An Easy Case of Sorting by Reversals

MS-CIS-96-25

Nicholas Tran

University of Pennsylvania School of Engineering and Applied Science Computer and Information Science Department

Philadelphia, PA 19104-6389

1996

An Easy Case of Sorting by Reversals

Nicholas Tran*

Abstract

We show that sorting by reversals can be performed in polynomial time when the number of breakpoints is twice the distance.

1 Introduction

A permutation $\pi = (\pi_1 \pi_2 \dots \pi_n)$ is a 1-1 function $\pi : [0, n+1] \mapsto [0, n+1]$, where $\pi(0) = 0, \pi(n+1) = n+1$, and $\pi(i) = \pi_i$ for $1 \leq i \leq n$. A reversal of interval [i, j] is the permutation

 $\rho_{ij} = (1 \ 2 \ \dots \ i \ j \ j - 1 \ \dots \ i + 2 \ i + 1 \ j + 1 \ j + 2 \ \dots \ n).$

Given permutations π and σ , the reversal distance between π and σ is the length of a shortest sequence of reversals $\rho_1, \rho_2, \ldots, \rho_k$ such that $\pi \cdot \rho_1 \cdot \rho_2 \cdots \rho_k = \sigma$. (Note that this definition is robust since the reversals generate the permutation group S_n .) It is easy to see that this distance is at most n-1 [WEHM82]. Sorting by reversals is the problem of finding the reversal distance $d(\pi)$ between a permutation π and the identity permutation i.

Fix a permutation $\pi \in S_n$. For $0 \le i \le n$, we call (π_i, π_{i+1}) an *adjacency* of π if $\pi_i \sim \pi_{i+1}$ $(i \sim j \text{ means } |i-j|=1)$; otherwise, (π_i, π_{i+1}) is called a *breakpoint* of π . Let $bp(\pi)$ denote the number of breakpoints of π ; note that $bp(\pi) \le n+1$, and bp(i) = 0. Two breakpoints of π (π_i, π_{i+1}) and (π_j, π_{j+1}) define an *active* interval [i, j] if $\pi_i \sim \pi_j$ and $\pi_{i+1} \sim \pi_{j+1}$; similarly they define a *passive* interval [i, j] if $\pi_i \sim \pi_{j+1}$ and $\pi_{i+1} \sim \pi_j$.

Let B_{π} be the graph whose vertices are breakpoints of π , and whose edges connect those breakpoints that form active or passive intervals. If B_{π} has a perfect matching M, let I_M be the graph whose vertices are the intervals defined by the edges of M, and whose edges connect intersecting intervals. Two intervals [i, j] and [k, l] intersects each other if i < k < j < l or k < i < l < j.

Currently it is not known whether sorting by reversals can be solved in polynomial time. In fact, the complexity of a weaker question is not known: "Is $d(\pi) \leq bp(\pi)/2$?"

^{*}Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, nick@central.cis.upenn.edu

[KS95, PW95, VP93]. In this paper, we show that the latter problem can be solved in polynomial time.

2 Main Result

We begin with an observation about permutations π that satisfy the relation $d(\pi) = bp(\pi)/2$.

Lemma 1 Let $\pi \in S_n$ satisfy $bp(\pi) = 2d(\pi)$, and suppose $\pi \cdot \rho_1 \cdot \rho_2 \cdots \rho_{d(\pi)} = i$. Each reversal ρ_i can be identified with a unique interval of π .

Proof: Since a reversal removes at most two breakpoints, it follows that each ρ_i removes exactly two breakpoints from $\pi \cdot \rho_1 \cdots \rho_{i-1}$. Thus ρ_1 reverses an active interval of π ; identify ρ_1 with this interval. Furthermore, since ρ_1 does not create new intervals and can only change a remaining active interval to a passive interval and vice-versa, each interval of $\pi \cdot \rho_1$ is an interval of π . We also have $2d(\pi \cdot \rho_1) = bp(\pi \cdot \rho_1)$ and hence by the induction hypothesis, each $\rho_2, \cdots, \rho_{d(\pi)}$ is identified uniquely with an interval of $\pi \cdot \rho_1$, which is different from the one identified with ρ_1 .

