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ABSTRACT

Many exploratory microarray data analysis tools such as gene clustering and relevance
networks rely on detecting pairwise gene co-expression. Traditional screening of pairwise
co-expression either controls biological significance or statistical significance, but not both.
The former approach does not provide stochastic error control, and the later approach
screens many co-expressions with excessively low correlation. We have designed and imple-
mented a statistically sound two-stage co-expression detection algorithm that controls both
statistical significance (false discovery rate, FDR) and biological significance (minimum ac-
ceptable strength, MAS) of the discovered co-expressions. Based on estimation of pairwise
gene correlation, the algorithm provides an initial co-expression discovery that controls only
FDR, which is then followed by a second stage co-expression discovery which controls both
FDR and MAS. It also computes and thresholds the set of FDR p-values for each corre-
lation that satisfied the MAS criterion. Using simulated data, we validated asymptotic null
distributions of the Pearson and Kendall correlation coefficients and the two-stage error-
control procedure; we also compared our two-stage test procedure with another two-stage
test procedure using the receiver operating characteristic (ROC) curve. We then used yeast
galactose metabolism data to illustrate the advantage of our method for clustering genes
and constructing a relevance network. The method has been implemented in an R package
“GeneNT” that is freely available from the Comprehensive R Archive Network (CRAN):
www.cran.r-project.org/.

Key words: false discovery rate confidence interval, relevance network, error control, gene
pathway.

1. INTRODUCTION

The emergence and development of DNA microarray technology (Affymetrix oligonucleo-
tide expression arrays and cDNA arrays) enable researchers to interrogate gene expression levels
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simultaneously on the genome scale (Lockhart et al., 1996; Schena et al., 1995; DeRisi et al., 1997). The
development of statistically sound and biologically meaningful techniques to analyze gene expression data
is essential for transforming raw experimental data into scientific knowledge. Gene expression data have
been subjected to a variety of statistical analyses, such as detecting differentially expressed genes (e.g.,
Tusher et al. [2001], Zareparsi et al. [2004]), clustering genes/samples (e.g., Eisen et al. [1998], McLachlan
et al. [2002]), and cancer classification (e.g., Golub et al. [1999], Alizadeh et al. [2000]).

Detection of co-expressed genes from microarray data has attracted much attention since many co-
expressed genes are found to have functional relationships, e.g., lying in the same signal transduction
pathway (Eisen et al., 1998; DeRisi et al., 1997). Hierarchical clustering (Eisen et al., 1998) and rele-
vance network construction (Butte and Kohane, 2000; Farkas et al., 2003) are two important exploratory
techniques. Both of these techniques are based on discovering pairs of co-expressed genes, which is one
of the fundamental objectives in functional genomics and system biology. While not necessarily true in
many higher eukaryotes (Boutanaev et al., 2002), pairwise gene co-expression as prescribed by the stan-
dard two-component model (Nixon et al., 1986) characterizes gene co-expression in bacteria, single-celled
eukaryotes, archaea, and higher plants (Stock et al., 2000).

Clearly, there is a need for statistical methodology for high throughput screening of co-expressed gene
pairs with stochastic error and strength of association controls. Two issues have to be considered in
developing such a methodology, namely, choice of screening statistic and choice of screening acceptance
and rejection criteria.

Regarding the choice of screening statistic, several methods have been adopted to measure the strength
of association between expression profiles of gene pairs, such as the Pearson correlation coefficient (Zhou
et al., 2002), coherence (Butte et al., 2001), mutual information (Butte and Kohane, 2000), edge detection
(Filkov et al., 2002), and dominant spectral component analysis (Yeung et al., 2004). Each of these methods
has advantages and disadvantages. The Pearson correlation coefficient has been one of the most popular
choices because it is easily computed and its performance is often comparable to more complex and
computational intense methods (Yeung et al., 2004). However, the Pearson correlation coefficient only can
capture linear relationships between gene expression profiles. To circumvent this limitation, we propose to
use the nonparametric Kendall rank correlation coefficient that is able to capture both linear and nonlinear
associations between gene expression profiles. Both linear and nonlinear associations are very common
in cellular gene expression profiles; for example, two functionally related enzymes with similar catalytic
activities may have a linear correlation between their expression profiles, while the two enzymes with
very different catalytic activities may have a nonlinear correlation. The Pearson and Kendall correlation
coefficient measures are especially convenient because their asymptotic distributions are available, as
required by our two-stage screening procedure to be described below.

