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ABSTRACT

A major obstacle in applying various hypothesis testing procedures to datasets in bioinfor-
matics is the computation of ensuing p-values. In this paper, we define a generic branch-
and-bound approach to efficient exact p-value computation and enumerate the required
conditions for successful application. Explicit procedures are developed for the entire
Cressie–Read family of statistics, which includes the widely used Pearson and likelihood
ratio statistics in a one-way frequency table goodness-of-fit test. This new formulation con-
stitutes a first practical exact improvement over the exhaustive enumeration performed by
existing statistical software. The general techniques we develop to exploit the convexity of
many statistics are also shown to carry over to contingency table tests, suggesting that they
are readily extendible to other tests and test statistics of interest. Our empirical results
demonstrate a speed-up of orders of magnitude over the exhaustive computation, signif-
icantly extending the practical range for performing exact tests. We also show that the
relative speed-up gain increases as the null hypothesis becomes sparser, that computation
precision increases with increase in speed-up, and that computation time is very moderately
affected by the magnitude of the computed p-value. These qualities make our algorithm
especially appealing in the regimes of small samples, sparse null distributions, and rare
events, compared to the alternative asymptotic approximations and Monte Carlo samplers.
We discuss several established bioinformatics applications, where small sample size, small
expected counts in one or more categories (sparseness), and very small p-values do occur.
Our computational framework could be applied in these, and similar cases, to improve
performance.
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1. INTRODUCTION

Statistical nonparametric techniques are routinely used in bioinformatics in the exploration
of empirical data (Ewens and Grant, 2001). A common example is the many hypothesis rejection

procedures, often resulting in the computation of p-values in a distribution free setting.
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In many one- or two-sided scenarios, given an outcome with an associated test statistic value t , we
are required to sum the tail associated with the probability of all possible outcomes yielding a value of t

or more. When we consider a finite sample space, we can directly compute the p-value by scanning all
possible outcomes. However, in most real life problems, this direct approach is unfeasible as the number of
possible outcomes is extremely large (typically exponential in the number of observations in our sample).
Thus, in practice, one has to resort to using either asymptotic approximations or stochastic simulation
methods.

With the proliferation of computing power, various algorithms have been devised to handle discrete
datasets (Agresti, 1992, 2001). And while these different instances can be grouped by their underlying
computational approach, not all such groups have been fully characterized.

In this paper, we define the generic algorithmic framework and preconditions behind the branch-and-
bound approach to efficient computation of exact p-values and similar sums. Instead of explicitly enumer-
ating all possible outcomes and for each one examining separately whether it passes the test threshold,
we attempt to examine large groups of outcomes. If all outcomes in a group pass the test, or if all fail it,
we can handle them without considering each individually. By careful design, these algorithms perform a
systematic examination of possible groups, ensuring the computation of exact p-values. Many instances
applying this approach to statistical computations already exist. Examples include Mehta and Patel (1983)
and several related works discussed by Agresti (1992) and solutions to other problems such as those of
Rue (2001), van de Wiel (2001), and Welch and Gutierrez (1988), and others.

Guided by the general framework, we introduce novel techniques and efficient exact algorithms for one-
and two-way tables. We show empirically that this design indeed leads to a decrease in the computational
complexity of performing the exact test, and greatly extends its range of feasibility. The resulting algorithms
are shown to perform particularly well in contexts which abound in bioinformatic research—small samples,
sparse null hypotheses, and rare events.

The paper is organized as follows. We begin with a case study. In Section 2, we define a goodness-
of-fit test, Section 3 lists existing approaches to measure its p-value, and in Section 4 we develop and
evaluate a novel algorithm for exact p-value computation of the likelihood ratio statistic in this context.
Section 5 extends the algorithm to allow the use of any Cressie–Read statistic, including Pearson’s X2.
In Section 6, we demonstrate how the same techniques can be applied to other hypothesis tests, such as
two-dimensional contingency tables. Section 7 summarizes the results, potential bioinformatic applications,
and future directions. Two technical appendices conclude the paper.

2. CASE STUDY: ONE WAY FREQUENCY TABLES

Let X be a discrete random variable with a finite set of possible values or categories {1, 2, . . . , k}. Let
Q be a multinomial distribution over this set, Q = (q1, q2, . . . , qk). Assuming that X is governed by an
unknown multinomial distribution �0, we want to decide whether

H0 : �0 = Q

H1 : �0 �= Q (1)

given a set of n independent observations of X. The composition of a column of multiply aligned biose-
quences yields one such scenario. Let Sn = {x1, x2, . . . , xn} denote the sample. Let Tn denote its empirical
type which counts how many times each possible value appeared in the sample, Tn = (n1, n2, . . . , nk)

where each ni = |{j |xj = i}|. Statistic Tn is a sufficient statistic of Sn. And let Pn denote its empirical
probability distribution, Pn = (p1, p2, . . . , pk) = (

n1
n
, n2

n
, . . . ,

nk
n

)
.

Generalizing the approach advocated by Radlow and Alf, Jr. (1975), we quantify the extent to which the
observed type deviates from the null hypothesis distribution, using a chosen test statistic (or discrepancy
measure). A test statistic D is a real valued function D : T n → R, where

Tn =
{
(n1, n2, . . . , nk) | ∀i : ni ∈ N,

k∑
i=1

ni = n

}
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is the sample space, the collection of all possible empirical types of size n. Denote by dn = D(Tn) the value
the statistic attains for a given sample. Two widely used discrepancy measures are the Pearson statistic

X2 =
k∑

i=1

(ni − nqi)
2

nqi
=

k∑
i=1

n2
i

nqi
− n

and the closely related likelihood ratio statistic

G2 = −2 log
Q(Sn)

Pn(Sn)
= 2nDKL(Pn||Q) = 2

k∑
i=1

ni log
ni

nqi
(2)

where DKL(P ||Q) = ∑k
i=1 pi log pi

qi
is the Kullback–Leibler divergence (see, e.g., Lin, 1991). We can

now define a hypothesis test for some chosen discrepancy measure D and a given sample:

Compute dn = D(Tn); reject H0 iff dn ≥ a predetermined threshold.

The p-value of this test is defined as the probability to draw under H0 a sample of equal size for which
the chosen discrepancy measure is at least as large as that of our observed sample,

p-value = Q(D(T ′
n) ≥ dn). (3)

3. MEASURES OF p-VALUE

3.1. Exact tests

Denote the multinomial probability of drawing a sample with empirical type Tn, when X ∼ Q, as

Q(Tn) = n!
k∏

i=1

q
ni
i

ni ! . (4)

A direct approach to evaluate (3) would explicitly sum

p-value =
∑

T ′
n∈Tn s.t.

