Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 03-018

Approximate Multiple Protein Structure Alignment Using the
Sum-of-Pairs Distance

Jieping Ye and Ravi Janardan

March 31, 2003

Approximate multiple protein structure alignment using the
Sum-of-Pairs distance

Jieping Ye* Ravi Janardan*

Abstract

An algorithm is presented to compute a multiple structure alignment for a set of proteins
and to generate a consensus (pseudo) protein for the set. The algorithm is a heuristic in that
it computes an approximation to the optimal multiple structure alignment that minimizes the
sum of the pairwise distances between the protein structures. The algorithm chooses an input
protein as the initial consensus and computes a correspondence between the protein structures
(which are represented as sets of unit vectors) using an approach analogous to the center-star
method for multiple sequence alignment. From this correspondence, a set of rotation matrices
(optimal for the given correspondence) is derived to align the structures and derive the new
consensus. The process is iterated until the sum of pairwise distances converges. The compu-
tation of the optimal rotations is itself an iterative process that both makes use of the current
consensus and generates simultaneously a new one. This approach is based on an interesting
result that allows the sum of all pairwise distances to be represented compactly as distances to
the consensus. Experimental results on several protein families are presented, showing that the
algorithm converges quite rapidly.

Keywords: structure alignment, center-star method, dynamic programming, consensus pro-
tein, correspondence, rotation matrix, Frobenius norm, singular value decomposition.

1 Introduction

Proteins are macromolecules that regulate all biological processes in a cellular organism [2]. The
human body has about one hundred thousand different proteins that control functions as diverse
as oxygen transport, blood clotting, tissue growth, immune system response, inter-cell signal trans-
mission, and the catalysis of enzymatic reactions.

Proteins are synthesized within the cell and immediately after its creation each protein folds
spontaneously into a three-dimensional (3D) configuration that is determined uniquely by its con-
stituent amino acid sequence [20]. It is this 3D structure that ultimately determines the function
of a protein be it the catalysis of a reaction or the growth of muscle tissue or arming the body’s
immune system. Indeed, it is the case that where proteins are concerned “function follows form”
[19].

Proteins have evolved over time through the modification and re-use of certain substructures
that have proven successful [11]. It is well known [13] that during this process, structure is bet-
ter conserved than sequence, i.e., proteins that are related through evolution tend to have similar

*Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
{jieping, janardan}@cs.umn.edu . This effort is sponsored, in part, by the Army High Performance Computing
Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative agree-
ment number DAAD19-01-2-0014, the content of which does not necessarily reflect the position or the policy of the
government, and no official endorsement should be inferred.

structures even though their sequences may be quite different. Thus, the ability to identify com-
mon substructures in a set of proteins could yield valuable clues to their evolutionary history and
function. This motivates the multiple structure alignment problem that we consider in this paper:
Informally, given a collection of protein structures, we seek to align them in space, via rigid motions,
such that large matching substructures are revealed. (A formal definition is given in Section 3.)
A second goal is to extract from this alignment a consensus structure that can serve as a proxy
for the whole set. This consensus may not be a real protein, but it should capture the essence of
the set so that it can, for instance, serve as a template to perform fast searches through protein
structure databases, such as the PDB [1] to identify similar proteins.

In this paper, we present an algorithm to compute a multiple structure alignment for a set of
proteins, along with their consensus structure. Qur algorithm represents the input proteins and the
consensus as sets of unit vectors and it computes an approximation to the optimal multiple structure
alignment, i.e., the one that minimizes the so-called sum-of-pairs (SP) distance. The SP distance
of a multiple structure alignment is the sum of the distances between the vector representations of
each pair of proteins in the alignment. (This is similar to the notion of SP score used for multiple
sequence alignment [11], and is defined formally in Section 3.)

Our algorithm begins by computing a correspondence between the unit vectors in the different
protein structures, by choosing one of the proteins as the initial consensus and applying an algorithm
that is analogous to the center-star method for multiple sequence alignment [11]. It then derives a
set of rotation matrices that are optimal for the computed correspondence and uses these to align the
structures in space via rigid motions and obtain the new consensus. The process is repeated until the
change in SP distance is less than a prescribed threshold. The computation of the optimal rotations
is itself an iterative process that both uses the current consensus and generates simultaneously a
new one. This approach is based on an interesting result that we establish, which allows the sum
of all pairwise distances to be represented succinctly as distances to the consensus. This allows
us to use the singular value decomposition method [10] to compute the rotation matrices. Our
experiments on several protein families show that the algorithm converges quite rapidly.

Some prior work on multiple structure alignment includes [4, 8, 9, 14, 17, 18]. In [17, 18], algo-
rithms are given for pairwise structure alignment using a 2-level dynamic programming approach
and the multiple alignment is obtained by aligning the pairs according to their pairwise similar-
ity scores. Leibowitz et.al. [14] use the technique of geometric hashing to compute a multiple
alignment and core; unlike most other algorithms, theirs does not require an ordered sequence of
atoms along the protein backbone. Gerstein and Levitt [8, 9] use an iterative dynamic program-
ming method to compute a multiple structure alignment. In [7], Gerstein and Altman show how
to compute a consensus from a given multiple sequence alignment. Recently, Chew and Kedem [4]
have shown how to compute both a multiple structure alignment and a consensus structure. They
represent proteins as vector sets (in 4D to facilitate the use of special gap vectors), compute an
initial consensus, and use iterative dynamic programming to compute the alignment and refine it
using different heuristics. In this respect our method is somewhat similar, but, as we will see, it
starts with a completely different perspective in terms of the computation of the correspondence
and the refinement. More importantly, our method formulates the multiple alignment problem in
a compact matrix form, which facilitates efficient computation.