From the lemma above, we can represent each solution $\rho_1, \ldots, \rho_{d(\pi)}$ by a sequence of intervals corresponding to the $d(\pi)$ pairs of breakpoints of π .

Lemma 2 Let $\pi \in S_n$ and suppose B_{π} has a perfect matching M that has no edges of the type [i, i + 2[. Then for every interval [i, j] and [k, l[of π , [i, j] and [i + 1, j + 1] cannot be both edges of M, and [k, l[and [k + 1, l - 1[cannot be both edges of M. Thus, if $(\pi_i = x, \pi_{i+1})$ and $(\pi_j = x + 1, \pi_{j+1})$ are breakpoints of π , then M contains exactly one of [i, j], [i, j - 1[, [i - 1, j - 1], [i - 1, j[.

Proof: Suppose to the contrary that M contains such forbidden pairs of intervals. Associate with each forbidden active pair the value $v_{i,j} = max(\pi_{i+1}, \pi_{j+1})$ and each forbidden passive pair the value $v_{k,l} = max(\pi_k, \pi_{l+1})$. Let [a, b] or]a, b[be such that $v_{a,b}$ is maximum. Without loss of generality, say $v_{a,b} = \pi_a$. Since $\pi_a \leq n$, consider $\pi_a + 1 = \pi_c$ for some c. If (π_{c-1}, π_c) and (π_c, π_{c+1}) are two breakpoints of π , then since M is a perfect matching, it must contain another forbidden pair [c-1, d] and [c, d+1], or]c-1, d[and]c, d-1[for some d, whose value is $\pi_a + 2$, contradicting our choice of $v_{a,b}$.

Else exactly one of (π_{c-1}, π_c) and (π_c, π_{c+1}) is a breakpoint of π . Without loss of generality, say (π_{c-1}, π_c) . By assumption]c, c+1[cannot be an edge in M, and since M is a matching, it does not contain an edge of the form [a-1, c-1] or [c-1, a-1] or]a, c-1[or]c-1, a[. Hence M has no intervals with c-1 as an endpoint, contradicting the assumption that M is a perfect matching. \bullet

We now characterize those permutations π that satisfy $2d(\pi) = bp(\pi)$.

Theorem 1 Let $\pi \in S_n$. Then $2d(\pi) = bp(\pi)$ iff there exists a perfect matching M of B_{π} such that each connected component of the graph I_M includes one active interval of π .

Proof: Let $\rho_1, \ldots, \rho_{d(\pi)}$ be a shortest sequence of reversals reducing π to *i*. Then by the lemma above, each reversal can be identified with a unique interval of π . Representing each reversal as an edge of B_{π} we obtain a subgraph M of $d(\pi)$ edges. Furthermore, no two edges share a vertex since a breakpoint cannot be removed twice. Hence the subgraph M is a perfect matching of B_{π} . Finally, note that a reversal can affect only reversals in its connected component of I_M . Hence, the first reversal of each connected component reverses an active interval of π .

Conversely, suppose B_{π} has a perfect matching M such that each connected component of the graph I_M includes one active interval of π . In particular, M has no intervals of the type]i, i+2[, i.e. the condition of Lemma 2 is met. We show by induction on $bp(\pi)$ (which must be even since B_{π} has a perfect matching) that $2d(\pi) = bp(\pi)$.

When $bp(\pi) = 2$, we have $d(\pi) = 1$. Suppose the claim is true for $n \ge 2$, and let π be a permutation such that $bp(\pi) = n + 2$ and π satisfies the condition of this theorem. Let M be a matching of B_{π} . Select an active interval [i, j] among the edges of M such that the permutation $\sigma = \pi \cdot \rho_{ij}$ obtained by reversing the interval [i, j] of π has the most active intervals. If we can show that σ also satisfies the condition of this theorem then by the induction hypothesis $2d(\sigma) = bp(\sigma)$ and hence $2d(\pi) \le 2(d(\sigma) + 1) = bp(\sigma) + 2 = bp(\pi)$.