D(T ′
n) ≥ dn

Q(T ′
n) (5)

by examining all possible types of size n. This approach is practicable only for small sample sizes over a
small set of categories since the number of types examined |Tn| = (

n+k−1
n

)
grows rapidly.

An alternative, theoretically exact approach computes the characteristic function of the chosen statistic
and then inverts it using the fast Fourier transform (e.g., Baglivo et al., 1992). The method is appealing
as computation time increases only polynomially with sample size. However, its use of trigonometric
functions and complex arithmetics introduces significant precision errors into the computation (Agresti,
1992).

Thus, both SAS (SAS 8, 1999) and StatXact (StatXact 5, 2001), two widely used software tools, perform
the exhaustive enumeration defined above.

3.2. Asymptotic approximation

Perhaps the most common approach is to use statistics whose asymptotic distributions, for a wide range
of values, have simple forms and are easily computable. For example, under broad regularity conditions,
both X2 and G2 are distributed χ2 in the limit, with k − 1 degrees of freedom (see Brownlee [1965] for
proofs). Thus, for these and other so-called chi-square statistics, one uses

p-value � Pr(χ2
k−1 ≥ dn).
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However, the convergence rate of the actual statistic to its limiting distribution is not always known
and usually varies with the choice of parameters in H0. Thus, when using the χ2 approximation, we
need to ensure that the asymptotic bound applies to the problem at hand (for references to the relevant
voluminous literature, see Hutchinson [1979] and Read and Cressie [1988]). To account for small sample
cases researchers have come up with several different correcting terms to the asymptotic expressions,
trying to better approximate the exact value (Read and Cressie [1988] compare some of them). Sparse null
hypotheses, or sparse distributions, are hypothesis testing instances where some of the expected counts
are small, most commonly defined as a test where nqi ≤ 5 for at least one index i. These cases also fall
outside the asymptotic χ2 approximation assumptions. Unfortunately, both small sample size and sparse
distribution settings are quite common in bioinformatics. Until recently, practitioners were urged to merge
or ignore rare categories (see, e.g., Siegel and Castellan [1988] and Sokal and Rohlf [1995]) to circumvent
this situation. However, merging schemes vary, yielding different p-values for the same dataset, as well as
increasing the divergence of the obtained value from the exact p-value.

3.3. Simulation

With the advent of computing power, Monte Carlo methods using computer simulation have become
widely practiced. A simple simulation approach to estimate (3), known as Monte Carlo integration, draws
R (pseudo-random) i.i.d. samples, {S(1)

n , . . . , S
(R)
n } from distribution Q and approximates

p-value � | {r |D(T
(r)
n ) ≥ dn} |
R

.

As the variance of this estimator decreases as 1
R

, independent of the dimensionality of the sample space,
it is very useful for computing p-values of the magnitude of the ubiquitous 0.05 value. However, smaller
p-values and more accurate estimates require a great number of samples, of the order of p-value−1.
More sophisticated sampling schemes can be devised, in certain situations, to somewhat improve sampling
accuracy, including Monte Carlo Rescue procedures (e.g., Senchaudhuri et al., 1995) and successively
refined Markov chain Monte Carlo sampling (Gilks et al., 1996).

4. EFFICIENT EXACT p-VALUE COMPUTATION: THE G2 EXAMPLE

4.1. Motivation

Consider a simple example. Let k = 3, Q = (.1, .45, .45), n = 2, and Tn = (1, 0, 1). One way to
explicitly enumerate all possible types in order to perform the exact test (5) is through recursion, as
illustrated in Fig. 1. We assign every possible value to n1, for each we assign every possible value of n2,
and etc. At the leafs of the recursion tree, we find all six possible assignments. We can calculate G2 for
each and accumulate the mass of those who are at least as big as dn = G2(Tn) � 3.43.

FIG. 1. Exact test recursion tree. We recursively develop all possible types for k = 3 and n = 2, by assigning all
allowed values to each category in turn. Below the tree we write each type’s G2 statistic for Q = (.1, .45, .45).
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Note, however, that if we had tight upper and lower bounds on the values G2 obtains in a given subtree,
we could have ended our computation after assigning only n1: The maximal G2 value in subtree I , falls
below dn and thus this whole subtree can be discarded, while the minimal G2 value in subtrees II , III are
equal to or exceed dn and the probability mass of all types they contain can be immediately accumulated.
Thus, in retrospect, we could have examined only the top three nodes and concluded with the exact answer.
We turn to formalize and extend these branch-and-bound intuitions.

4.2. Recursive domain partitioning

We define a partial assignment of a type of size n, denoted τn, as an assignment to a subset of the k

variables (n1, . . . , nk) that can be completed to a valid empirical type of size n. In the example above,
{n1 = 0} is a valid partial assignment. We write it succinctly as τn = (0,−,−), where “−” denotes a yet
unassigned type. Formally, the set of all valid (strictly) partial assignments is

T par
n =


(n1, n2, . . . , nk) | ∀i : ni ∈ {−, 0, 1, . . . , n}, ∃i : ni = ‘−’,

∑
ni∈N

ni ≤ n


 .

For a partial assignment τn, define I = {i|ni ∈ N} and I = {i|ni = ’−’} as the sets of assigned, and yet
unassigned categories, respectively, and let

n = n −
∑
i∈I

ni, q = 1 −
∑
i∈I

qi =
∑
i∈I

qi, qmin = min
i∈I

{qi}.

In our example, for τn = (0,−,−): I = {1}, I = {2, 3}, n = 2, q = .9, and qmin = .45.
Let [τn] be the set of all empirical types which can be completed from τn,

[τn] = {(n′
1, . . . , n

′
k) ∈ Tn | ∀i ∈ I (τn), n′

i = ni}.
We define the probability of τn, under the null hypothesis, as the sum of the probabilities of all types
in [τn],

Q(τn) =
∑

Tn∈[τn]
Q(Tn) = n! q

n

n !
∏
i∈I

q
ni
i

ni ! . (6)

The latter equality can be directly derived as a special case of (4), where each category i ∈ I is assigned
the count ni with probability qi , leaving a total sum of n to be assigned to an “elsewhere” bin, with
(cumulative) probability q. For τn = (0,−,−): [τn] = {(0, 0, 2), (0, 1, 1), (0, 2, 0)}, and Q(τn) = .81.