The multiple structure alignment problem is much harder than its sequence counterpart since
it requires not only computing a correspondence between the structures (often done via sequence
alignment) but also computing the rigid motions that bring corresponding elements into alignment.
The sequence version has been shown to be NP-hand [23]. It can be solved exactly using an

expensive dynamic programming-based method [16, 11]. Algorithms to approximate it include the
center-star method [11], the progressive method [11, 6], and a method based on Hidden Markov
Models [5].

An important special case of multiple structure alignment is pairwise structure alignment, which
involves aligning only two protein structures. Indeed, this problem arises in this paper when
computing of correspondences between different proteins. We use here a variant of an algorithm
that we have developed recently for pairwise structure alignment [24]. This algorithm uses a
representation of the protein backbones that is independent of the relative orientations of the two
proteins and applies dynamic programming to obtain an initial alignment, which is further refined
iteratively. Some other algorithms for pairwise alignment include LOCK [22], DALI [12], CE [21],
and a method in [3].

The rest of the paper is organized as follows. In Section 2 we introduce some terminology and
discuss the center-star method and a variant of this that we will use. Section 3 defines the multiple
structure alignment problem formally and establishes a key result on the SP distance function. We
give an overview of our algorithm in Section 4 and describe it in detail in Section 5. We discuss
experimental results in Section 6 and conclude in Section 7.

2 Preliminaries

2.1 Representation of protein structures

Let A be a protein of length n consisting of a chain of C, atoms, numbered 1,2,---,n, along
the backbone in IR3. (As is customary [12, 22], we consider only the backbone, not the amino
acid residues themselves.) Following [3, 4], we define a sequence of vectors a;, 1 <i <n—1on
the backbone, where a; is the vector from the ith C, atom to the (i + 1)th C, atom. Each a;
has the same length as the corresponding (virtual) bond; this is about 3.8 Angstroms. Hence we
can simplify the representation of the backbone and view it as a sequence of unit vectors, u;, for
i=1,---,n— 1, where u; has the same direction as a;. As in [3, 4], we assume that u; has been
translated so that its tail is at the origin. Let B be another protein of length n, whose backbone
is represented by the unit vectors vi,---,v,. Suppose that there is a 1-1 correspondence between
u; and v;, 1 <i <n. Then the (squared) distance between A and B is defined as

D(A,B) = Y Ju ~vil} (1)

We will use this distance measure to define a scoring scheme for multiple structure alignment in
Section 3.

2.2 Review of center-star method for multiple sequence alignment

The center-star method is an efficient approximation algorithm for multiple sequence alignment
[11]. Given a set S of K proteins, a center protein is determined, which minimizes the sum of the
distances to all the other proteins in the given data set. Specifically, let d(i,j) be the minimum
pairwise edit distance between the ith and jth proteins in the set S. Then the center protein is
one that minimizes the sum of the edit distances to all the other proteins. That is, if

K

E* = i d(k,i
arglg}clsnkiﬂ (k, 1),

then the k*th protein is a center protein.

The center protein is then aligned iteratively with each of the other K — 1 proteins in the
data set, using an optimum pairwise sequence alignment algorithm. All of these K — 1 pairwise
alignments are then combined iteratively to get a multiple alignment.

The following simple example shows the main idea of the center-star method. S consists of the
following sequences:

P = BBCA
P, = CBBA
P, = BCCA

If we assume zero distance for an exact match and 1 for a mismatch (including alignment of a space
with a non-space), then an optimal pairwise alignment of each pair is as follows

P: -~ BBCA P:BBCA P:CBBA @
P: C BB - A" Pa: BCC A*™ p. B C C A
Thus,
d(1,2) = 2,d(1,3) = 1,d(2,3) = 3.

Thus, P; is the center protein. A multiple sequence alignment is now computed as follows
(details can be found in [11, pages 347-350]): First an optimal pairwise alignment of P; and P»
is computed. This gives “expanded versions”, P; and P,, of P; and P,, respectively, that include
spaces. Then an optimal pairwise alignment of P; and P is computed. Any new spaces introduced
in P, are also added into P,. For our example, this gives the following multiple sequence alignment
(here no new spaces are introduced in P; = —BBC A when it is aligned with P; = BCCA.)

- B B C A
C BB - A (3)
- B C C A

Note that since the distance between opposing spaces is zero, the induced pairwise alignments
between the center protein P; and the proteins P and Ps are consistent with the original pairwise
alignments, and have the same cost as the corresponding optimal pairwise alignments.

The quality of a multiple sequence alignment is measured usually by summing the edit distances
between each pair of proteins, scoring 0 for a match (including matching of two spaces) and 1 for
a mismatch (including matching of a space to a non-space). This is called the Sum-of-Pairs (SP)
score [11]. The SP score of the multiple alignment in Equation (3) is 6.