Regarding the choice of screening acceptance criteria, one approach is to calculate a sample correlation
for each pair of genes and then to select the top pairs by correlation thresholding (e.g., Zhou et al. [2002]
and Farkas et al. [2003]), e.g., those exceeding a minimum acceptable strength (MAS) level specified by
the threshold. Without a statistical inference procedure, the observed weakly correlated gene pairs are more
likely to due to chance, noise, etc., and hence are less likely to be biologically relevant. For this reason, the
approach controls biological significance. However, it does not account for statistical sampling uncertainty
and thus does not control error rate. Another approach (Lee et al., 2004) is to control statistical significance
in addition to biological significance. It is implemented as a two-stage procedure: screen co-expressed gene
pairs whose strength of association is different from zero using p-value thresholding, e.g. as determined
by a specified level of family-wise error rate (FWER) or false discovery rate (FDR), followed by a “hard”
correlation thresholding. The approach is able to control error rate at correlation level zero but not at any
nonzero correlation level.

The purpose of combining correlation thresholding with p-value thresholding is to control sampling error
(e.g., Type I, II errors or false discoveries) and systematic error (e.g., nonfunctionally relevant correlations)
incurred in the screening process. Indeed, the sampling error alone can be controlled by adopting a regular
hypothesis testing scheme, and the systematic error alone can be controlled by a correlation thresholding.
However, a reliable procedure for simultaneously controlling sampling error and systematic error has not
been well developed.

In this paper, a new two-stage statistical hypothesis testing scheme is applied in order to decide
on whether the strength of association is statistically significant at the specified positive MAS level.
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Stage I screens statistically significant co-expression gene pairs whose strength of correlation is different
from zero. It is then followed by Stage II, in which a “soft” correlation thresholding (FDR confidence
interval, FDR-CI) instead of a “hard” thresholding is applied. Our method is directly inspired by the two-
stage screen methodology of Hero et al. (2004) that controls both false discovery rate (FDR) and minimum
acceptable difference (MAD) in detecting differentially expressed genes.

We demonstrate the application of our two-stage screening algorithm by constructing relevance networks
and clustering co-expressed genes from yeast galactose metabolism data (Ideker et al., 2000). This data
represents approximately 6,200 gene expression levels on two-color cDNA microarrays collected over 20
physiological/genetic conditions (nine mutant and one wild type strains incubated in either GAL-inducing
or noninducing media). By applying our two-stage algorithm on this dataset, we achieved a high specificity
(83–100%) in discovering genes in the galactose metabolism pathway as described in Section 4.

The outline of the paper is as follows. In Section 3, we describe the proposed two-stage multicriteria
approach. In Section 4, we first show that the approach indeed controls FDR at the specified MAS level
using synthetic data and then illustrate it for yeast galactose metabolism data. In Section 5, we discuss
advantages of our method, model assumptions, and restrictions.

2. METHODS

2.1. Measures of the strength of association

There are many possible discriminants for strength of association between two variables, which we
generally denote as a real number �. Under a Gaussian linear hypothesis, the Pearson correlation coefficient
ρ is an appropriate metric. A robust distribution-free alternative is the Kendall rank correlation coefficient
(Kendall’s τ ). The Pearson (Bickel and Doksum, 2000) and Kendall (Hollander and Wolfe, 1999) correlation
coefficients are special cases of the generalized correlation coefficient (Daniel, 1944). We define {gp}Gp=1

as the indices of G gene probes on the microarray; {Xgp }Gp=1 as normalized probe responses (random

variables); and {{xgp(n)
}Gp=1}Nn=1 as realizations of {Xgp }Gp=1 under N i.i.d. microarray experiments.

