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Abstract 

We show that sorting by reversals can be performed in polynomial time when the 
number of breakpoints is twice the distance. 

1 Introduction 

A permutation n = ( n l r 2  . . . n,) is a 1-1 function T : [0, n + 1] H [0, n + 11, where ~ ( 0 )  = 
0, i-r( n + 1) = n + 1 ,  and n ( i )  = K ;  for 1 5 i 5 n .  A reversal of interval [ i ,  j ]  is the 
permu tation 

p ; j = ( 1 2  . . .  i j j - 1  . . .  i + 2 i + l  j + l  j f 2  ... n) .  

Given permutations K and a ,  the reversal distance between n and a is the length of a shortest 
sequence of reversals pl, pg, . . . , pk such that x . p l  . pz - 0  pk = a .  (Note that  this definition 
is robust since the reversals generate the permutation group S,.) It is easy t o  see that  this 
dista.nce is a t  most n - 1 [WEHM82].  Sorting by reversals is the problem of finding the 
reversal distance d ( n )  between a permutation T and the identity permutation 2 .  

Fix a permutation T E S,. For 0 5 i < n ,  we call ( K ; ,  n;+l) an adjacency of K if n; N T i f l  

( i - j means J i  - jl = 1 ) ;  otherwise, ( K ; ,  ~ ~ $ 1 )  is called a breakpoint of n .  Let bp(n)  denote 
the number of breakpoints of n ;  note that bp(n) < n + 1,  and bp(z) = 0. Two breakpoints 
of i-r ( n i ,  i - r f+ l )  and ( i - r j , ~ j + ~ )  define an active interval [i, j ]  if K ;  N ~j and n;+l N nj+l;  
simila,rly they define a passive interval ]i, j [  if n; N nj+l and K;+I N nj . 

Let B, be the graph whose vertices are breakpoints of n ,  and whose edges connect those 
1~1.eakpoints that  form active or passive intervals. If B, has a perfect matching M, let 
tnf be the graph whose vertices are the intervals defined by the edges of M, and whose 
edges connect intersecting intervals. Two intervals [i, j ]  and [ k ,  11 intersects each other if 
i < l , - < j < l o r k < i < l < j .  

Curreiltly it is not known whether sorting by reversals can be solved in polynomial 
time. In fact, the complexity of a weaker question is not known: "Is d ( n )  < bp(n) /2  ?" 
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[I<S95, PW95, VP931. In this paper, we show that the latter problem can be solved in 
polyilomial time. 

2 Main Result 

\Ve begin with an observation about permutations n that satisfy the relation d ( n )  = bp(7r)/2. 

L e i ~ l m a  1 Let n E S,  satisfy bp(n) = 2d(n) ,  and suppose n - p l  . p2 .pd(,) = 2 .  Each 
rr~.er-srrl p, can be identified with a unique interval of n .  

Proof: Since a reversal removes at most two breakpoints, it follows that each p; removes 
exactly two breakpoints from n - p l  - . . pi-1. Thus pl  reverses an active interval of n ;  identify 
p1 with this interval. Furthermore, since pl  does not create new intervals and can only 
cllange a remaining active interval to  a passive interval and vice-versa, each interval of n .pl 
is a n  interval of T. We also have 2d(n.pl) = bp(n.pl) and hence by the induction hypothesis, 
c\ach p 2 ,  . . . , pd(;r) is identified uniquely with an interval of n pl , which is different from the 
one identified with p l .  

Fro111 the lemma above, we can represent each solution pl , .  . . , pd( . rr )  b y  a sequence of 
intervals corresponding t o  the d ( n )  pairs of breakpoints of n .  

Leinnia 2 Let n E S, and suppose B, has a perfect matching M that has no edges of 
l h ~  I.YI)C ] i ,  i + 2 [ .  Then for every interval [ i ,  j ]  and ] k ,  l [  of n ,  [ i , j ]  and [ i  + 1 , j  + 11 
c(riznot be both edges of M ,  and ] k ,  I [  and ] k  + 1, I - 1[ cannot be both edges of M .  Thus, if 
( 7 i l  = R'. T $ + ~ )  and ( n ,  = x f 1, K ~ + ~ )  are breakpoints of n ,  then M contains exactly one of 
[ i . j ] , ] r , j - I [ , [ i -  1 , j - l ] , ] i - 1 , j [ .  

Proof: Suppose to  the contrary that M contains such forbidden pairs of intervals. Asso- 
ciate with each forbidden active pair the value v,,, = m a ~ ( n , + ~ , . r r , + ~ )  and each forbidden 
passive pair the value vk , l  = m a x ( n k ,  T ~ + ~ ) .  Let [a,  b] or ]a,  b[ be such that  v,,b is maximum. 
FYithout loss of generality, say v,,b = n,. Since T ,  5 n, consider n ,  + 1 = n ,  for some c. 
If ( ~ ~ - 1 ,  T, ) and (n,, .ir,+l) are two breakpoints of n ,  then since M is a perfect matching, it 
nlust contain another forbidden pair [c - 1, dl and [c, d + 11, or ]c - 1, d[ and ]c ,  d - 1[ for 
wmc t l ,  whose value is na + 2, contradicting our choice of v,,b. 

