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Abstract

We show that sorting by reversals can be performed in polynomial time when the
number of breakpoints is twice the distance.

1 Introduction

A permutation m = (mmy...Ty,) is a 1-1 function 7 : [0,n 4 1] — [0,n + 1], where 7(0) =
0,7(n+ 1) = n+ 1, and 7(i) = 7; for 1 < 7 < n. A reversal of interval [i,j] is the
permutation

pij=(12...95j—-1...442i4+154+1j+2 ... n).

Given permutations 7 and o, the reversal distance between m and o is the length of a shortest
sequence of reversals py, pg, ..., px such that - py - pg---pr = 0. (Note that this definition
is robust since the reversals generate the permutation group 5,.) It is easy to see that this
distance is at most n — 1 [WEHMS82|. Sorting by reversals is the problem of finding the
reversal distance d(m) between a permutation 7 and the identity permutation .

Fix a permutation 7 € S,. For 0 < ¢ < n, we call (7;, m;41) an adjacency of 7 if 7; ~ ;41
(i ~ j means |t — j| = 1); otherwise, (7;, T;11) is called a breakpoint of 7. Let bp(7) denote
the number of breakpoints of 7; note that bp(7) < n + 1, and bp(z) = 0. Two breakpoints
of 7 (m;,m41) and (7, 7;41) define an active interval [z, 7] if 7y ~ 7; and 741 ~ 7j4q;
similarly they define a passive interval ]z, j[ if 7; ~ 7,41 and T4y ~ 7;.

Let B, be the graph whose vertices are breakpoints of 7, and whose edges connect those
breakpoints that form active or passive intervals. If B, has a perfect matching M, let
[ar be the graph whose vertices are the intervals defined by the edges of M, and whose

edges connect intersecting intervals. Two intervals [¢, 5] and [k,[] intersects each other if
i<k<ji<lork<i<l<ij.

Currently it is not known whether sorting by reversals can be solved in polynomial
time. In fact, the complexity of a weaker question is not known: “Is d(7) < bp(7)/2 ?”
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[KS95, PWO5, VP93]. In this paper, we show that the latter problem can be solved in
polynomial time.

2 Main Result

We begin with an observation about permutations 7 that satisfy the relation d(7) = bp(7)/2.

Lemma 1 Let 7 € S, satisfy bp(w) = 2d(x), and suppose m - py - pa-+-pg(ry = v. Each
reversal p; can be identified with a unique interval of «.

Proof: Since a reversal removes at most two breakpoints, it follows that each p; removes
exactly two breakpoints from 7 py + -« p;—1. Thus p; reverses an active interval of 7; identify
p1 with this interval. Furthermore, since p; does not create new intervals and can only
change a remaining active interval to a passive interval and vice-versa, each interval of 7 - py
is an interval of 7. We also have 2d(7-p1) = bp(7-p1) and hence by the induction hypothesis,
each pg, -+, pg(r) is identified uniquely with an interval of x - p, which is different from the
one identified with p;. =

From the lemma above, we can represent each solution py,...,p4) by a sequence of
intervals corresponding to the d(7) pairs of breakpoints of 7.

Lemma 2 Let m € S, and suppose B has a perfect matching M that has no edges of
the type 1i,i 4+ 2[. Then for every interval [i,7] and |k, I[ of =, [¢,7] and [i + 1,5 + 1]
cannot be both edges of M, and \k,l[ and ]k + 1,1 — 1] cannot be both edges of M. Thus, if
(m, = @, 7i41) and (7; = x + 1,7j41) are breakpoints of w, then M contains exactly one of
[i,‘]’],]i,j - 1[, [2 - 17j - 1]7]i_ 17j['

Proof: Suppose to the contrary that M contains such forbidden pairs of intervals. Asso-
ciate with each forbidden active pair the value v; ; = maz(m;41,7;+1) and each forbidden
passive pair the value vg; = max (T, T 41). Let [a,b] or |a, b be such that v, ; is maximum.
Without loss of generality, say v, = m,. Since 7, < n, consider 7, + 1 = 7. for some c.
If (m._y.7.) and (7, Toy1) are two breakpoints of 7, then since M is a perfect matching, it
must contain another forbidden pair [¢ — 1,d] and [¢,d + 1], or Jc — 1,d[ and ]e,d — 1] for
some d, whose value is 7, + 2, contradicting our choice of v, 5.

Else exactly one of (m._1,7.) and (7., 7.41) is a breakpoint of w. Without loss of gen-
erality, say (7.—1, 7). By assumption ¢, + 1[ cannot be an edge in M, and since M is a
matching, it does not contain an edge of the form [a —1,c—1]or [¢—1,a— 1] or |a,c— 1] or
Je—1,a[. Hence M has no intervals with ¢ — 1 as an endpoint, contradicting the assumption
that M is a perfect matching. =

We now characterize those permutations 7 that satisfy 2d(7) = bp(7).



Theorem 1 Let n € S,,. Then 2d(w) = bp(w) iff there exists a perfect matching M of By
such that each connected component of the graph Ins includes one active interval of 7.