2.1.1. Pearson correlation coefficient. The population Pearson correlation coefficient between random
variables Xgi

and Xgj
(defined as long as var(Xgi

), var(Xgj
) are positive) is

ρ(Xgi
, Xgj

) = cov(Xgi
, Xgj

)√
var(Xgi

)var(Xgj
)
. (1)

The sample Pearson correlation coefficient ρ̂ is an asymptotically consistent unbiased estimator of ρ:

ρ̂i,j =
SXgi

,Xgj√
SXgi

,Xgi
SXgj

,Xgj

, (2)

where SXgi
,Xgi

, SXgj
,Xgj

, and SXgi
,Xgj

are sample variances and covariances given by
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)(Xgj (n) − Xgj

),



1032 ZHU ET AL.

and

Xgi
= N−1

N∑
n=1

Xgi(n), Xgj
= N−1

N∑
n=1

Xgj (n)

are sample means.

2.1.2. Kendall rank correlation coefficient. Kendall’s τ statistic is a measure of correlation that captures
both linear and nonlinear associations. The parameter τ is defined as τ = P+ − P−, where, for any two
independent pairs of observations (xgi(n)

, xgj (n)
), (xgi(m)

, xgj(m)
) from the population, P+ = P [(xgi(n)

−
xgi(m)

)(xgj(n)
− xgj(m)

) ≥ 0] and P− = P [(xgi(n)
− xgi(m)

)(xgj(n)
− xgj(m)

) < 0]. An unbiased estimator of τ

is given by the Kendall τ statistic:

τ̂i,j = 2
∑∑

1≤n≤m≤N

Knm

N(N − 1)
, (3)

where Knm is a indicator variable defined as Knm = sgn(xgi(n)
− xgi(m)

)sgn(xgj(n)
− xgj(m)

) for each set of
pairs drawn from {Xgi

}Gi=1 and {Xgj
}Gj=1.

2.2. Hypothesis testing scheme

To screen the strongly co-expressed pairs of G genes on each microarray, we will simultaneously test
the � = (

G
2

)
pairs of composite hypotheses: {Hλ, Kλ : λ = (gi, gj )}.

Hλ : �gi,gj
≤ cormin versus Kλ : �gi,gj

> cormin,

for gi �= gj , and gi, gj ∈ (1, 2, . . . G).
(4)

Here cormin is the specified minimum acceptable strength of correlation. The sample correlation coefficient
�̂i,j (ρ̂i,j or τ̂i,j ) could be thresholded to decide on pairwise dependency of two genes in the sample. When
we must decide between the null hypothesis Hλ and the alternative hypothesis Kλ based on such a threshold
test, there will generally be decision errors in the form of false positives (Type I errors: decide Kλ when
Hλ is true) and false negatives (Type II errors: decide Hλ when Kλ is true). The per comparison error rate
(PCER) is defined as the number of Type I errors over the number of independent trials, i.e. the probability
of Type I error. The p-value is the probability that a more improbable sample could have been drawn from
the population(s) being tested given the assumption that the null hypothesis is true.

For N realizations of any pair of gene probe responses, {xgi(n)
, xgj (n)

}Nn=1, we first calculate τ̂i,j or ρ̂i,j ,
respectively. For large N , the PCER p-values for ρi,j or τi,j are

pρi,j
= 2

(
1 − �

(
tanh−1(ρ̂i,j )

(N − 3)−1/2

))
, (5)

pτi,j
= 2

(
1 − �

(
K

N(N − 1)(2N + 5)/181/2

))
(6)

where � is the cumulative density function of a standard Gaussian random variable and K =∑∑
1≤n≤m≤N Knm. The above expressions are based on asymptotic Gaussian approximations to ρ̂i,j

(Bickel and Doksum, 2000) and to τ̂i,j (Hollander and Wolfe, 1999).
The PCER p-value refers to the probability of Type I error incurred in testing a single pair of hypotheses

for a single pair of genes gi, gj . It is the probability that purely random effects would have caused gi, gj to
be erroneously selected based on observing correlation between this pair of genes only. When considering
the � multiple hypotheses for all possible pairs, two adjusted error rates have frequently been considered
in microarray studies. These are family-wise error rate (FWER) and false discovery rate (FDR) (Benjamini
and Hochberg, 1995). The FWER is the probability that the test of all � pairs of hypotheses yields at least
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one false positive in the set of declared positive responses. In contrast, the FDR is the average proportion
of false positives in the set of declared positive responses. The FDR is dominated by the FWER and is
therefore a less stringent measure of significance. As in previous studies (Reiner et al., 2003), we adopt
the FDR to control statistical significance of the selected gene pair correlations in our screening procedure.

