An Easy Case of Sorting by Reversals

MS-CIS-96-25

Nicholas Tran

University of Pennsylvania
School of Engineering and Applied Science Computer and Information Science Department

Philadelphia, PA 19104-6389

An Easy Case of Sorting by Reversals

Nicholas Tran*

Abstract

We show that sorting by reversals can be performed in polynomial time when the number of breakpoints is twice the distance.

1 Introduction

A permutation $\pi=\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)$ is a $1-1$ function $\pi:[0, n+1] \mapsto[0, n+1]$, where $\pi(0)=$ $0, \pi(n+1)=n+1$, and $\pi(i)=\pi_{i}$ for $1 \leq i \leq n$. A reversal of interval $[i, j]$ is the permutation

$$
\rho_{i j}=(12 \ldots i j j-1 \ldots i+2 i+1 j+1 j+2 \ldots n) .
$$

Given permutations π and σ, the reversal distance between π and σ is the length of a shortest sequence of reversals $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ such that $\pi \cdot \rho_{1} \cdot \rho_{2} \cdots \rho_{k}=\sigma$. (Note that this definition is robust since the reversals generate the permutation group S_{n}.) It is easy to see that this distance is at most $n-1$ [WEHM82]. Sorting by reversals is the problem of finding the reversal distance $d(\pi)$ between a permutation π and the identity permutation \imath.

Fix a permutation $\pi \in S_{n}$. For $0 \leq i \leq n$, we call $\left(\pi_{i}, \pi_{i+1}\right)$ an adjacency of π if $\pi_{i} \sim \pi_{i+1}$ ($i \sim j$ means $|i-j|=1$); otherwise, $\left(\pi_{i}, \pi_{i+1}\right)$ is called a breakpoint of π. Let $b p(\pi)$ denote the number of breakpoints of π; note that $b p(\pi) \leq n+1$, and $b p(\imath)=0$. Two breakpoints of $\pi\left(\pi_{i}, \pi_{\imath+1}\right)$ and $\left(\pi_{j}, \pi_{j+1}\right)$ define an active interval $[i, j]$ if $\pi_{i} \sim \pi_{j}$ and $\pi_{i+1} \sim \pi_{j+1}$; similarly they define a passive interval] i, j [if $\pi_{i} \sim \pi_{j+1}$ and $\pi_{i+1} \sim \pi_{j}$.

Let B_{π} be the graph whose vertices are breakpoints of π, and whose edges connect those breakpoints that form active or passive intervals. If B_{π} has a perfect matching M, let I_{M} be the graph whose vertices are the intervals defined by the edges of M, and whose edges connect intersecting intervals. Two intervals $[i, j]$ and $[k, l]$ intersects each other if $i<k<j<l$ or $k<i<l<j$.

Currently it is not known whether sorting by reversals can be solved in polynomial time. In fact, the complexity of a weaker question is not known: "Is $d(\pi) \leq b p(\pi) / 2$?"

[^0][KS95, PW95, VP93]. In this paper, we show that the latter problem can be solved in polynomial time.

2 Main Result

We begin with an observation about permutations π that satisfy the relation $d(\pi)=b p(\pi) / 2$.
Lemma 1 Let $\pi \in S_{n}$ satisfy bp $(\pi)=2 d(\pi)$, and suppose $\pi \cdot \rho_{1} \cdot \rho_{2} \cdots \rho_{d(\pi)}=\imath$. Each reversal ρ_{i} can be identified with a unique interval of π.

Proof: Since a reversal removes at most two breakpoints, it follows that each ρ_{i} removes exactly two breakpoints from $\pi \cdot \rho_{1} \cdots \rho_{i-1}$. Thus ρ_{1} reverses an active interval of π; identify ρ_{1} with this interval. Furthermore, since ρ_{1} does not create new intervals and can only change a remaining active interval to a passive interval and vice-versa, each interval of $\pi \cdot \rho_{1}$ is an interval of π. We also have $2 d\left(\pi \cdot \rho_{1}\right)=b p\left(\pi \cdot \rho_{1}\right)$ and hence by the induction hypothesis, each $\rho_{2}, \cdots, \rho_{d(\pi)}$ is identified uniquely with an interval of $\pi \cdot \rho_{1}$, which is different from the one identified with ρ_{1}.

