment 71052–80543 on the complementary strand of HSV,

which codes for a very large tegument protein. ORF11 is the segment from 13590 to 16049 of VZV. It is homologous to UL47 of HSV, which is
also a tegument protein gene. The segment 107950–109875 of EBV codes for the protein EBNA1, which is involved in regulating the viral DNA
replication process.

b
Conventional names designated to various origins of replication.

c
The EBV genome contains 11.6 copies of a 3072 base segment repeated tandemly. The word GGGCA is not among the extremal words of EBV,

but is extremal only when 10 copies of the repeating unit (which makes up > 17% of the genome) are removed. The cluster location of GGGCA has
been adjusted to give its corresponding position in the original genome.
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