We define a recursion tree as a structured way to recursively enumerate the set of empirical types Tn:
Let σ be a permutation of size k. The tree that matches σ , denoted Aσ , is a tree where the root node
contains the empty assignment (−, . . . ,−). Extend from it all allowed assignments to category nσ(1). From
each of these, extend all allowed assignments to category nσ(2), etc. In Fig. 1 we have the recursion tree
for k = 3, n = 2 that matches the identity permutation. Using the appropriate permutation, we could have
defined a different recursion tree that first assigned n3, then n2, and finally n1. Note that any such tree has
a uniform depth k, and its set of leafs is exactly Tn. Moreover, the set of leafs in a subtree rooted at any
τn is exactly the set [τn], and for every inner node, the set [τn] is a disjoint union of the sets of types held
in its sons.

4.3. Bounding the statistic

Having defined how to recursively partition the summation domain, we move to bound the statistic on
subdomains, by defining

G2
max(τn) = max

Tn∈[τn]
G2(Tn), and

G2
min(τn) = min

Tn∈[τn]
G2(Tn).
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Lemma 1. For any τn ∈ T par
n ,

G2
max(τn) = 2

(∑
i∈I

ni log
ni

nqi
+ n log

n

nqmin

)
, and (7)

G2
min(τn) ≥ 2

(∑
i∈I

ni log
ni

nqi
+ n log

n

nq

)
. (8)

Proof. Let I denote the indices of the yet unassigned categories of τn. Consider the real extension
of G2 over the set of all nonnegative real types that sum to n. Differentiating G2 with respect to the
unassigned counts ni , we get that the Hessian of G2 is a diagonal matrix,

∀i, j ∈ I :
[

∂2G2

∂ni∂nj

]
= δij

2

ni

where δij is Kronecker’s delta function. Since ∀i : ni ≥ 0, the Hessian is positive definite, and we conclude
that G2 is strictly convex over its domain (Rockafellar, 1970, p. 27).

To find the minima of G2, we use Lagrange multipliers. We define the Lagrangian

J = 2
k∑

i=1

ni log
ni

nqi
− γ


∑

i∈I
ni − n


 .

By solving ∇J = 0, we obtain the solution ∀i ∈ I : ni = qi
q
n. Since G2 is strictly convex, this interior

point must be a global minimum (Rockafellar, 1970, p. 242). In general, this will not yield a valid integer
assignment, but it does bound G2

min from below, obtaining (8).
Since G2 is convex, it achieves its maximum value in extreme points of the allowable region (Rockafellar,

1970, p. 343), that is, on the vertices of the set of possible assignments. Recall that the vertices are the
assignments where all the remaining counts are assigned to one category. Now, let l ∈ I attain the least
yet unassigned probability, ql = qmin. Clearly,

∀i ∈ I : log
n

nql
≥ log

n

nqi
.

Thus, assigning all n remaining counts to nl maximizes G2 over [τn] and yields (7).

Note that G2
max was achieved by assigning all remaining counts, n, to the least probable remaining

category qmin, and that G2
min was bounded from below using an assignment which attains the minimal

possible value over the set of all not-negative real assignments that sum to n. In general it will involve
fractional counts, and the minimal allowed assignment in integers will be somewhat higher. To simplify
notations, we will next use (8) as the value of G2

min with the understanding that it can be replaced by a
tighter bound or indeed by the exact minimum, when either is easy to obtain.

4.4. The algorithm

We can now utilize the domain partitioning as the “branch” step of the algorithm alluded to in Section 4.1.
The easily computable bounds on the statistic in a given partition and the probability measure of the partition
comprise the “bound” step. The resulting algorithm is given in Fig. 2. Proof of correctness is immediate
and thus omitted.

This algorithm always returns the exact p-value. Furthermore, the faster it runs compared to the ex-
haustive test, the more superior it is in terms of arithmetic precision. This is true because adding a big
subtree as a single partial assignment is much more accurate than summing the diminishing probabilities
of each type within it. Note also that the p-value of a given test depends on the observed sample Sn only
through the magnitude of its statistic dn. The above algorithm can thus be easily altered to simultaneously
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FIG. 2. Efficient exact p-value computation for the likelihood ratio goodness-of-fit test. For ease of exposition, we
assume σ to be the identity permutation in the pseudo-code on the left and assign first n1, then n2, etc.

retrieve the p-values of several observed samples of the same size in a single traversal, by tracking in
each step only those values which are yet to be resolved. This is an easy starting point to critical value
computation and look-up table generation in a single traversal. Another simple alteration can yield mid-p
values, defined as half the probability of the observed result dn plus the probability of the more extreme
values. This value is sometimes used to eliminate problems arising from discreteness (Agresti, 1992).

4.5. A faster convex variant

Consider the basic step in Fig. 2, which iterates over all allowed values of ni , the assignment to the
next category. If the changes in G2

max and G2
min as a function of ni have simple mathematical forms, we

could handle groups of ni values without examining each separately.
Let τn be a partial type at some level i − 1, which needs to be descended (i.e., G2

min(τn) < dn ≤
G2

max(τn)). Denote, with a slight abuse of notation, n = n − ∑i−1
j=1 nj , q = ∑k

j=i+1 qj and qmin =
min{j=i+1,...,k} qj . We need to assign to the next category ni all possible values {0, 1, . . . , n} and examine
G2

max,G
2
min for each. Since both bounds (7), (8) have the same form as a function of ni , we can write

compactly

G2
bound(ni) = 2


 i−1∑

j=1

nj log
nj

nqj
+ ni log

ni

nqi
+ (n − ni) log

n − ni

nq)




where G2
bound = G2

max for q) = qmin and G2
bound = G2

min for q) = q. It is easy to verify that G2
bound

is strictly convex in ni when ni ∈ [0, n] and obtains its minimum at n) = qi
qi+q)

n (which is in general
fractional). Since by definition qmin ≤ q, the “swoosh”-like shape of the two bounds as a function of ni is
as shown in Fig. 3 (whereas the vertical ordering of points G2

max(ni = n) = G2
min(ni = n), G2

max(ni = 0),
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FIG. 3. Faster node computation for a convex statistic. We plot the values of G2
max and G2

min
versus all possible real

assignments to the next category ni . A threshold dn can intersect each of the two convex curves at most twice. The
four intersection values, denoted α, β, γ, δ, define five groups of integer ni values. All values in each group are equally
treated: values between {0, . . . , �α�} and {�δ�, . . . , n} are added to the accumulating p-value (pruning criterion 1),
values between {�β�, . . . , �γ �} are discarded (pruning criterion 2), and the rest need to be further descended (see Fig. 2).

and G2
min(ni = 0) is inverse to that of qi , qmin and q, respectively). Clearly, any threshold dn can intersect

either curve at most twice. The four (or less) intersection values, denoted α − δ in Fig. 3, define five (or
fewer) groups of ni values. All values in each group are equally treated. Based on our analysis of G2

bound ,
we can now perform four binary searches (Cormen et al., 1990), to elucidate �α�, �β�, �γ �, and �δ�, by
searching for dn with G2

max and G2
min over their respective {0, . . . , �n)�} and {�n)�+ 1, . . . , n}, which are

all sorted.
By identifying the groups of ni values that require equal treatment, we save the cost of evaluating the

bounds for each possible choice of ni . While the algorithm of Fig. 2 computed about 2n bounds, we now
perform only about 2 log n computations at every node.