2.3. Two-stage screening procedure

Select a level α of FDR and a level cormin of MAS significance levels. We use a modified version
of the two-stage screening procedure proposed for gene screening by (Hero et al., 2004). This procedure
consists of two stages, summarized in Fig. 1.

Stage I. For each gene pair λ = (gi, gj ) in the set G of all � = (
G
2

)
gene pairs, test the simple null

hypothesis:

Hλ : �gi,gj
= 0 versus Kλ : �gi,gj

�= 0, for gi �= gj , and gi, gj ∈ (1, 2, . . . G) (7)

at FDR level α. The step-down procedure of Benjamini and Hochberg (1995) is used to accomplish this.
Stage II. Suppose a number �1 pairs of genes, denoted by the set G1 ⊂ G, pass the Stage I procedure. In

Stage II, we first construct asymptotic PCER confidence intervals (PCER-CI’s): Iλ(α) for each � (ρ or τ ) in
subset G1. We convert these PCER-CI’s into FDR confidence intervals (FDR-CI’s): Iλ(α) → Iλ(�1α/�)

using the procedure of Benjamini and Yekutieli (2004). A gene pair in subset G1 is declared to be both
statistically significant and biologically significant if its FDR-CI does not intersect the MAS interval
[−cormin, cormin] (to be shown in Fig. 5). The set of all such gene pairs is called G2.

FIG. 1. Two-stage direct screening procedure yields a subset G2 of all possible gene pairs G whose strength of
association exceeds MAS level cormin at FDR level α.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-000.png&w=432&h=330
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FIG. 2. Inverse screening procedure allows the FDR p-value of a gene pair’s (λ0) strength of association to be
computed.

In many practical situations, the experimenter may not be comfortable in specifying a MAS or FDR
criterion in advance. In this situation, it is useful to solve the inverse problem: what is the most stringent
pair of criteria (α, cormin) that would cause a particular subset of gene pairs to be included in the screen G2.
The inverse screening procedure is displayed in Fig. 2.

3. RESULTS

3.1. Validating the two-stage algorithm

3.1.1. Validating asymptotic null distribution. Here we verify that the proposed two-stage algorithm
controls FDR at a specified MAS level using simulated data. Since the p-values are based on asymptotic
distribution approximations (Equations (5) and (6)), we display in Fig. 3a the goodness of fit of the ρ̂

sampling distribution to the Gaussian distribution using QQ plots. Note that there is good agreement to
the Gaussian distribution for N ≥ 10. Moreover, since the construction of confidence intervals requires
estimation of sampling distribution variance, the accuracy of the variance approximation is vital. This can
be evaluated by the mean squared approximation error (MSE) for sample size N :

MSE(N)
ρ = �−1

∑
1≤i<j≤G

(S
(N)

tanh−1(ρ̂i,j )
− (N − 3)−1/2)2, (8)

MSE(N)
τ = �−1

∑
1≤i<j≤G

(S
(N)

τ̂i,j
− (

2

N(N − 1)

2(N − 2)

N(N − 1)2

N∑
i=1

(Cr − C) + 1 − τ̂ ))2, (9)

where S
(N)

tanh−1(ρ̂i,j )
and S

(N)

τ̂i,j
denote standard errors of tanh−1(ρ̂i,j ) and τ̂i,j at the sample size N . The

definitions of Cr and C̄ can be found in Appendix 5.1. The ρ̂ variance approximations are seen to be in
good agreement even for small sample sizes (N > 10) from Fig. 3b.

3.1.2. Validating the error control procedure. In order to validate our FDR and MAS error control pro-
cedure, we simulated pairwise gene expression data based on known population covariances (Appendix 5.2).
The actual FDR at a MAS level is calculated as a ratio of the number of screened gene pairs whose corre-
sponding population correlation parameters �i,j are less than the MAS level specified, divided by the total

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-001.png&w=432&h=213
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FIG. 3. Verification of Gaussian null sampling distribution and variance approximation for Pearson correlation
coefficient (Equation (8)). (a) QQ plot of transformed sampling distribution of Pearson correlation coefficient ρ̂

versus Gaussian distribution. (b) Mean squared approximation errors (MSE) of the variances of transformed sample
Pearson correlation coefficients ρ̂.