Proof: Let p1,...,pg(r) be a shortest sequence of reversals reducing 7 to :. Then by the
lemma above, each reversal can be identified with a unique interval of 7. Representing each
reversal as an edge of B, we obtain a subgraph M of d(7) edges. Furthermore, no two
edges share a vertex since a breakpoint cannot be removed twice. Hence the subgraph M
is a perfect matching of B,. Finally, note that a reversal can affect only reversals in its
connected component of Ips. Hence, the first reversal of each connected component reverses
an active interval of 7.

Conversely, suppose B, has a perfect matching M such that each connected component
of the graph Ips includes one active interval of . In particular, M has no intervals of the
type |7, 7+ 2[, i.e. the condition of Lemma 2 is met. We show by induction on bp(7) (which
must be even since B, has a perfect matching) that 2d(7) = bp(r).

When bp(7) = 2, we have d(7) = 1. Suppose the claim is true for n > 2, and let 7 be
a permutation such that bp(7) = n + 2 and 7 satisfies the condition of this theorem. Let
M be a matching of B,. Select an active interval [7, j] among the edges of M such that
the permutation o = 7 - p;; obtained by reversing the interval [7, j] of 7 has the most active
intervals. If we can show that ¢ also satisfies the condition of this theorem then by the
induction hypothesis 2d(o) = bp(s) and hence 2d(7) < 2(d(o) + 1) = bp(o) + 2 = bp(7).

First it is clear that the matching M minus the edge [¢, j]is a perfect matching of B, , since
the reversal [¢, j] does not destroy other reversals which do not share one of its breakpoints.
Call this matching N. It remains to show each connected component of the graph Iy has
an active interval. Each such connected component is either a connected component of Ip;
(and thus has an active interval unaffected by the reversal of [¢,7]) or a fragment of the
connected component C;; of Ins that includes (4, j]. A connected component of the second
type must have an interval [k,[] or |k,{[ intersecting [¢, j]. If this interval is passive in Ips,
it becomes active in fy and we are done. Similarly, if in Ips this interval intersects with an
active interval which does not intersect (i, j], or if in Ips it does not intersect with a passive
interval which intersects [¢, 7], then in In the interval intersects with an active interval, and
we are done.

Thus, suppose in Ias i) the interval [k,[] is active and intersects [i, ], ii) each active
interval intersecting [k, ] also intersects [7, j], and iii) each passive interval intersecting [, j]
also intersects [k,{]. From these conditions and the choice of [i, ], it follows that any
interval (active or passive) intersecting [¢, 7] also intersects [k,!] and vice-versa. Without
loss of generality, assume ¢ < k < 7 < l. Let v = m, be the largest integer among
Tigt> Tig2s e« » Tk and Tj4q,Tj49,...,m. Clearly v < n, and so v + 1 = 7, for some s. By
Lemma 2, M includes exactly one of [r,s],]r,s — 1[,[r — 1,5 — 1],]r — 1, s[. This interval
cannot intersect both [7, j] and [k, ], contradicting the assumption at the beginning of this
paragraph.



Thus we conclude every connected component of Iny has an active interval, and the
theorem follows. =

Theorem 2 Deciding whether bp(n) = 2d(7) for any permutation © € S, is in P.

Proof: Given 7, we construct the graph B, and assign to each active interval the weight
+1 and each passive interval the weight —1. Then find a perfect matching M that has
maximum weight. If M satisfies the condition of Theorem 1 then 2d(7) = bp(7). Suppose
Ins has a connected component C consisting of only passive intervals. Let |i,z[ and ]y, 5[
be the leftmost and rightmost intervals of C, respectively. It is clear that every breakpoint
between ¢ and j is an endpoint of some interval in C'; otherwise, let (7,,7,41) be such a
breakpoint such that maz(7,,7,41) is maximum. Then C must contain an interval ]z, 2|
and 2’ > j or ]2/, z[ and 2’ < 4, contradicting our choice of 7 and j.

SO Tit1,Tiy2, ..., T; form a set of consecutive integers R. If B, has another perfect
matching M’ that satisfies the condition of Theorem 2, then it must have a connected
component C’ whose intervals are pairs of breakpoints between 7 and 7. Furthermore, C’
has at least one active interval.

Hence we can construct from M and M’ a new matching N’ by replacing the connected
component €' of M with C’ of M’. But the weight of N is greater than that of M, a
contradiction. Hence 2d(7) # bp(7). =

References

[KS95] J. KECECIOGLU AND D. SANKOFF, Ezact and approximation algorithms for

sorting by reversals, with application to genome rearrangement, Algorithmica,
13 (1995), pp. 180-210.

[PW95] P. PEVZNER AND M. WATERMAN, Open combinatorial problems in computa-
tional molecular biology, in Proceedings of the 3rd Israel Symposium on the
Theory of Computing and Systems, 1995, pp. 148-173.

[VP93] V. VAFNA AND P. PEVZNER, Genome rearrangements and sorting by reversals,
in Proc. 34th FOCS, IEEE, 1993, pp. 148-157.

[WEHMS2] G. A. WaTrTERSON, W. J. EwENs, T. E. HaLL, AND A. MORGAN, The chro-
mosome inversion problem, Journal of Theoretical Biology, 99 (1982), pp. 1-T.