One further improvement is made easy within the Convex procedure. Reconsider Fig. 3. If more than
half the types need to be added to the accumulating p-value mass, we can instead add the probability mass
of the father node and subtract those of the complementary set of types to achieve the same increment
using fewer mathematical operations.

To conclude, note that this variant performs exactly the same number of recursive calls as the algorithm
in Fig. 2. However, it reduces the amount of time spent in each invocation.

4.6. Computational complexity: An empirical study

We turn to evaluate the performance of the alternative algorithms described above in terms of runtime
and precision of computation (for the approximation methods). In general, the cost of computing p-values
depends on k, Q, n, and dn. Our pruning algorithms also depend on the assignment order σ . In this
section, we examine how each of these factors affects the cost of p-value computation. For this purpose,
we implemented five computational procedures.

• Direct: exact computation by full recursive enumeration of all types, as described in Section 3.1. This
procedure is equivalent to the ones implemented by SAS and StatXact.

• Pruned: exact computation by recursive enumeration with the two pruning criteria of Section 4.4.
• Convex: same as Pruned but exploits the convexity of the bounds on G2, as in Section 4.5.
• χ2: the chi-squared approximation discussed in Section 3.2.
• Simulation: the Monte Carlo sampler approximation from Section 3.3.
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FIG. 4. Evaluation of the performance of our algorithms compared to direct computation of p-values. All three
graphs plot the cost of p-value computation for Q = (.25, .25, .25, .25) with different choices of n. The x-axes denote
the number of samples, n. The y-axis denotes the computation cost, using three different performance measures:
(a) runtime, (b) number of recursive calls, and (c) number of additions. For each n, the choice of dn is set such that
the resulting p-value is 0.05. Polynomials of the lowest acceptable degree are fitted against our measurements, and
their degree is noted. Sublinear complexity in the sample space is evident even for this uniform Q which we later
show to be our worst case in terms of performance.

All procedures employ further practical speed-ups which are detailed in Appendix B. They have been
implemented in C and run on a Pentium III 733 MHZ Linux machine. The chi-squared distribution was
computed as by Press et al. (1993). Time measurements were performed with the clock() function (Harbison
and Steele, Jr., 1995). The code is available from the first author.

We start by comparing the performance of the first three, exact, algorithms on a simple problem. We
performed a series of tests with a growing sample size for a uniform Q over k = 4 categories. All tests are
set to result in the same p-value of 0.05, a widely used rejection boundary. Figure 4(a) shows the runtime
of the three algorithms as a function of the sample size n.

For fixed k and growing n, |Tn| � nk−1

(k−1)! . Indeed, this is made evident by fitting a cubic polynomial in
n to the runtime measurements of Direct. On the other hand, the runtimes of Convex match a quadratic
growth function.

To understand the source for this improvement, we considered two quantities that play a role in the
runtime of these procedures. The first is the number of recursive calls made by each procedure. As we
can see in Fig. 4(b), the number of recursive calls made by Convex and Pruned is again in perfect match



876 BEJERANO ET AL.

FIG. 5. The runtime cost (y-axis) of p-value computation as a function of the p-value of the threshold (x-axis).
These were computed for uniform Q over four categories and n = 1,000.

with a polynomial of a lower degree than that of Direct. This indicates that recursive exploration of large
subtress is avoided by the two pruning criteria.

The second quantity is the number of partial types added (and subtracted, in Convex) in accumulating the
exact p-value. We concentrate on these operations as they are costly computationally. In order to preserve
precision, our procedure maintains not probabilities but their logarithm. This makes multiplication fast,
but additions and subtractions of probabilities are slow since they require computing the exponents of
the arguments and then taking the logarithm of the result. In practice, one of the exponentiations can be
saved (see Appendix B). In Fig. 4(c), we plot the number of such operations made by the three different
procedures. Not only is the fitted degree of the polynomial for Convex lower than that of Direct, but we
also see here the reason of the runtime improvement from Pruned to Convex in Fig. 4(a).

Interestingly, when the evaluation is repeated for a uniform distribution over five categories (not shown),
the fitted degree of all polynomials increases by one, except the runtime and number of addition operations
for Convex, which appears to be already well fitted by quadratic polynomials. The theoretical dependence
between these sizes is under further investigation.

In the evaluation above, the p-value was kept fixed. Next, we examine the effect of the computed
p-value on the runtime. As we can see in Fig. 5, when using Direct, the actual value of the result has little
effect. As the p-value increases (for otherwise fixed conditions) there are more terms to sum. However,
since the drop in type probability is very drastic away from Q, even for low p-values, most types need
to be summed. As a result, the runtime of Direct in the chosen range is almost constant. For example,
in Fig. 5, already at p-value 10−3 we sum 99.67% of the types. In the Pruned and Convex algorithms,
the opposite happens—the bigger the p-value, the less work needs to be done—fewer recursive calls and
fewer arithmetic operations (not shown) result in faster runtime.

When considering a nonuniform null-hypothesis Q, the permutation order indeed affects computation
time. In Pruned, it has a significant, yet at times opposite, effect on the number of recursive calls and
arithmetic operations, and thus a mixed-effect on runtime. However, in Convex, for many examined sce-
narios, the change in both recursive calls and arithmetic operations grows and drops together, and the best
expansion order is always from smallest qi to the largest one. The slowest order is always the reverse, but
the net effect is usually small because of a small overall change in the number of log ops, as demonstrated
in Fig. 6. From here on, we use Convex with smallest to largest qi expansion.

Another factor that affects runtime is the entropy of Q. Recall that the entropy is defined as H(Q) =
−∑k

i=1 qi log qi , and it measures the “information content” of the distribution. We have drawn 2,000
distributions uniformly from the space of all four categories distributions. Using these, we demonstrate
in Fig. 7 the positive correlation between the entropy of Q and our runtime on it. Moreover, the sparser
(Section 3.2) the distribution is among equal entropy Q’s, the better the speed-up (e.g., compare points (c)
and (d) in the figure).