From the lemma above, we can represent each solution $\rho_{1}, \ldots, \rho_{d(\pi)}$ by a sequence of intervals corresponding to the $d(\pi)$ pairs of breakpoints of π.

Lemma 2 Let $\pi \in S_{n}$ and suppose B_{π} has a perfect matching M that has no edges of the type $] i, i+2[$. Then for every interval $[i, j]$ and $] k, l[$ of $\pi,[i, j]$ and $[i+1, j+1]$ cannot be both edges of M, and $] k, l[$ and $] k+1, l-1[$ cannot be both edges of M. Thus, if $\left(\pi_{i}=x, \pi_{i+1}\right)$ and $\left(\pi_{j}=x+1, \pi_{j+1}\right)$ are breakpoints of π, then M contains exactly one of $[i, j],] i, j-1[,[i-1, j-1]] i-1,, j[$.

Proof: Suppose to the contrary that M contains such forbidden pairs of intervals. Associate with each forbidden active pair the value $v_{i, j}=\max \left(\pi_{i+1}, \pi_{j+1}\right)$ and each forbidden passive pair the value $v_{k, l}=\max \left(\pi_{k}, \pi_{l+1}\right)$. Let $[a, b]$ or $] a, b\left[\right.$ be such that $v_{a, b}$ is maximum. Without loss of generality, say $v_{a, b}=\pi_{a}$. Since $\pi_{a} \leq n$, consider $\pi_{a}+1=\pi_{c}$ for some c. If (π_{c-1}, π_{c}) and (π_{c}, π_{c+1}) are two breakpoints of π, then since M is a perfect matching, it must contain another forbidden pair $[c-1, d]$ and $[c, d+1]$, or $] c-1, d[$ and $] c, d-1[$ for some d, whose value is $\pi_{a}+2$, contradicting our choice of $v_{a, b}$.

Else exactly one of $\left(\pi_{c-1}, \pi_{c}\right)$ and ($\left.\pi_{c}, \pi_{c+1}\right)$ is a breakpoint of π. Without loss of generality, say $\left(\pi_{c-1}, \pi_{c}\right)$. By assumption $] c, c+1[$ cannot be an edge in M, and since M is a matching, it does not contain an edge of the form $[a-1, c-1]$ or $[c-1, a-1]$ or $] a, c-1[$ or $] c-1, a[$. Hence M has no intervals with $c-1$ as an endpoint, contradicting the assumption that M is a perfect matching.

We now characterize those permutations π that satisfy $2 d(\pi)=b p(\pi)$.

Theorem 1 Let $\pi \in S_{n}$. Then $2 d(\pi)=b p(\pi)$ iff there exists a perfect matching M of B_{π} such that each connected component of the graph I_{M} includes one active interval of π.

Proof: Let $\rho_{1}, \ldots, \rho_{d(\pi)}$ be a shortest sequence of reversals reducing π to \imath. Then by the lemma above, each reversal can be identified with a unique interval of π. Representing each reversal as an edge of B_{π} we obtain a subgraph M of $d(\pi)$ edges. Furthermore, no two edges share a vertex since a breakpoint cannot be removed twice. Hence the subgraph M is a perfect matching of B_{π}. Finally, note that a reversal can affect only reversals in its connected component of I_{M}. Hence, the first reversal of each connected component reverses an active interval of π.

Conversely, suppose B_{π} has a perfect matching M such that each connected component of the graph I_{M} includes one active interval of π. In particular, M has no intervals of the type] $i, i+2$ [, i.e. the condition of Lemma 2 is met. We show by induction on $b p(\pi)$ (which must be even since B_{π} has a perfect matching) that $2 d(\pi)=b p(\pi)$.

When $\operatorname{bp}(\pi)=2$, we have $d(\pi)=1$. Suppose the claim is true for $n \geq 2$, and let π be a permutation such that $b p(\pi)=n+2$ and π satisfies the condition of this theorem. Let M be a matching of B_{π}. Select an active interval $[i, j]$ among the edges of M such that the permutation $\sigma=\pi \cdot \rho_{i j}$ obtained by reversing the interval $[i, j]$ of π has the most active intervals. If we can show that σ also satisfies the condition of this theorem then by the induction hypothesis $2 d(\sigma)=b p(\sigma)$ and hence $2 d(\pi) \leq 2(d(\sigma)+1)=b p(\sigma)+2=b p(\pi)$.