Else exactly one of ( T , - ~ ,  n,) and (n,, T , + ~ )  is a breakpoint of n .  Without loss of gen- 
erality, say ( n c P 1 ,  n,). By assumption ]c,  c + 1[ cannot be an edge in M ,  and since M is a 
matching, it does not contain an edge of the form [a - 1, c - 11 or [c - 1, a - 11 or ]a ,  c - 1 [ or 
] c  - I ,  ( I [ .  Hence M has no intervals with c - 1 as an endpoint, contradicting the assumption 
that ,TI is a perfect matching. 

We now characterize those permutations n that satisfy 2d(7r) = bp(n) 



Theorem 1 Let T E S,. Then 2 d ( ~ )  = bp(n) iSf there exists a perfect matching M of B, 
such that each connected component of the graph IM includes one active interval of T .  

Proof: Let pl ,  . . . , pd(n) be a shortest sequence of reversals reducing T t o  z. Then by the 
lclllnla above, each reversal can be identified with a unique interval of T.  Representing each 
reversal as an edge of B, we obtain a subgraph M of d(n)  edges. Furthermore, no two 
edges share a vertex since a breakpoint cannot be removed twice. Hence the subgraph M 
i s  a perfect matching of B,. Finally, note that a reversal can affect only reversals in its 
coi~nected component of IM. Hence, the first reversal of each connected component reverses 
an active interval of T.  

Conversely, suppose B, has a perfect matching M such that  each connected component 
of the graph IM includes one active interval of T.  In particular, M has no intervals of the 
type ] i .  i + 2[, i.e. the condition of Lemma 2 is met. We show by induction on bp(n) (which 
must he even since B, has a perfect matching) that 2d(x) = b p ( ~ ) .  

When b p ( ~ )  = 2, we have d(n)  = 1. Suppose the claim is true for n > 2, and let n be 
a permutation such that b p ( ~ )  = n + 2 and n satisfies the condition of this theorem. Let 
J I  be a matching of B,. Select an active interval [i, j] among the edges of M such that  
the permutation u = T -p,, obtained by reversing the interval [ i , j ]  of n has the most active 
inter\-als. If we can show that  a also satisfies the condition of this theorem then by the 
i~lductio~l hypothesis 2d(a) = bp(u) and hence 2d(7r) 5 2(d(u) + 1) = bp(u) + 2 = b p ( ~ ) .  

First it is clear that  the matching M minus the edge [i, j] is a perfect matching of B,, since 
the reversal [ i ,  j] does not destroy other reversals which do not share one of its breakpoints. 
('all this matching N. It remains t o  show each connected component of the graph IN has 
an active interval. Each such connected component is either a connected component of IM 
(and thus has an active interval unaffected by the reversal of [i, j]) or a fragment of the 
coi~ilected component C,, of IM that includes [ i ,  j ] .  A connected component of the second 
t j  pe liiust have an interval [k, I] or ]k, I[ intersecting [i, j ] .  If this interval is passive in IM, 
it l~ecomes active in IN and we are done. Similarly, if in IM this interval intersects with an 
active interval which does not intersect [i, j], or if in IM it does not intersect with a passive 
inter\-a1 which intersects [i, j], then in IN the interval intersects with an active interval, and 
we are done. 

'l'hus. suppose in IM i) the interval [k,l] is active and intersects [i, j], ii) each active 
interval intersecting [k, I] also intersects [i, j], and iii) each passive interval intersecting [i, j] 
also intersects [k, 11. From these conditions and the choice of [i, j], it follows that  any 
interval (active or passive) intersecting [i, j] also intersects [k, I ]  and vice-versa. Without 
loss of generality, assume i < k < j < 1. Let v = n, be the largest integer among 
T , + I ,  T,+L, . . . , nk, and n,+l, n , + ~ ,  . . . , nl. Clearly v 5 n,  and so v + 1 = n, for some s. By 
T,emn~a 2, hf includes exactly one of [r, s ] , ] r ,  s - 1[, [r  - 1, s - 1],]r - 1, s[. This interval 
c aililot intersect both [i, j] and [k,  I ] ,  contradicting the assumption a t  the beginning of this 
paragraph. 



Thus we conclude every connected component of IN has an active interval, and the 
theorem follows. 

Theorem 2 Deciding whether bp(n) = 2d(7r) for any permutation T E S, is in P. 

Proof: Given T ,  we construct the graph B, and assign to  each active interval the weight 
f 1 aircl each passive interval the weight -1. Then find a perfect matching M that has 
masimi~m weight. If M satisfies the condition of Theorem 1 then 2d(7r) = b p ( ~ ) .  Suppose 
Tlr  has a connected component C consisting of only passive intervals. Let ] i ,  x[ and ]y, j [  
be t h e  leftmost and rightmost intervals of C ,  respectively. It is clear that  every breakpoint 
I~etween i and j is an endpoint of some interval in C ;  otherwise, let (T,, T , + ~ )  be such a 
11real;point such that  m a x ( ~ , ,  T , + ~ )  is maximum. Then C must contain an interval 12, z'[ 
i ~ n d  2' > j or ]zl, z [  and z' < i ,  contradicting our choice of i and j .  

So riT,+1, T%+z, .  . . , rJ form a set of consecutive integers R. If B, has another perfect 
ll~atching ,?I' that satisfies the condition of Theorem 2, then it must have a connected 
coniponellt C' whose intervals are pairs of breakpoints between i and j .  Furthermore, C' 
hah at least one active interval. 

Hence we can construct from M and M' a new matching N' by replacing the connected 
colilponent C' of M with C' of M'. But the weight of N is greater than that  of M ,  a 
contradiction. Hence 2d(n) # b p ( ~ ) .  
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