EFFICIENT EXACT p-VALUE COMPUTATION 877

FIG. 6. The cost (recursive calls, arithmetic operations, and runtime) of p-value computation for different expansion
orders in the Convex algorithm. All y-axis values increase monotonically, and each column is normalized by the result
of the rightmost (slowest) permutation. The leftmost, fastest, permutation is seen to expand n in an ascending qi order,
for Q = (.1, .2, .3, .4).

 

FIG. 7. The correlation between the entropy of Q (x-axis) and the runtime of computing p-values (y-axis). Each
point corresponds to a choice of Q. Four points are labeled: (a), (b) at the two extremes of distribution entropy values
and (c), (d) that have equal entropies and serve to demonstrate the speed-up effect caused by the sparseness of (d).
Extrapolating from Fig. 4, we note that even our slowest result, computing point (b) in 4 seconds using Convex, would
require about 55 hours using Direct.

The strong positive correlation between the sparseness of the underlying distribution and the performance
boost is compelling when considering that the χ2 approximation, which is computationally faster and
usually quite accurate, is problematic in this regime. One way of explaining it ties to our results above.
Typically, most types need to be summed (see discussion of Fig. 5). The value of G2 on all these exceeds
dn. By expanding lower qi values first, we add bigger pilog

pi

qi
terms first into the accumulating G2 value

and cross the dn threshold earlier on (consider Fig. 6). This speedup becomes all the more evident the
sparser Q is.

As the number of categories k in a test increases, so does the sample space, and with it, inevitably, our
runtime. Figure 8 demonstrates this effect by comparing for a growing k our best runtime for a sparse
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FIG. 8. Effect of the number of categories (x-axis) on the runtime of the algorithm (y-axis). The figure compares
the increase in runtime for Direct and Convex when computing a p-value of 0.05 with n = 100. Convex computation
time ranges between that for sparse Q’s (here n · qi = 1 for all i �= k) and for a uniform Q. For Direct all Q’s require
about the same computation time.

Q = ( 1
n
, . . . , 1

n
, n−k+1

n
), our worst when Q is uniform, and the runtime of Direct, which is about the same

for all Q’s.
As computational resources constantly improve and proliferate, researchers who may spend months

collecting data can now easily perform more computations in order to obtain satisfactory p-values. We
give three examples of cases where our method outperforms the standard approximations. In Fig. 9(a),
we plot the approximation error of χ2 for a sparse (bump) distribution. Convex computation for this case
is instantaneous. In Fig. 9(b), we plot the approximation error of the Monte Carlo sampler Simulation
on a sharper (dip) distribution, which is sparse in a single coordinate and uniform elsewhere. By running
Simulation three times for each value, we show that the variance of its estimate remains high, even when it
is allowed four times more runtime than the slowest Convex exact computation in this setting. In Fig. 9(c),
we exemplify the computation of extremely small p-values. As technology advances, several empirical
sciences, notably molecular biology and neuroscience, generate ever increasing amounts of raw data.
Therefore, one often scans through many different test combinations, searching for significant patterns in
such huge datasets. The use of Bonferroni’s or a similar correcting factor to compensate for the multiple
tests results in a search for very small p-values, of the magnitude of our example. While the runtime of the
exact Convex rises slowly with the decline of the p-value (observed already in Fig. 5), the Monte Carlo
Simulation must now sample roughly inversely proportional to the p-value it tries to measure. Our simple
sampler quickly becomes impractical in these settings, and as the required p-value decreases, so will the
more sophisticated sampling methods, mentioned in Section 3.3.

To summarize, we have shown that for a broad range of n with a modest k, Convex allows one to
perform the exact G2 test. Its computational complexity was shown to be sublinear even in the worst case
scenario of a uniform Q. It was also shown to be extremely fast and thus appealing for sparse distributions
where the χ2 approximation can be problematic. In parts of this region, it also outperforms Monte Carlo
simulations in the sense that when the latter are allotted a comparable amount of runtime, the resulting
approximation variance is high.

5. THE CRESSIE–READ STATISTICS

We now show that our algorithm for efficient exact p-value computation in fact maps to the whole
family of Cressie–Read statistics. The Cressie–Read (or power-divergence) goodness of fit statistics are a
single parameter family of discrepancy statistics. It is defined as follows.

Dλ(Tn) = 2nIλ(Pn||Q) ∀λ ∈ R (9)
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FIG. 9. Examples where common approximations are inferior to our method. (a) The inadequacy of the χ2 ap-
proximation for a sparse “dip” distribution Q = (.01, .33, .33, .33) with n = 100. We plot the approximation error
(y-axis), which is the difference between the χ2 value and the exact value, against various exact p-values (x-axis).
Convex computation here is instantaneous for all p-values. (b) An example where the Monte Carlo sampler Simulation
performs poorly compared to Convex on a sparse “dip” distribution Q = (0.0001, 0.3333, 0.3333, 0.3333) and n =
10,000. Using the same axes, we plot the Simulation approximation error when each run was allotted four times the
runtime of the slowest Convex computation in this graph. For each exact value, we run Simulation three times to
demonstrate the large estimation variance in the given time. (c) For Q = (0.001, 0.333, 0.333, 0.333), we plot the
exact p-value of the types (i, 1000−i

3 , 1000−i
3 , 1000−i

3 ) for i = 5, . . . , 15, right to left (x-axis). For each of these,
we plot the actual runtime of Convex, and an extrapolation of the amount of time it would take Simulation to draw
p-value−1 samples in order to achieve an acceptable approximate value (y-axis).

where

Iλ(Pn||Q) =




1

λ(λ + 1)

k∑
i=1

pi

[(
pi

qi

)λ

− 1

]
∀λ �= 0,−1

DKL(Pn||Q) = lim
λ→0

Iλ(Pn||Q) λ = 0

DKL(Q||Pn) = lim
λ→−1

Iλ(Pn||Q) λ = −1

If Pn is not strictly positive with respect to Q (∃i : qi > pi = 0) for λ ≤ −1, or vice versa for λ > −1,
set Iλ = ∞. For all choices of λ, Iλ(P ||Q) ≥ 0, with equality iff P = Q. All Dλ’s are asymptoti-
cally distributed χ2

k−1 under H0 with the usual regularity assumptions, allowing for the standard p-value
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Table 1. Cressie–Read Instances
Corresponding to Well-Known Statistics

Value Statistic Symbol

λ = 1 Pearson X2

λ = 0 Log likelihood ratio G2

λ = − 1
2 Freeman–Tukey T 2

λ = −1 Modified G2 GM2

λ = −2 Neyman modified X2 NM2

approximation (see Section 3.2). Moreover, this parametric family includes five well-known statistics, listed
in Table 1. By extending these five to a continuous family, one can search for new statistics that com-
bine desired features from the known ones. One can also better match different statistics from this wide
spectrum to different scenarios. For details and proofs, see Read and Cressie (1988).