First it is clear that the matching M minus the edge $[i, j]$ is a perfect matching of B_{σ}, since the reversal $[i, j]$ does not destroy other reversals which do not share one of its breakpoints. Call this matching N. It remains to show each connected component of the graph I_{N} has an active interval. Each such connected component is either a connected component of I_{M} (and thus has an active interval unaffected by the reversal of $[i, j]$) or a fragment of the connected component $C_{i j}$ of I_{M} that includes $[i, j]$. A connected component of the second type must have an interval $[k, l]$ or $] k, l\left[\right.$ intersecting $[i, j]$. If this interval is passive in I_{M}, it becomes active in I_{N} and we are done. Similarly, if in I_{M} this interval intersects with an active interval which does not intersect $[i, j]$, or if in I_{M} it does not intersect with a passive interval which intersects $[i, j]$, then in I_{N} the interval intersects with an active interval, and we are done.

Thus, suppose in I_{M} i) the interval $[k, l]$ is active and intersects $[i, j]$, ii) each active interval intersecting $[k, l]$ also intersects $[i, j]$, and iii) each passive interval intersecting $[i, j]$ also intersects $[k, l]$. From these conditions and the choice of $[i, j]$, it follows that any interval (active or passive) intersecting $[i, j]$ also intersects $[k, l]$ and vice-versa. Without loss of generality, assume $i<k<j<l$. Let $v=\pi_{r}$ be the largest integer among $\pi_{i+1}, \pi_{i+2}, \ldots, \pi_{k}$, and $\pi_{j+1}, \pi_{j+2}, \ldots, \pi_{l}$. Clearly $v \leq n$, and so $v+1=\pi_{s}$ for some s. By Lemma $2, M$ includes exactly one of $[r, s],] r, s-1[,[r-1, s-1]] r-1,, s[$. This interval cannot intersect both $[i, j]$ and $[k, l]$, contradicting the assumption at the beginning of this paragraph.

Thus we conclude every connected component of I_{N} has an active interval, and the theorem follows.

Theorem 2 Deciding whether $b p(\pi)=2 d(\pi)$ for any permutation $\pi \in S_{n}$ is in P.
Proof: Given π, we construct the graph B_{π} and assign to each active interval the weight +1 and each passive interval the weight -1 . Then find a perfect matching M that has maximum weight. If M satisfies the condition of Theorem 1 then $2 d(\pi)=b p(\pi)$. Suppose I_{M} has a connected component C consisting of only passive intervals. Let $] i, x[$ and $] y, j[$ be the leftmost and rightmost intervals of C, respectively. It is clear that every breakpoint between i and j is an endpoint of some interval in C; otherwise, let (π_{z}, π_{z+1}) be such a breakpoint such that $\max \left(\pi_{z}, \pi_{z+1}\right)$ is maximum. Then C must contain an interval $] z, z^{\prime}[$ and $z^{\prime}>j$ or $] z^{\prime}, z\left[\right.$ and $z^{\prime}<i$, contradicting our choice of i and j.

So $\pi_{i+1}, \pi_{i+2}, \ldots, \pi_{j}$ form a set of consecutive integers R. If B_{π} has another perfect matching M^{\prime} that satisfies the condition of Theorem 2, then it must have a connected component C^{\prime} whose intervals are pairs of breakpoints between i and j. Furthermore, C^{\prime} has at least one active interval.

Hence we can construct from M and M^{\prime} a new matching N^{\prime} by replacing the connected component C of M with C^{\prime} of M^{\prime}. But the weight of N is greater than that of M, a contradiction. Hence $2 d(\pi) \neq b p(\pi)$.

References

[KS95] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement, Algorithmica, 13 (1995), pp. 180-210.
[PW95] P. Pevzner and M. Waterman, Open combinatorial problems in computational molecular biology, in Proceedings of the 3rd Israel Symposium on the Theory of Computing and Systems, 1995, pp. 148-173.
[VP93] V. Vafna and P. Pevzner, Genome rearrangements and sorting by reversals, in Proc. 34th FOCS, IEEE, 1993, pp. 148-157.
[WEHM82] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan, The chromosome inversion problem, Journal of Theoretical Biology, 99 (1982), pp. 1-7.

[^0]: *Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 nick@central.cis.upenn.edu