number of screened gene pairs. The actual MAS is the minimum true discovery of population correlation
�i,j among the screened pairs. We specified 16 pairs of (FDR, MAS) criteria (four FDR levels: 0.2, 0.4,
0.6, 0.8; four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a different upper case English alpha-
bet in Fig. 4. The 16 corresponding pairs of actual (FDR, MAS) criteria are also shown in Fig. 4 using
the same set of lower case English alphabets. It can be observed that generally the actual FDR’s (lower
case) fall below the specified constraint (upper case) and the actual MAS’s (lower case) fall above the
specified constraints (upper case). Any deviations of actual FDRs and MASs from their specified levels
are due to the conservative asymptotic approximation (Equations (5) and (6)). Observe that use of Kendall
correlation (Fig. 4b) leads to greater overestimation of error rates than the Pearson correlation (Fig. 4a).
Overestimation of error rates will translate into a reduction of power in discovering co-expressed pairs at
the specified levels.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-002.png&w=201&h=443
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FIG. 4. Verification of two-stage error control procedure based on Pearson correlation coefficient (a) and Kendall
correlation coefficient (b). Sample size N = 20.

3.2. Performance comparison

We compared the performance of the two two-stage algorithms using the receiving operator characteristic
(ROC) curve in which “sensitivity” is plotted against “1 - specificity.” Let �0 denotes the number of
false hypotheses (true strength of pairwise association is smaller than or equal to the threshold cormin),
and let �α denote the number of true hypotheses (true strength of pairwise association is greater than
the threshold cormin). We counted false positives FP (falsely rejected hypotheses) and false negatives
FN (falsely accepted hypotheses). The “sensitivity” (true positive rate, pTP) can be calculated as pT P =
1−E(FN/�α); and the “1 - specificity” (false positive rate, pFP) can be calculated as: pFP = E(FP/�0).

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-003.png&w=232&h=495
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FIG. 5. ROC curves of “FDR-CI” test procedure and “FDR-only” test procedure based on Pearson correlation
statistic.

The two-stage algorithm labeled as “FDR-only” in Fig. 5 denotes the FDR test followed by a “hard”
correlation thresholding; and that labeled as “FDR-CI” denotes the FDR test followed by a “soft” correlation
thresholding (FDR-CI). In Fig. 5, we observe overall better performance of FDR-CI test than the FDR-
only test especially at low levels of correlation thresholding. For example, at the MAS level of 0.2 and
the specificity level of 0.9, the FDR-CI method has a three-fold higher sensitivity (pT P ≈ 0.6) than the
FDR-only method (pT P ≈ 0.2).

3.3. Constructing relevance networks with controlled FDR and MAS

For the yeast galactose metabolism dataset, a subset of 997 differentially expressed genes were identified
by Ideker et al. (2000) using a generalized likelihood ratio test procedure. Genes having a likelihood ratio
statistic λ ≤ 45 were selected as differentially expressed, i.e., whose mRNA levels differed significantly
from the reference under one or more treatments.

Figures 6a and 6b illustrate the direct implementation of the two-stage procedure to screen positively or
negatively correlated gene pairs based on the Pearson correlation coefficient. The direct screening procedure
is constrained by FDR level α = 0.05 and MAS level cormin = 0.5. Stage I of the screen discovered
�1 = 153,983 out of � = (997

2

) = 496,506 gene pairs having FDR ≤ 0.05, leaving 153,983 correlation
coefficients for which FDR-CIs must be constructed. Recall that gene pair passes the Stage II screening
if the FDR-CI does not intersect the interval [−0.5, 0.5]. Of the 153,983 gene pairs, �2 = 18,135 passed
the Stage II screening and were declared to be both “biologically” and “statistically” significant. Similarly,
using the Kendall correlation coefficient, there were �1 = 95,205 gene pairs that passed the Stage I screen,
and only �2 = 3,552 gene pairs that passed the Stage II screen constrained by the same MAS and FDR
criteria as above (see Table 1).