In order to map our pruning algorithm to this parametric family, we define as in Section 4.3

Dλ
max(τn) = max

Tn∈[τn]
Dλ(Tn), and

Dλ
min(τn) = min

Tn∈[τn]
Dλ(Tn).

It is our intention to use the sample space decomposition of Section 4.4, replacing G2
max and G2

min (which
are specific to λ = 0) with the above two functions.

Lemma 2. For λ > −1, let Q be some null hypothesis, and let τn ∈ T par
n be a valid partial assignment.

Denote by l = arg mini∈I qi . Then,

a. Dλ
max(τn) is obtained by assigning nl = n and zero elsewhere, and Dλ

min(τn) is bounded from below
by the assignment ∀i ∈ I : ni = qi

q
n.

b. Dλ
max and Dλ

min are both convex as functions of the next assignment variable ni .
c. Cases where λ ≤ −1 are also computable efficiently using similar arguments.

The proof extends the results of the previous section and is deferred to Appendix A. We have thus
shown that all Cressie–Read statistics yield to the same efficient computational procedure as G2 does,
including the further convexity speedup of Section 4.5. Indeed, we have implemented our method for
the Cressie–Read statistics and repeated the experiments of Section 4.6 using various λ > −1, including
Pearson’s X2 and λ = 2

3 , which is advocated in Read and Cressie (1988). The behavior of the algorithm
and magnitude of speed-up carried over in all cases (not shown).

6. EXTENSION TO r × c CONTINGENCY TABLES

Clearly, the branch and bound approach employed in the previous sections is quite general. It requires
a recursive partitioning scheme of the sample space, coupled with the ability to efficiently compute the
probability of a partial type, as well as tight lower and upper bounds on the value of the chosen statistic.
To demonstrate the possible range of applications, we discuss another case of wide interest in statistics.
Exact inference in two-way contingency tables has been researched extensively (e.g., reviewed by Agresti
[1992] and Mehta and Patel [1997]). We briefly define the mathematical setting. The sample contains n

observations of a pair of categorical variables, xm ∈ {1, . . . , r} × {1, . . . , c}. The type Tn = (n11, . . . , nrc)

holds the number of times each pair (i, j) appeared in the sample. Define the row and column margins of
Tn as ri = ∑

j nij and cj = ∑
i nij , respectively. Devise an independent joint probability distribution of

the two variables from their margins Q = ( r1c1
n2 , . . . , rr cc

n2 ). The null hypothesis states that the sample was

drawn i.i.d. according to Q. We return to the G2 discrepancy measure. In the exact conditional approach,
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FIG. 10. Assignment order for a two-way contingency table recursion tree, column-wise starting top-right. The figure
depicts a partial assignment τi0j0 up to some ni0j0 , which respects the predetermined row and column margins. The
division of the yet unassigned variables into three regions is used in the proof of Lemma 3.

the sample space with respect to G2(Tn) is the set of all possible (nonnegative integer) tables with the
same row and column margins. The merits of this space are discussed by Agresti (1992) and by Mehta
and Patel (1997).

The prominent approach to exact p-value computation in this scenario stems from the seminal work
of Mehta and Patel (1983). We shall first define a depth-first tree approach to the problem following
the guidelines and techniques developed herein. Then we will equate it with existing network variants.
We begin by setting the order of assignment to n1 c, n2 c, . . . , nr−1 c, n1 c−1, n2 c−1, . . . , nr−1 2, depicted in
Fig. 10. Assignments to the last row and first column are determined by the margins, as we go along.
Contrary to the network approach, we show that we are able to compute all three quantities of interest
(probability and both bounds on the statistic) for an allowed partial assignment up to any ni0j0 .

Lemma 3. Denote the partial assignment above as τi0j0 , then

a. Q(τi0j0) is exactly computable as a simple product of hypergeometric probabilities;
b. G2

min(τi0j0) is bounded by the minimal attainable value over all nonnegative real assignments to the
remaining variables, and the latter is easily computable in analytical form;

c. G2
max(τi0j0) is bounded by the two maximal attainable values in integer assignments, respecting only

row or column margins alternatively (these two are easily computable in analytical form); and
d. both bounds allow for the efficient binary search approach of Section 4.5, as a function of the last

assignment variable ni0j0 .

The proof is given in Appendix A. We turn to compare our solution with the network solution denoted
“M-P” (Mehta and Patel, 1983, 1986), presumably applied in StatXact (StatXact 5, 2001), and a network
variant “V-T” (Valz and Thompson, 1994), reportedly used by SAS (SAS 8, 1999). Both consider only
unassigned regions of rectangular shapes (for reasons discussed below). For such cases, M-P add an extra
row to complete all column sums to c), the maximal one, and find the exact min and max for this table.
These, divided by

∏
j

(
c)
cj

)
, bound the original min and max. V-T, on the other hand, use the technique we

employ in (c) above to bound both min and max, claiming these appear to perform overall comparably to
the M-P bounds. Note that both approaches, contrary to ours, cannot be applied to one-way tables.

The bound we obtain on min should be superior to both methods, owing to the well behaved nature of
the isotropic real function we globally minimize. Computing the max is a convex maximization problem.
This is generally hard since the number of candidate local maxima (polytope edges) grows exponentially
in the sample size. Techniques in the spirit of M-P certainly exist (e.g., surveyed by Benson [1995]), but
based on our empirical practice, this bound is far less put to use than its counterpart, and thus, as V-T
before us, we opt for a bound which is easier to compute.
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For unfolding the sample space, the tree and network approaches define opposite views. The tree approach
relies on the simplicity of the bounds it computes while allowing itself to solve the same problems many
times during the computation. At the other extreme, the network algorithm invests considerably in more
complicated topology and computationally intensive data structures (discussed by Valz and Thompson
[1994]) to solve each problem only once and then add the solution to all paths arriving at that network
node (see Mehta and Patel [1986]). For the M-P bounds, it was claimed by Mehta and Patel (1986) that the
network solution is more efficient. But note that in that scenario, each max bound required solving several
systems of equations. Utilizing the sharper lower bound we put forth, the computationally cheaper upper
bound adapted from V-T, and the convexity of these two allowing further speed-up of a single variable
assignment (Section 4.5), the issue merits a revised empirical review, to be presented elsewhere.