2.3 Center-star-like method

In our algorithm, we need to compute a correspondence between the protein structures prior to
applying rotations. For this we choose an initial consensus protein, apply pairwise alignment [24]
between this and each of the other proteins, and then combine these using a method similar to the
center-star method. In what follows, we call this a center-star-like method. As we will see, a key
difference between the two is that in the center-star-like method we will be aligning not alphabet
characters representing amino acids but unit vectors derived from the protein backbones.

A second difference is the choice of the initial consensus protein. For multiple sequence align-
ment, the alignment produced is quite sensitive to the choice of the initial consensus and the
resulting pairwise alignments. It turns out [11] that the center protein is a good choice, but this
requires computing all pairwise alignments, which is expensive. In multiple structure alignment,
the correspondence computed using the center-star-like method is but a first step; it is followed by
an optimization step to compute the optimal rotation matrices. It turns out that the final multiple
structure alignment is not that sensitive to the initial consensus protein chosen. This is also borne
out by our experiments in Section 6, where we compare several methods, for making the initial
choice. We will see that a simple, computationally inexpensive choice does just as well as more
expensive methods.

3 Multiple structure alignment

Let {P,}X | be the K proteins in the given data set, each represented by a sequence of unit vectors
{u; }f;'l, fori=1,---, K as described in section 2.1. Here L; is the number of unit vectors in the
ith protein P;.

A correspondence C of the K proteins can be represented as a matrix H = (h;;)i1<i<k,1<j<r. for
some L > maxi<i<kx{Li}, where h;; is either a unit vector belonging to the ith protein or a special
vector called a gap vector, which represents a space.! Omitting the spaces, the ith row reproduces
the sequence of unit vectors of the ith protein.

To distinguish between regular unit vectors obtained from a protein and the gap vector, we
extend the unit vectors in the original 3D space to four dimensions by introducing a special gap
direction, as in [4]. As a result, gap vectors are represented as (0,0,0,1) and regular unit vectors
are extended by introducing zeros in the fourth dimension. For simplicity, we assume the terms h;;
in the matrix H have already been extended to IR?. Distances are based on the squared distance
between the vectors in IR*. Hence the distance (gap penalty) between a regular vector (with 0 in
its fourth dimension) and a gap is 2, since

@,9,2,0) = (0,0,0,1) [P = || (2,9, 2) [P+ 112 =1+ 1 =2,

if (z,y, 2) is a unit vector in 3D.

A multiple structure alignment, M, of K proteins based on the correspondence C can be repre-
sented as another matrix G = (g,-j)lgig K,1<j<L, where the set of unit vectors in the ith row is the
rotation of the set of unit vectors in the ith row of the matrix H. More specifically, we combine all
of the unit vectors {h;; }JLZI from the ith protein, i.e. the ith row of the matrix H, into a column
vector H; as follows (G; is defined similarly from the matrix G):

h;; gi1
H; = : e R"* and G; = : e R4, for i=1,---,K.
h; giL
Then Gz = HiQi, where
_ [R O ax4
Qi = (0 1) €eR

1 “Space vector” is perhaps a more appropriate term. However, we will retain the terminology introduced in [4]

and R; € IR**3 is some rotation matrix. (The two zeros in @; are zero vectors of appropriate
dimension.) Recall the fourth dimension of every unit vector h;; € IR* will not change after the
rotation, i.e. vectors h;; and g;; have the same last component. This is the reason for going to
4D space, since the regular unit vectors (the first three components of the unit vectors in]R4) and
the gaps (the last component) are completely separate. After the rotation, gap vectors remain gap
vectors and the regular unit vectors still have zero as their last component. Hence we can treat
gaps and regular vectors in a uniform way in our matrix computations. In the rest of this paper,
we use x to denote the set of rotation matrices in 4D. More formally, x is defined as

X = {Q eRY™:.Q= (]g ?) and R € IR**? is a rotation matrix in 3D} : (4)

Under the multiple structure alignment M, we can define the distance between protein P; and
protein P; as DM(P, Pj) = || HiQi — HjQjll% = |1Gi — Gjlls = Sy llgie — ggell3, where || - ||
denotes the Frobenius norm [10].

The Sum-of-Pairs (SP) distanceof the K proteins in M is then defined as 2

SP(M)= > DM(P,P)= Y [HQi—HQjll%. (5)

1<i<j<K 1<i<j<K

We can now define our multiple structure alignment problem as follows:

Multiple Structure Alignment Problem: Given a set S = {Py,---, Pk}, find a corre-
spondence, C, and rotation matrices, Q;, for i = 1,---, K, such that the resulting multiple
structure alignment, M, has minimum SP distance, SP(M), as defined in Equation (5).

In the next two sections, we will present a heuristic for this problem. Our algorithm approxi-
mates the global minimum of the SP distance, SP(M), by iterative refinement of an initial multiple
structure alignment and converges to a local minimum.