Although for Gaussian distributed pairs the Kendall rank correlation coefficient has lower discovery
power compared to the Pearson correlation coefficient, our screening procedure was nevertheless able to pull
out many nonlinearly correlated gene pairs that were missed by the Pearson correlation procedure. These
nonlinearly correlated gene pairs, just like those linearly correlated ones, may be biologically relevant too.
For example, the link between gene “RPC40” and gene “YDR516C” passed both Stage I and II screening
(α = 0.015, cormin = 0.5) when using the Kendall correlation coefficient (τ̂ = −7.5e−01, FDR p-value =
6.2e−04, FDR-CI = [−9.7e−01, −5.4e−01]), but they failed to pass even the first screening when the

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-004.png&w=247&h=243
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FIG. 6. Curves specify lower endpoints (a) and upper endpoints (b) of the 5% FDR-CI’s on the positive Pearson
correlation coefficients (a) and negative Pearson correlation coefficients (b) for the galactose metabolism study. Only
those gene pairs whose FDR-CI’s do not intersect [−cormin, cormin] are selected by the second stage of screening.
When the MAS strength of association criterion is cormin = 0.5, these gene pairs are obtained by thresholding the
curves as indicated.

Pearson correlation coefficient was used (ρ̂ = −6.3e−01, FDR p-value = 1.2e−02). From the scatter
plot, we can observe an obvious nonlinear correlation for this gene pair (Fig. 7). The poor linear fit can be
verified by fitting a simple linear regression model and observing R2 = 0.36. Biologically, the gene RPC40
encodes RNA polymerase (I and III) subunit (transcription apparatus); although the specific function of
gene “YDR516C” remains unclear, it was recently shown that it involves transcriptional induction of the

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-005.png&w=236&h=493
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Table 1. Top Ten “Hub Genes”a

Gene name Average rank Gene name Average rank

RPL42B 4.2 RPS4A 9.8
RPS16B 6.2 RPL33A 11.6
RPL14A 7.4 RPL23B 15.4
RPS3 7.4 RPS7A 15.8
GTT2 8.0 RPS4B 17.2

aThe rank of each gene is the average rank over five different networks.
Each of five networks is constrained by a different pair of (FDR, MAS)
criteria. The highest ranked gene is the most connected and stable gene under
varying constraints of (FDR, MAS).

early meiotic-specific transcription factor IME1 (Dwight et al., 2002). Both genes are thus components
of transcription apparatus. Applying our two-stage algorithm based on the Pearson correlation coefficient
alone will miss the important functional relationship. Therefore, the Kendall correlation statistic can beat
the Pearson correlation statistic in some instances, and hence the two correlation statistics should be used
together to capture as many functional relationships as possible.

Relevance networks are implemented as a graph where n nodes (genes) are connected by p sets of edges
(co-expressions). Each of the p sets of edges are discovered using a different similarity measure (Butte
et al., 2000; Butte and Kohane, 2000)). Therefore, our constructed networks are mixed networks with
p = 2 in which edges are discovered using either Pearson correlation coefficients or Kendall correlation
coefficients constrained by the same set of (FDR, MAS) criteria. In relevance networks, genes that are
of considerable interest to the biologist are “hub genes” such as RPL33A and RPS4A in Fig. 8. Hub
genes are best connected genes that dominate a large part of the network topology (Jeong et al., 2001;
Barabàsi, 2004). We constructed five such networks that are constrained by five pairs of constraints (FDR ≤
0.05, cormin = 0.5, 0.6, 0.7, 0.8, 0.9). Most of the “hub genes” in each discovered network fall into two
categories: RPL and RPS. The former encodes Ribosome Protein Large (60S) subunit, and the latter
encodes Ribosome Protein Small (40S) subunit. Both of these categories are structural components of the
ribosome that is responsible for protein biosynthesis. Protein biosynthesis plays the central role in galactose
metabolism because galactose is not a primary carbon source for yeast, when switching from primary carbon
sources (glucose) to a secondary carbon source (e.g., galactose), many different types of proteins including
transporters, enzymes, and regulators have to be synthesized to be able to degrade the secondary carbon
source (Wieczorke et al., 1999). We ranked the hub genes by calculating and sorting average rank of each
hub gene over five networks (Table 1). The list of hub genes are presumably indispensable for galactose
metabolism (Jeong et al., 2001).

Figure 8 presents the discovered network topology with a FDR level of 5% (5% discovered edges
are expected to be false positive) at the MAS level of cormin = 0.9. The network is composed of 89
connected vertices and 132 edges. Similarly to some other biological networks, the network marginal
degree distributions appear to be of the form of a power law. This was tested by verifying goodness of fit
to the log-transformed power-law model (R2 = 0.95), i.e., log P(Di) = −γ log Di + log η + εi (Barabàsi,
2004). Here, γ and η are shape and intercept parameters, i is the index of a gene in the network, εi is
a residual fitting error, Di is the number of edges (degree) of ith gene, and P(Di) is the corresponding
probability.