7. DISCUSSION

In this work, we present a general framework for efficient computation of exact p-values and similar
conditional sums, using a branch-and-bound strategy. We explicitly define the quantities that require swift
computation in order to make the approach viable. A successful detailed application is carried for frequency
tables, and an outline is provided for novel directions in r × c contingency tables. By extending the sam-
ple space to allow real assignments, we utilize the convexity of many test statistics to obtain tight, easy to
compute, lower bounds, as well as further speed-up per each node computation. Assignment order is also ex-
plored to improve efficiency. We show that the resulting method significantly extends the practicable range of
the exact test for small samples, sparse null hypotheses, and smallp-values, all quite common in bioinformatics.

Indeed, several already established bioinformatic tools may benefit from incorporating our method.
In Consensus (Hertz and Stormo, 1999), significant patterns are sought in aligned biosequences. The
authors define a likelihood ratio statistic and measure the departure of an alignment from a background
distribution. Acknowledging that χ2 approximation is inaccurate in the per column test, the authors invoke
a large deviation technique to compute an approximate p-value, which can often be replaced by our exact
computation. When evaluating the matches of a profile to a given protein sequence, the Blocks+ curators
(Henikoff et al., 1999) score the given profile against many proteins in order to set a significance threshold.
EMATRIX (Wu et al., 2000), on the other hand, recursively computes a quantile function, using calculations
which in retrospect are similar to ours, to achieve the same goal more rapidly. It would be interesting to
apply our method to this problem and compare. The protein profile aligner IMPALA (Schaffer et al., 1999)
uses a scaled asymptotic approximation to fit an extreme value distribution to its scores. Recently, Yona
and Levitt (2002) used a likelihood ratio statistic to compare column compositions between two profiles in
order to optimally align them. The significance of each score was obtained indirectly, and yet the method
was shown to surpass IMPALA, especially for remote “twilight zone” homologies. Our method may be
applied here to find the exact optimal match. Bulyk et al. (2002) have recently demonstrated, through
mutation and gene expression measurements, that nucleotides in binding sites can be strongly correlated.
This phenomena can be measured in sequence alignments, using the contingency table tests discussed
in the previous section. Finally, Carugo and Pongor (2002) define a simple numerical measure of fold
similarity between two protein structures in order to allow the scanning of large databases. They compute
a histogram of distances between pairs of Cα atoms for each protein and compare the two histograms in
a hypothesis test that asks whether the two sample come from the same multinomial distribution or not.
This question is closely related to the one discussed in the previous chapter. In order to use the chi squared
approximation, the authors combine small categories. Our method can allow the computation of the exact
p-value of the unaltered sample.

The approach we describe can also be extended in several promising directions. First, in this paper we
focused on exact p-value computation. In practice, we often require only a certain amount of accuracy
or wish to bound the p-value below a required threshold. It is fairly straightforward to perform further
pruning in these cases that allows to compute approximate p-values even faster, while maintaining absolute
control over the resulting error bar. Apart from giving us a handle on the trade-off between accuracy and
runtime, this approach may also pave the way for handling infinite and continuous sample spaces.

Second, we have focused on a particular traversal scheme over types. This enumeration is easy to define
and program, but is not necessarily optimized for the task. Network algorithms invest large efforts to reduce
all partial types over the same set of variables into equivalence classes with respect to the yet unassigned
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variables. Combined approaches, as well as data-dependent traversal schemes (such as our permuted order
of assignment) may further improve computation time to yield a truely competitive evaluation method in
a broader spectrum of realistic problems. For example, one can now try to combine the network topology
with our bounds for frequency tables, grouping together all partial types at some level with equal remaining
counts to assign. In general, one may also try to first traverse partial assignments that correspond more
naturally to the structure of the distribution over types. Such a traversal might be able to exploit the fact
that this distribution decays exponentially fast as a function of the distance from the null distribution.

Finally, it is our belief that this method can be further exploited in many other statistical computations.
Thus, one may apply the real extension approach to Fisher’s exact test and other convex statistics. Where
analytical solutions cannot be found, one can efficiently use the well established iterative proportional
fitting procedure (Darroch and Ratcliff, 1972) or conjugate gradient methods (e.g., Press et al., 1993).
Kolmogorov–Smirnov type tests for ordered categorical data also appear to be prone to this approach.
Such may also be the case for the wide and computationally intensive areas of bootstrapping, Markov
chain Monte Carlo methods, and various permutation tests.

APPENDICES

Appendix A. Proofs

Proof of Lemma 2. Lemma 1 has proven (a) for λ = 0, since G2 ≡ Dλ=0. Similarly, we extend our
results to all λ > −1. Again, let τn ∈ T par

n , and let I denote the indices of its yet unassigned categories.
Consider the extension of Dλ over the set of all nonnegative real types that sum to n. By differentiating
Dλ, we obtain

∀i, j ∈ I :
[

∂2Dλ

∂ni∂nj

]
= δij

2niλ−1

(nqi)λ

to conclude, as in Lemma 1, that Dλ is convex for all λ > −1.
Next, we add a Lagrange multiplier, J = Dλ − γ

(∑
i∈I ni − n

)
, and solve ∇J = 0. For all λ’s, we

obtain the same solution ∀i ∈ I : ni = qi
q
n, which by convexity obtains the global real minimum and

serves to bound from below the minimum over integer assignments, as in Lemma 1.
To find the maximum of Dλ, we again note that due to the convexity, it must be in one of the extreme

points. Let l ∈ I attain the least yet unassigned probability, ql = qmin. It is easy to check that if λ > −1,
then

∀i ∈ I : 2

λ(λ + 1)
n

[(
n

nql

)λ

− 1

]
≥ 2

λ(λ + 1)
n

[(
n

nqi

)λ

− 1

]
.

To see this, note that if λ > 0, the term 2
λ(λ+1) is positive, and ql and qi appear in the denominator, and

since ql ≤ qi , we get the desired inequality. When 0 > λ > −1, 2
λ(λ+1) is negative, and ql and qi appear

in the numerator, and again since ql ≤ qi , we get the desired inequality.
To prove (b), similarly to Section 4.5, which has proven λ = 0, we set I = {1, . . . , i − 1}, n =

n −∑i−1
j=1 nj , q = ∑k

j=i+1 qj , and qmin = min{j=i+1,...,k} qj . The next category assignment variable ni

ranges between {0, 1, . . . , n}. For λ > 0 and −1 < λ < 0, Dλ
max and Dλ

min have the same form,

Dλ
bound(ni) = 2

λ(λ + 1)


 i∑

j=1

nj

((
nj

nqj

)λ

− 1

)
+ (n − ni)

((
n − ni

nq)