3.1 Average Structure

We now introduce the notion of an average protein which will enable us to define a consensus
structure. We define the average structure P, of the K proteins {P;}X, in M as a sequence of L
unit vectors {u{;}le in IR*, where

1 X

J — J

u, = E“z"
KZ.:1

Note that the vector u) is not necessarily a unit vector; furthermore, it could point in a direction
that is a combination of the gap direction and the other three dimensions.

A major advantage of the average structure is that it leads to a simplified and more compact
formulation for the SP distance in Equation (5). As the following lemma shows, rather than consider
the distance between every pair P; and P; of proteins, it suffices to consider the distance of each
protein to the average structure P,.

2We use “SP distance” to distinguish our scoring function from the “SP score” used for multiple sequence align-
ment.

Lemma 3.1 Let {P;}X,, M, and SP(M) be defined as above, and let P, be the average structure
of {P}K | in M. Then
SP(M)=K > DM(P,P).

1<i<n
Proof Follows directly from Lemma 3.2 below. |
Lemma 3.2 Let {a;}7; be n real numbers and a = 2 "7, a;. Then
n
Y. (ai—a;)® =n) (ai—a) (6)
1<i<j<n i=1

Proof The right hand side of (6) can be expanded as

n n
nZ(ai —a)? = nZ(az2 — 2a;a + a?)
i=1 i=1
n
= (nz a?) — n2a?
i=1
= (n)Y_a})—(m+az+---+a)’
i=1
= (n—1)2a§—2 Z a;a;
i=1 1<i<j<n
= Z (az - a])2’
1<i<j<n
which is the left side of (6). |

It follows from Lemma 3.1 that finding an M with minimum SP distance, SP(M), is equivalent
to finding an M which minimizes }>; <, <, DM(P,, P;). The algorithm developed in the next section
computes an approximation to the optimal M iteratively.

4 Overview of the algorithm

Our strategy is similar to steepest descent. Starting from an initial multiple alignment, we will
update the alignment incrementally with decreasing SP distance. The algorithm finally stops at
some local minimum. The expectation is that with a good starting alignment, the final alignment
will be close to the optimal solution.

We choose an initial consensus protein J° from the given set of proteins. There are many ways
to choose JO, as we discuss in Section 5.1. JO is then aligned with the rest of the proteins using the
center-star-like method from Section 2.3 to get a correspondence C! between the K proteins. As
mentioned earlier, to get an multiple alignment M from C', we need to find the rotation matrices
R]l for every P; (optimal for C'). We will show in the next section how to find these matrices such
that the SP distance is minimum for the chosen correspondence. The multiple alignment M! is
then post-processed by removing all columns consisting of only gaps. Since the distance between
any two gaps is zero, this will not change the SP distance of the multiple alignment.

After we compute the multiple alignment M, we compute the average structure from M! as
described in Section 3 and use this as our next consensus protein J'. Dynamic programming is

Algorithm 1: The overall algorithm for multiple protein structure alignment
1. Choose initial consensus protein J from {P;}X ;. i < 0. SP? < oo.
2. Do
3. if i = 0 then compute pairwise structure alignment between J* and every p;.
4. else use standard dynamic programming to align J* with every p;.
5. 141+ 1.
6. Compute correspondence C* from the above pairwise alignments using center-star-like method.
7. Compute optimal rotation matrices R}, and transform P; by R} for every j

to obtain multiple structure alignment M*. SP* < SP(M?).
8. Post-process M by removing all columns consisting of only gaps.
9. Compute new consensus protein J¢ from M? by taking the average structure.
10. Until |SPP— SP '] <.

applied between J!' and every other protein P; to further reduce the pairwise distances between
J' and the P;’s. This yields a new correspondence C2. (Recall that all the proteins P; and the
consensus protein J! are represented as sequences of vectors in IR*. The distance measure used
in the dynamic programming is the squared distance between two vectors in IR*.) Based on the
new correspondence C2, we find new rotation matrices for every protein and get a new multiple
alignment with lower SP distance. The process is repeated until the SP distance converges.

The main steps are summarized in Algorithm 1; details are discussed in the next section. In
our implementation, we chose the convergence threshold n = 0.001. That the algorithm converges,
i.e., the SP distance is non-increasing from iteration ¢ to iteration ¢ + 1, is based on the following
observations: First, SP(M') = K Y; DM'(J', Pj) > K ¥; D*(J', Pj), where D*(J', P;) is the
optimal cost of the alignment between J* and P; computed by dynamic programming. Second, by
the property of the center-star-like method, >, D*(J¢, P;) is equal to the sum of the costs of the
pairwise alignments between J* and the P;’s induced by C**1. And, third, the multiple alignment
using the rotation matrices computed from C**! (Algorithm 2, given later) does not increase the
latter cost.

5 Detalils of the algorithm

5.1 Step 1: Obtain initial consensus protein

There are many ways to choose the initial consensus protein J°. One possibility is to choose J°
as the center protein, as in the center-star method, so that it minimizes the sum of the minimum
pairwise distances to all the other proteins. That is JO is the k*th protein, where

K

* = i D(P, P;).
k arglg}clgnKi (Py, P;)

Another possibility is to choose J° as the k*th protein, where
k* = i D(P,, P) | .
arg min (rggf (P, z))

Both choices make sense intuitively, since they yield consensus proteins that are “not too far away”

from the others; however they are expensive computationally, as they involve K) pairwise
alignments. A less expensive choice that appears to work well is to pick J° such that it is the
protein of median length. We report our experimental results for all three choices in Section 6.