3.4. Clustering co-expressed genes

Inspired by the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) and based on
the “guilt-by-association” assumption (Eisen et al., 1998), we applied the two-stage screening procedure
to cluster co-expressed genes with controlled FDR and MAS. We sought to demonstrate its application
in metabolic pathway discovery by “rediscovering” the extensively studied galactose metabolic pathway,
which consists of at least three types of genes including transporter genes (GAL2, HXTs, etc.), en-
zyme genes (GAL1, GAL7, GAL10, etc.) and transcription factor genes (GAL4, GAL80, GAL3, etc.).
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FIG. 7. A pair of nonlinearly correlated genes.

Some other genes are also involved in galactose metabolism but their roles are not entirely clear (Ro-
hde et al., 2000; Ideker et al., 2001)). Therefore, our aims are not only to validate our procedure by
rediscovering known co-expressed genes pairs, but also to discover some unknown genes in the pathway.

We selected gene GAL10 as the “seed gene” which encodes the UDP-glucose-4-epimerase (EC 5.1.3.3)
(Fig. 9). We set a relatively stringent criterion (α = 0.05, cormin = 0.6), and cormin = 0.6 is widely
used in the literature (e.g., Zhou et al. [2002], Farkas et al. [2003]). We discovered six genes (GAL10,
GAL7, GCY1, GAL1, GAL2, and YOR121C). Five of six genes are known to be lying in the pathway as
shown in shaded squares in Fig. 9, which leads to a specificity of at least 83%. The sixth gene YOR121C
is a hypothetical ORF for which no functional annotation is currently available. Our results provide strong

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-006.png&w=232&h=496
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FIG. 8. Network topology visualization. The network is discovered by constraining FDR ≤ 5% at a MAS level of 0.9.
No significant negative correlation is discovered at this level. The graph is drawn using Pajek (Batagelj and Mrvar, 1998).

FIG. 9. Diagram of the structural module of the galactose metabolic pathway. The shaded boxes denote the five out
of six genes whose gene products lie in the galactose metabolic pathway “rediscovered” by our algorithm.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1029&iName=master.img-007.png&w=347&h=251
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motivation to experimentally characterize this gene’s biological function. Known transcription factor genes
(GAL4 and GAL80) were not discoverable from this microarray experiment as the GAL4 and GAL80
expressions are time shifted and only one time sample was included. The pathways discovered using other
seed genes in the pathway, such as GAL1 and GAL7, gave similar results.

4. DISCUSSION

In this paper, we presented a two-stage procedure for screening co-expressed gene pairs that controls
both biological and statistical significance of the discovered strength of association. For the discovered
co-expressions, our method also provides an “accuracy” assessment of the strength of association by con-
structing confidence intervals for the strength of each edge. Indeed, for the typically small sample size
microarray data, a simultaneous confidence interval is useful to characterize reliability of the reported
strength of association. Correlation thresholding is becoming standard practice in gene co-expression anal-
yses (e.g., Butte and Kohane [2000], Butte et al. [2000], Zhou et al. [2002], Farkas et al. [2003], Lee
et al.) [2004]), yet “hard” thresholding lowers the discriminative power of the FDR-based test (Fig. 5).
Our “soft thresholding” procedure is able to control error rate and maintain discriminative power (Fig. 4).
The method requires a tight confidence interval on correlation, which may be difficult to obtain for small
sample sizes. However, we have shown that our algorithm provides error rate control at a biologically
relevant level with relatively few samples (20 samples for Fig. 3b, Fig. 4).