First it is clear that the matching M minus the edge [i, j] is a perfect matching of B_{σ} , since the reversal [i, j] does not destroy other reversals which do not share one of its breakpoints. Call this matching N. It remains to show each connected component of the graph I_N has an active interval. Each such connected component is either a connected component of I_M (and thus has an active interval unaffected by the reversal of [i, j]) or a fragment of the connected component C_{ij} of I_M that includes [i, j]. A connected component of the second type must have an interval [k, l] or]k, l[intersecting [i, j]. If this interval is passive in I_M , it becomes active in I_N and we are done. Similarly, if in I_M this interval intersects with an active interval which does not intersect [i, j], or if in I_M it does not intersect with a passive interval which intersects [i, j], then in I_N the interval intersects with an active interval, and we are done.

Thus, suppose in I_M i) the interval [k, l] is active and intersects [i, j], ii) each active interval intersecting [k, l] also intersects [i, j], and iii) each passive interval intersecting [i, j]also intersects [k, l]. From these conditions and the choice of [i, j], it follows that any interval (active or passive) intersecting [i, j] also intersects [k, l] and vice-versa. Without loss of generality, assume i < k < j < l. Let $v = \pi_r$ be the largest integer among $\pi_{i+1}, \pi_{i+2}, \ldots, \pi_k$, and $\pi_{j+1}, \pi_{j+2}, \ldots, \pi_l$. Clearly $v \leq n$, and so $v + 1 = \pi_s$ for some s. By Lemma 2, M includes exactly one of [r, s],]r, s - 1[, [r - 1, s - 1],]r - 1, s[. This interval cannot intersect both [i, j] and [k, l], contradicting the assumption at the beginning of this paragraph. Thus we conclude every connected component of I_N has an active interval, and the theorem follows.

Theorem 2 Deciding whether $bp(\pi) = 2d(\pi)$ for any permutation $\pi \in S_n$ is in P.

Proof: Given π , we construct the graph B_{π} and assign to each active interval the weight +1 and each passive interval the weight -1. Then find a perfect matching M that has maximum weight. If M satisfies the condition of Theorem 1 then $2d(\pi) = bp(\pi)$. Suppose I_M has a connected component C consisting of only passive intervals. Let]i, x[and]y, j[be the leftmost and rightmost intervals of C, respectively. It is clear that every breakpoint between i and j is an endpoint of some interval in C; otherwise, let (π_z, π_{z+1}) be such a breakpoint such that $max(\pi_z, \pi_{z+1})$ is maximum. Then C must contain an interval]z, z'[and z' > j or]z', z[and z' < i, contradicting our choice of i and j.

So $\pi_{i+1}, \pi_{i+2}, \ldots, \pi_j$ form a set of consecutive integers R. If B_{π} has another perfect matching M' that satisfies the condition of Theorem 2, then it must have a connected component C' whose intervals are pairs of breakpoints between i and j. Furthermore, C' has at least one active interval.

Hence we can construct from M and M' a new matching N' by replacing the connected component C of M with C' of M'. But the weight of N is greater than that of M, a contradiction. Hence $2d(\pi) \neq bp(\pi)$.

References

- [KS95] J. KECECIOGLU AND D. SANKOFF, Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement, Algorithmica, 13 (1995), pp. 180-210.
- [PW95] P. PEVZNER AND M. WATERMAN, Open combinatorial problems in computational molecular biology, in Proceedings of the 3rd Israel Symposium on the Theory of Computing and Systems, 1995, pp. 148–173.
- [VP93] V. VAFNA AND P. PEVZNER, Genome rearrangements and sorting by reversals, in Proc. 34th FOCS, IEEE, 1993, pp. 148–157.
- [WEHM82] G. A. WATTERSON, W. J. EWENS, T. E. HALL, AND A. MORGAN, *The chro*mosome inversion problem, Journal of Theoretical Biology, 99 (1982), pp. 1–7.