5.2 Step 2: Compute pairwise structure alignment

After we determine the consensus protein JO in the first step, the K —1 pairwise structure alignments
between J° and P; # J9, for every i = 1,---, K, are computed using the pairwise alignment
algorithm developed by us in [24], with one small change: In [24], we apply dynamic programming
(in steps 4 and step 5 of that algorithm) to the coordinates of the alpha carbon atoms to align
the proteins, whereas here we operate on the unit vector representation. (Other pairwise structure
alignment algorithms, such as LOCK [22], DALI [12], CE [21] etc. could also be used instead.)

5.3 Step 3: Compute an initial correspondence

The K — 1 pairwise structure alignments obtained from Step 2 are combined using the center-star-
like method described in Section 2.3 to get an initial correspondence C! of the K proteins. This
initial correspondence depends strongly on the consensus protein chosen in Step 1 and also the
K — 1 pairwise structure alignments obtained in Step 2.

5.4 Step 4: Compute optimal rotation matrices and average structure

Given a correspondence C and a consensus protein .J, we show how to find both the optimal rotation
matrix R; for each protein P; as well as the new consensus protein J.

Assume the correspondence C is represented as a matrix H = (h;;), as defined in Section 3.
Protein P; in C can be represented as

hjl
Hj = (S]RLX4.
h;

The objective is to find the rotation matrices Q; € x, for j = 1,---, K, such that the SP distance
of the multiple alignment M associated with C is minimum.
From Equation (5), the SP distance of M can be represented as

SPM)= > |IHiQi— H;Q;ll%,

1<i<j<K

R, O
Qi:(o 1)€X

and R; € IR**? is some rotation matrix, and || - || denotes the Frobenius norm. After we compute
the optimal rotation matrices, each of the K proteins is transformed by its corresponding rotation
matrix to get a new orientation. Hence the new consensus protein .J is obtained by taking the
average structure of the K proteins (after rotation).

Next, we show how we can obtain the rotation matrices and the consensus protein simultaneously
in the following theorem:

Theorem 5.1 Consider the problem of finding matrices Q; € x, 1 < i < K, and J € IR*** that
minimize

K
S IH:Qi — J|3 (7)
im1

Let QF, 1 < ¢ < K and J* be the optimal solution to this problem. Then J* = %Zfil H;Q;.
Furthermore, the QF, 1 <1i < K, minimize

> HiQi — H;Qjl[%- (8)

1<i<j<K

Proof First, we show that if QF € x, for i = 1,---, K, and J* minimize Equation (7), then
| K
J* ==Y HQ:.

Denote H;Q; by A;. Let a;(j,k) be the (j,k)th term of A; and r(j,k) be the (j, k)th term of J.
Then Equation (7) can be rewritten as

K K L 4 L 4 K
S HQ - T =355 (@G) - rG R = 3 (z (@i, k) = G, k>>2) o
=1 i=17=1k=1 j=1k=1 \i=1

The 4L terms in the innermost summation in Equation (9) are independent of each other, hence
the minimization of Equation (7) is equivalent to the minimization of each of the terms

K
S (ai(4, k) —r(5,k))*, for 1<j<Land 1<k <4.
=1

By Lemma 5.1 below, Y5, (a;(j, k) — r(j, k))* is minimized when

1 K
T(]a k) = fzaz(]a k)
=1

In particular, this is true if a;(j, k) is (J, k)th term of H;Q7. In this case, 7(j, k) is the (j, k)th term
of J* and it follows that

J* = iiHQ*
= Q7
Ki:l

We now show the second part of the theorem. By Lemma 3.1,

K
Y. IHiQi— H;Qjl|% = K Y ||HiQi — J|[%- (10)

1<i<j<K i=1

Since the QF and J* minimize the right hand side of Equation (10), it follows that the Q¥ minimize
(] 1

Y HiQi — H;Qjll%, (11)

1<i<j<K
which completes the proof of the lemma. |
Lemma 5.1 Let a;, i = 1,---,n, be n real numbers. The minimum of 3.7 1(a; — r)? is attained

— 15w :
when r = 37" a;.

Proof Follows by differentiating of f(r) = 3.™ ;(a; — r)? with respect to r and setting the result
to zero. [

10

Algorithm 2: Solving optimization problem (7)

1. Wo + J; s+ 0; Z% + 0.

2. Do

3. Find {Q;}X | minimizing Y"1, [|H;Q; — W||%.
4 Q; + minimum @Q; computed in line 3.

5. s+—s+1

6. W, 23K H:Q: "

7. 7% = S0 | HQ: ™ — Wil

8. Until |Z° — 7| <.

5.4.1 Solving the optimization problem in Equation (7)

In this section, we show how to solve the optimization problem in Equation (7). We are not aware
of an exact analytical solution for this problem, so we solve it approximately. The basic steps for
solving (7) are summarized in Algorithm 2.

Step 1 in Algorithm 2 is straightforward. W) is our initial estimate of the consensus protein .J for
the current optimization step. Since before every optimization step, we are given a correspondence
C and a consensus protein J (which comes from the previous iteration), we take Wy = J and
successively refine it to arrive at J.