The algorithm is sufficiently general to be applied to many different correlation measures, e.g., Spear-
man’s or Hotelling’s dependency statistics. The algorithm can also be extended to different frameworks,
such as Gaussian graphic models (GGM), in which partial correlation coefficients are used as the de-
pendency measures (Whittaker, 1990). Different groups have developed approaches to infer GGM from
small sample size microarray data (Wang et al., 2003; Schafer and Strimmer, 2004; Dobra et al., 2004).
Schafer and Strimmer recently presented a procedure that is based on the bootstrap estimator of the partial
correlation coefficient (Schafer and Strimmer, 2004). Most of the pairwise partial correlations discovered
by their procedure are very close to zero. On one hand, these ultra-weak correlations screened by the
FDR-based inference procedure are “true correlation” from a pure statistical point of view. On the other
hand, the “true correlation” may be caused by a variety of factors other than functional relationship, such
as positional and spatial artifacts of gene co-expression along chromosomes (Kluger et al., 2003). Thus it
seems necessary to combine such statistical testing with a “soft” thresholding to achieve high sensitivity
and specificity (Fig. 5). This paper has presented such a method to simultaneously minimize the discovered
proportion of the functionally irrelevant “true correlations” and maximize that of functionally relevant ones.
Our two-stage algorithm has been extended to the GGM framework, and implementations are included in
our R package “GeneNT” (available from www.cran.org).

The scope of application of our statistical analysis is explicitly that of randomly sampled, complete
observational data (Dobra et al., 2004). In this paper, we are not concerned with developing models of
causal gene networks (Dobra et al., 2004). This would require a different experimentation and interventa-
tion approach to understand directional influences, rather than the simple observational random sampling
paradigm adopted here (Dobra et al., 2004).

Finally, we note that the two-stage procedures can be applied under the independency/positive depen-
dency or the general dependency assumptions (Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001). The implementation of the general dependency procedure (ν = ∑�

λ=1λ
−1) causes loss of discovery

power. The assumption of independence may not be critical in the discovery of relevance networks since
biological networks are typically very sparse (Yeung et al., 2002).

5. APPENDIX

5.1. Construct PCER-CI for ρ

Based on the fact that z (z = tanh−1(ρ̂)) is the monotonic function of ρ̂, the asymptotic PCER
(1 − α) × 100% Confidence Interval: Iλ(α) on each true Pearson correlation coefficient ρ of the set
G1 is tanh(z − zα/2

(N−3)1/2
) ≤ ρ ≤ (z + zα/2

(N−3)1/2
), where P(N(0, 1) > zα/2) = α/2.
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5.2. Construct PCER-CI for τ

The asymptotic PCER (1 − α) × 100% Confidence Interval: Iλ(α) on each true Kendall correlation
coefficient τ of the set G1 is constructed as follows:

• Compute Cr = ∑N
t=1
t �=r

Q((Xr, Yr), (Xt , Yt )), for r = 1, 2, . . . , N , where Q((a, b), (c, d)) is given by:

Q((a, b), (c, d)) =

⎧⎪⎨
⎪⎩

1 if (d − b)(c − a) > 0,

0 if (d − b)(c − a) = 0,

−1 if (d − b)(c − a) < 0.

(10)

• Let C̄ = 1
N

∑N
r=1 Cr and define σ̂τ = 2

N(N−1)
2(N−2)
N(N−1)

∑N
i=1[(Cr − C̄)2 + 1 − τ̂ 2]

• Iλ(α) : τ̂ − zα/2σ̂τ ≤ τ ≤ τ̂ + zα/2σ̂τ .

5.3. Simulation of pairwise vectors based on prespecified population covariances

5.3.1. Pearson correlation coefficient ρ.

• Specify a covariance matrix V and a mean vector µ.
• Form the Cholesky decomposition of V; i.e., find the lower triangular matrix L such that V = LLT .
• Simulate a vector z with independent N(0, 1) elements.
• A vector simulated from the required multivariate normal distribution is then given by µ + Lz.

5.3.2. Kendall’s τ .

• Specify a value for τ .
• Simulate an N × N indicator matrix M given τ as follows:

M[n, m]1≤n<m≤N =
⎧⎨
⎩1 if Bernulli

(
1 + τ

2

)
is TRUE,

−1 if Otherwise.
(11)

• Simulate i.i.d pairs (Xr, Yr) (r = 1, 2, . . . , N) according to M matrix and definition

Q((a, b), (c, d)) =
{

1 if (d − b)(c − a) > 0,

−1 if (d − b)(c − a) < 0.
(12)

No tied observations are generated. Alternatively, τ̂ can be directly calculated from the indicator matrix
M without generating the i.i.d pairs (Equation (3)).
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