)λ

− 1

)
where q) denotes qmin for Dλ

max , and q for Dλ
min. Simple derivation shows this to be convex over [0, n]

for all these λ’s, with a minimum at n) = qi
qi+q)

n.
For (c), when λ ≤ −1, the definition of the exact test is more subtle, and likewise its handling. The

test is clearly interesting only for samples which are strictly positive (∀i : ni > 0 ensures Dλ < ∞).
However, samples with zero counts do have a positive probability of occurrence and are by definition
always summed into the exact p-value. This property is problematic for our algorithm as nearly all Dλ

max’s
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turn to infinity, disabling one side of our pruning (albeit, the less effective one). We outline one natural
solution to this problem. Split the sample space in two: T +

n holding all strictly positive types, and T 0
n

with the rest. Precompute the probability measure of T 0
n using an inclusion–exclusion summation of all

partial types with exactly 1, 2, . . . , k − 1 zero entries. Next, restrict [τn], and Dλ
max , Dλ

min accordingly, to
range only over T +

n . For |I | > n, [τn] is now empty and can be disregarded. For |I | ≤ n, one can show
that Dλ

min is obtained as in (a) above. The assignment nl = n − |I | + 1, and 1’s elsewhere can be shown
to obtain Dλ

max . One can also show, as in (b), that Dλ
max , Dλ

min are both convex in the next assignment
variable ni over T +

n . We thus combine the result of our pruning algorithm on T +
n with the measure of T 0

n

to obtain the exact p-value. Note that |T 0
n | � 2k and thus is typically very small compared to |T +

n |, which
we prune. Moreover, its measure is independent of a particular Tn and can thus be reused for any sample
in the same setting.

Proof of Lemma 3. For a partial assignment τi0j0 , define the yet unassigned partial column and rows
sums cj0 = cj0 − ∑

i≤i0
nij0 , and similarly for {ri}ri=1. Each of these is uniquely determined by the

total row and sum margins and the assigned variables. Through these, we express nα = ∑
i≤i0

ri and
nβ = ∑

i>i0
ri − cj0 , depicted in Fig. 10.

(a) Denote by T the reference set of all tables respecting the given row and column margins. Using the
chain rule we obtain

Q(τi0j0) ≡ Q(n1c, n2c, . . . , ni0j0 |T ) = Q(n1c|T )Q(n2c|T , n1c) . . .Q(ni0j0 |T , n1c, n2c, . . . , ni0−1j0)

where every term on the right can be expressed as a hypergeometric probability. E.g.,

Q(ni0j0 |T , n1c, . . . , ni0−1j0) =

(
ni0j0 + cj0

ni0j0

)(
ri0 + nβ

ri0

)
(
ni0j0 + ri0 + cj0 + nβ

ni0j0 + ri0

) .

(b) Denote by I all unassigned index-pairs for τi0j0 . Simplify G2 into

G2 = 2


n log n +

∑
ij

nij log nij −
∑
i

ri log ri −
∑
j

cj log cj


 .

As a function of the unassigned variables, {nij }ij∈I , G2 is clearly convex, as it is a sum of nij log nij
terms plus a constant part. Add r Lagrange multipliers for row sums and j0 column multipliers. Derivation
with respect to the unassigned variables yields ∀ij ∈ I , nij = AiBj , for some Ai’s and Bj ’s. Consider the
following assignment.

∀i > i0 nij0 = ricj0

cj0 + nβ
∀ij ∈ α nij = ricj

nα + nβ
∀ij ∈ β nij =

(
nβ

cj0 +nβ

)
ricj

nα + nβ
(10)

It is easy to verify that this assignment respects all marginal sums and can be decomposed as required.
Thus, it is one of the local minima. But since our function itself is convex, this must be the global minimum
over real assignments.

(c) When one retains only row margins, for example, the function we wish to maximize decomposes into
a sum of i = 1, . . . , r functions, of the same form: maximize

∑
j nij log nij constrained by

∑
j nij = ri .

Again, the problem is convex, and its maximum is obtained at an extreme point of the allowed region,
where one of the variables is assigned all remaining ri counts. Thus, the maximum respecting only row
margins is

∑
i ri log ri , and analogously for the maximum respecting only column margins. These two

bound the maximum we seek from above.
(d) The minimal bound we derive above is a sum of nij log nij terms for all variables in (10). When

ni0j0 increases by some 4n, it affects four quantities in those equations: nβ increases and cj0 , ri0 , and
nα decrease by the same amount. Note that the sums cj0 + nβ and nα + nβ remain fixed, as the relative
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changes cancel out. Using these observations, we see that all terms boil down to expressions of the form
k1(k2 ± ni0j0) log k1(k2 ± ni0j0), each of which is clearly convex, and thus so is their sum.

At the other end, a change in ni0j0 affects only a single variable in each of the two upper bounds we
obtained above, ri0 in the row constrained and cj0 in the column constrained. In both cases, the solution
takes the form of k1 + (k2 −ni0j0) log (k2 − ni0j0), for some constants k1, k2. Thus, each bound by itself is
convex. For each, we can efficiently compute the intersections with the threshold of interest and combine
the results to obtain up to two pairs of β, γ points and two distinct “discard” regions flanked by three
“descend” regions (see Fig. 3).

Appendix B. Notes for the practitioner

Several computational tips which speed-up runtime beyond the didactic code of Fig. 2 follow.

• For reasons of machine accuracy, we did not sum Q(τn) terms (which can be very small) to obtain the
exact p-value, but rather collected the logs of these quantities. For this purpose, a useful transformation
from x̃ = log x, ỹ = log y to z̃ = log (x + y) is

z̃ = x̃ + log (1 + exp (ỹ − x̃))

which saves an expensive exponentiation operation, as well as being more accurate since by assuring
that x̃ ≥ ỹ the log operation is bounded between zero and log 2.

• Since we will be repeatedly evaluating logQ(τn), G2
max(τn), and G2

min(τn), we have prepared in advance
look-up tables for {log q1, . . . , log qk}, {log 1, . . . , log n}, {log 1!, . . . , log n!}, {log q1, . . . , log qk}, and
{min1, . . . ,mink}. The latter two tables are prepared in correspondence with the assignment order σ and
are used as q and the index of qmin, respectively.

• Common partial sums in the above equations have been passed down the recursion tree to save re-
computing them over and over.

• The log and exp operations in the above equation can, in fact, be replaced by a look-up table of
log (1 + e−z) values for z ≥ 0. Linear interpolation between each two sampled values yields a very
good fit (similarly for subtraction when z ≥ 0.02), with loss of accuracy not far from machine precision.
In Section 4.6, this would entail a further three-fold reduction over reported results.

• Finally, on multi-CPU or networked machines, the algorithm is trivially parallelizable. New recursive
calls can be distributed between all currently free CPUs, and the (log) probability mass accumulates
in one shared variable. Since each call is independent of the others, speed-up gain is expected to be
maximal.
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