The main step in Algorithm 2 is step 3, which is itself an optimization problem. However it is
much easier than Equation (7), since the matrix Wj is now fixed. Clearly the K summands of the
objective function

K
Y HQi — Will%
i=1
are independent of each other. Hence we can find Q; for every ¢ = 1,---, K, by minimizing
| HiQi — Wil |3

Since Q; = (R;)z (1)) for some rotation matrix R; in IR®, we can write
| H:Qi — W[
as
1 Hi(:, 12 8)Ri = Wi, 12 3)[5 + |1 Hi:, 4) — Wi, 4)| 13,

where for any matrix A € IRE*4 A(:,1 : 3) denotes the sub-matrix of A including the first three
columns and A(:,4) is the sub-matrix of A containing its last column. Hence we can find the
optimal R; € IR**3 by solving

min
R, € IR
By the definition of the Frobenius norm,

ax3 |[Hi(,1:3) R — Wi(:,1: 3)| |5 (12)

|| Hi(:,1:3)R; — Wi(:,1:3)||%
= trace (Hi(:,1: 3)Ri — Wi(;,1: 3))7 (Hi(:,1: 3)Ri — Wi (:,1: 3)))
= trace (R Hi(:,1: 8) Hy(:,1: 3)Ri — RT Hi(:,1: 8 Wi(:,1: 3)

11

— Wi(:,1:3)TH;(:,1: 3)Ri + Wi(:,1: 3)TW,(:, 1 3))
= trace (R} Hi(:,1: 3) Hy(:,1: 3)R;) — trace (R] Hi(:,1:3)"W,(;,1: 3))

trace (WS(:, 1:3)TH;(;,1: 3)Ri) + trace (Ws(:7 1:3)TwW,(,1: 3)) . (13)

Using the properties of the trace, which say trace(A) = trace(AT) and trace(AB) = trace(BA), for
any matrices A and B, we have

trace (R Hi(:,1:3)"W,(:,1:3)) = trace (W, (:,1: 3) Hy(:,1: 3)R;),
and

trace (R;TFH,-(:, 1:3)7H;(:,1: 3)Ri) = trace (Hi(:, 1:3)TH;(:,1: 3)RiRiT)

— trace (Hi(:, 1: 3)TH1'(:, 1: 3)))

since R; is orthogonal.
Hence Equation (13) can be rewritten as

I|H;(:,1:3)R; — Wi(;,1:3)||2 = trace (H,-(;, 1:3)TH;(:, 1 3))
— 2trace (WS(:, 1:3)TH;(:,1: 3)Ri)
+ trace (Wi(:,1:3) W, (:,1:3)), (14)

where the first and third terms are fixed. Hence the optimization problem in (12) is equivalent to

m

P Kgxg trace (Ws(:,1: 3)T Hi(:,1: 3)R;) , (15)

which can be solved exactly by computing the singular value decomposition [10] of the matrix
Ws(:,1: 3)TH;(:,1 : 3). (Note that we have a maximization problem instead of a minimization
problem, because of the negative sign in Equation (14).) More specifically, if

We(:,1:3)TH;(:,1:3) =USVT

is the singular value decomposition, for orthogonal matrices U, V and diagonal matrix ¥, then the
optimal R; = VUT. The details can be found in [10, 15].
Note that by line 7,

K K K
70 =3 \HQi™" = Willf > Y [1H:Qf — Wil > 3 || HiQf = Waa|[f = 2°*.
i=1 i=1 i=1

The first inequality is because the Q}’s minimize YK, ||H;Q; — W;||% and the second inequality is
by Lemma 5.1. Thus Z**1 < Z*, so the algorithm converges.

12

| Data Set | Proteins (PDB ID)
Set 1 (Globin) imbc, imba, 1dml, 1hlm, 21hb, 2fal, 1lhbg, 1flp, leca, lash
Set 2 (Thioredoxin) | 3trx, laiu, lerv, 1f9mA, lep7A, 1tof, 2tir, 1thx, 1lquw, 1fo5A
Set 3 (all-alpha) 1le2, 2fha, 1infn, 1grj
Set 4 (Alpha-beta) | imek, 1a8l, 1£f37B, 1ghhA
Set 5 (Globin) 1hlb, 1hlm, 1babA, 1babB, 1ithA, imba, 2hbg, 21hb
3sdhA, lash, 1flp, imyt, leca, 11h2, 2vhbA, 5mbn
Set 6 (all-beta) 1cd8, 1ci5A, 1qa9A, 1cdb, 1neu, 1gfol
Set 7 (mized) lcnpB, 1jhgA, 1hnf, laa9, leca

Table 1: The seven data sets used for the experiments

5.5 Complexity analysis

Let n be the maximum length of the K proteins. Line 1 of Algorithm 1 takes O(K2n2) time
if we choose the initial consensus protein to minimize the sum or the maximum of the pairwise
distances, and O(K) time if we choose it to be the protein of median length. Lines 3, 4 and 6
take O(Kn?), if we use our pairwise alignment algorithm from [24]. Let L be the length of the
correspondence resulting from line 6. L is at most O(Kn) (this happens if no two proteins overlap
in the correspondence).

What is the time for line 7, which uses Algorithm 27 In each iteration of Algorithm 2, we spend
O(KL) = O(K?n) time to compute {Q;}X, using the SVD. Therefore, line 4 takes O(K?nI) time,
where [is the number of iterations in Algorithm 2.

Therefore each iteration of Algorithm 1 takes O(Kn? + K2nI) time. Let I’ be the number of
iterations of the loop in lines 2-10 of Algorithm 1. Then the total time taken by the algorithm
is either O(K2n? + (Kn? + K?nI)I') or O(K + (Kn? 4+ K2?nI)I'), depending on the choice of the
initial consensus. In practice, I and I’ tend to be small constants, so the running time is either
O(K?n?) or O(Kn? + K?n).

6 Experimental results

We implemented the algorithm in MATLAB and ran it on the seven data sets listed in Table 1.
The ten proteins in Set 1 are from the Globin family, while the ten proteins in Set 2 are from
Thioredoxin family. Set 3 contains four all-alpha proteins, which are structural neighbors of 1mbc
from the DALI database. The four alpha-beta proteins in Set 4 are all structural neighbors of 3trx
from the DALI Database. Sets 57 are from [4]: Set 5 contains sixteen proteins from the Globin
family, Set 6 contains six all-beta proteins from the immunoglobulin family, and Set 7 contains five
proteins that are unrelated.

The results of our experiments on the data from Table 1 are summarized in Table 2. We ran
our algorithm with three different choices for the initial consensus: “center” refers to the choice
that minimizes the sum of pairwise distances, “minmax” refers to the choice that minimizes the
maximum pairwise distance, and “median” refers to the choice of the protein of median length. In
each case, the SP distance and the number of iterations to convergence are shown. The convergence
for three of the data sets in Table 1 is illustrated in Figure 1. As seen from the figure, the SP-
distance in each case is reduced by a large amount within a few iterations. The experiments also

13

Data Set Median Center Minmax Ref.[4]
SP-Dist. #Iters. | SP-Dist. #Iters | SP-Dist. #Iters | SP-Dist. #lIters
Set 1 2325 3 2325 3 2321 3 2327 5
Set 2 1783 3 1776 3 1786 4 1803 3
Set 3 1068 3 1068 3 1064 3 1275 3
Set 4 1460 3 1460 3 1460 3 1571 3
Set 5 7850 3 7632 3 7674 6 7854 4
Set 6 1075 4 1048 3 1048 3 1066 3
Set 7 2634 3 2579 4 2579 3 2735 5

Table 2: Experimental results for the seven data sets in Table 1. The SP distance and number of
iterations to convergence are shown for three different choices for the initial consensus. Also shown
are the corresponding results for the algorithm in [4].

4000 =
“\ Center . Center o0 Center
35001\ -== Minmax 20\, - == Minmax 60001 Y, --= Minmax
wook \ == Median N, --== Median ---- Median
\ Ref [4] v Ref [4] 50001\, Ref [4]
82500 \ gLs -\] 8 W
e \\ 3 S 4000
20001 \, 2 i %
r N a1 T 3000 \
& 1500} Naeddo ooy K S &
2000[
1000 05
500t 1000f
o 3 % 1 5 6 % 1 4

1 2 2 3 4 2 3
Number of Iterations Number of Iterations Number of Iterations

(a) (b) (c)

Figure 1: Illustrating convergence of the SP-distance for data sets 4 (graph (a)), 5 (graph (b)),
and 7 (graph (c)) from Table 1. Each graph shows results for three different choices of the initial
consensus (center, minmax, and median) and also results for the method from [4]. The z-axis is
the number of iterations and the y-axis is the SP-distance.

show that the “median” method produces results that are comparable to the other two while being
computationally less expensive. Table 2 also shows the results for the algorithm in [4]. (We obtained
the code from the authors and added code to computes the SP distance and to track the number
of iterations to convergence, using the same threshold n = 0.001 as for our algorithms.) As can be
seen, the “median” method generally produces lower SP distances than [4] with fewer iterations.

We follow the approach in [4] to illustrate the consensus protein in Figures 2 and 3. The
consensus is shown in the upper left corner and some or all of the proteins from the corresponding
set are displayed below it. The graph in the upper right corner plots the length of each consensus
vector (y-axis) as a function of its position along the backbone (z-axis). Lengths close to unity
indicates that the protein vectors at that position agree.

14

10
0 i
_12
0 5 5 10
-5 -5
10
0 % é
_18
0 5 5 10
-5 -5
0
_18
0 0 5 10
-5 -5

0.5
0 L L
0 50 100 150
0
0 5 5 10
-5 -5
0
-5 é %ﬁ %
0 5 5 10
-5 -5

Figure 2: Tllustrating the consensus structure for Set 2. The upper left corner is the consensus
protein. Four of the proteins (3trx, laiu, lerv, 1ep7A) from Set 2 are also shown from left to
right in the second and third rows. The graph shows the length of each vectors of the consensus
protein as a function of its position on the backbone.

15

==
%
e
%50/5
Eagee
%50/5
=
%

0.5

=

o
a1 |
o

100 150 200

|
= =
oo o o
o
o

1 15

00 0

15

1
= =
oo o o
o
o

1
100 0

10

1
= =
oo o o
o
(&3]

-0 5 0

Figure 3: Illustrating the consensus structure for Set 5. The upper left corner is the consensus

protein.

Six of the proteins (1hlb, 1hlm, 1babA, 1babB, 1ithA, 1mba) from Set 5 are also

shown. The graph shows the length of each vector of the consensus protein as a function of its
position on the backbone.

7

Conclusions

We have presented an algorithm to compute a multiple structure alignment for a set of proteins,
together with their consensus structure. Qur algorithm uses a vector-based representation of the
input proteins and the consensus and computes an approximation to the optimal multiple structure
alignment. The algorithm iteratively uses a center-star-like method to compute a correspondence
between the protein structures and then determines a set of optimal rotation matrices to align the
structures and derive the new consensus. The computation of the optimal rotations is based on a
result we establish that allows a compact representation of the objective function. Experimental
results are also provided for several protein families.

References

1]

2]

8]

[9]

[10]

[11]

[12]

H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov,
and P.E. Bourne: The Protein Data Bank. Nucleic Acids Research, 28, 2000, pp. 235-242.

C. Branden, and J. Tooze. Introduction to Protein Structure, Garland Press. ISBN 0-8153-
2305-0, 1999.

L.P. Chew, K. Kedem, D.P. Huttenlocher, and J. Kleinberg. Fast detection of geometric sub-
structure in proteins. Journal of Computational Biology, 6:(3-4), 1999, pp. 313-325.

L.P. Chew and K. Kedem. Finding the consensus shape of a protein family. Proc. 18th Annual
ACM Symposium on Computational Geometry, Barcelona, Spain, June 2002, pp. 64-73.

S.R. Eddy. Multiple alignment using Hidden Markov Models. Proceeding of the Third Inter-
national Conference on Intelligent Systems for Molecular Biology, 1995. pp. 114-120.

D. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to correct phy-
logenetic trees. Journal of Molecular Biology, 60, 1987, pp. 351-360.

M. Gerstein and R. Altman. Average core structures and variability measures for protein
families: application to the immunoglobulins. Journal of Molecular Biology, 251, 1995, pp.
161-175.

M. Gerstein and M. Levitt. Using iterative dynamic programming to obtain accurate pairwise
and multiple alignments of protein structures. In Proceedings of ISMB’96 Intelligent Systems
for Molecular Biology, 1996, pp. 59-66. AAAI Press.

M. Gerstein and M. Levitt. Comprehensive assessment of automatic structural alignment
against a manual standard, the SCOP classification of proteins. Protein Science, 7, 1998,
pp. 445-456.

G.H. Golub and C.F. Van Loan. Matrix Computations, John Hopkins University Press, 3rd
edition, 1996.

D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, 1997.

L. Holm and C. Sander. Protein Structure Comparison by Alignment of Distance Matrices.
Journal of Molecular Biology, 233, 1993, pp. 123-138.

17

[13] L. Holm and C. Sander. Mapping the protein universe. Science, 273, 1996, pp. 595-602.

[14] N. Leibowitz, Z. Fligelman, R. Nussinov, and H. Wolfson: Multiple Structural Alignment and
Core Detection by Geometric Hashing. Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, 1999, pp. 169-177.

[15] A.M. Lesk. A toolkit for computational molecular biology. II. On the optimal superposition of
two sets of coordinates. Acta Crystallographica, A42, 1986, pp. 110-113.

[16] M. Murata, J.S. Richardson, J.L. Sussman. Simultaneous comparison of three protein se-
quences. Proceedings of the National Academy of Sciences, 82, 1985, pp. 3073-3077.

[17] C.A. Orengo. CORA-topological fingerprints for protein structure families. Protein Science, 8,
1999. pp. 699-715.

[18] C. Orengo and W. Taylor. SSAP: Sequential structure alignment program for protein structure
comparison. Methods in Enzymology, 266, 1996, pp. 617-635.

[19] G. Rose. No assembly required. The Sciences, 36, 1996, pp. 26-31.

[20] M. Sela, F. H. White Jr, and C. B. Anfinsen. Reductive cleavage of disulfide bridges in Ri-
bonuclease. Science, 125, 1957, pp. 691-692.

[21] I.N. Shindyalov and P.E. Bourne. Protein structure alignment by incremental combinatorial
extension (CE) of the optimal path. Protein Engineering., 11, 1998, pp. 739-747.

[22] A.P. Singh and D.L. Brutlag. Hierarchical protein structure superposition using both secondary
structure and atomic representation. Proc. Intelligent Systems for Molecular Biology, pp. 284—
293, 1997.

[23] L. Wang and T, Jiang. On the complexity of multiple sequence alignment. Journal of Compu-
tational biology, 1, pp. 337-348, 1994.

[24] J. Ye, R. Janardan, and S. Liu. Pairwise protein structure alignment based on an
orientation-independent representation of the backbone geometry. Technical Report 03—
001, University of Minnesota, Department of Computer Science and Engineering, 2003.
(http://www.cs.umn.edu/~jieping/Research). Submitted.

18

