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ABSTRACT

Statistical validation of gene clusters is imperative for many important applications in com-
parative genomics which depend on the identification of genomic regions that are historically
and/or functionally related. We develop the first rigorous statistical treatment of max-gap
clusters, a cluster definition frequently used in empirical studies. We present exact expres-
sions for the probability of observing an individual cluster of a set of marked genes in
one genome, as well as upper and lower bounds on the probability of observing a cluster
of h homologs in a pairwise whole-genome comparison. We demonstrate the utility of our
approach by applying it to a whole-genome comparison of E. coli and B. subtilis. Code for
statistical tests is available at www.cs.cmu.edu/~durand/L ab/software.html.
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1. INTRODUCTION

HERE ARE MANY IMPORTANT APPLICATIONS IN GENOMIC COMPARISON that require the identification of

homol ogous regions. Researchers are interested in finding conserved groups of genes for identification
of large-scale duplications (surveyed by Wolfe [2001]), reconstructing chromosomal rearrangements (sur-
veyed by Sankoff [2003], and by Sankoff and Nadeau [2003]), and phylogenetic reconstruction (Blanchette
et al., 1999; Cosner et al., 2000; Hannenhalli, et al., 1995; Sankoff et al., 2000a, b; Tamames et al., 2001),
as well as detecting operons, horizontal transfer, and functional selection in bacteria (surveyed by Chen
et al. [2004], Lawrence and Roth [1996], and Tamames [2001]).

Our goal is to provide formal statistical models to test the hypothesis that two genomic regions in
distantly related genomes share a common ancestor, against a null hypothesis of random gene order. In
diverged genomes, the signature of such regions, or gene clusters, is similar gene content, but neither
content nor order are strictly preserved. In order to construct formal statistical models, this intuitive notion
of a gene cluster must be formalized into a precise mathematical definition.

While a number of definitions have been proposed, we focus in the current work on the max-gap cluster,
a definition that has emerged as perhaps the most popular in empirical studies (Blanc et al., 2003; Bourque
et al., 2005; Chen, et al., 2004 Friedman and Hughes, 2001; Luc et al., 2003; McLysaght et al., 2002;
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Overbeek et al., 1999; Simillion et al., 2002; Tamames, 2001; Vandepoele et al., 2002 Vision et al.,
2000). In a max-gap cluster, the distance between genes in the cluster is constrained to be no more than
a constant g. Although max-gap clusters are widely used in practice, no anaytical statistical tests have
been developed for them. Studies based on max-gap criteria currently use randomization to estimate the
significance of clusters (Blanc et al., 2003; McLysaght et al., 2002; Overbeek et al., 1999; Simillion et al.,
2002; Vandepoele et al., 2002; Vision et al., 2000).

In this paper, we present the first formal, rigorous mathematical model of max-gap gene cluster prob-
abilities. Models are developed for two basic cluster finding scenarios. In the first scenario, we wish to
find clusters of a subset of genes that are prespecified, or marked. These genes may be of interest, for
example, because their homologs are contiguous in ancther region or genome, or because they participate
in the same functional pathway. In the second scenario, the set of genes in a cluster emerges from the
comparison of two whole genomes; we are given two genomes and a mapping between their homologs,
and we wish to find clusters of homologs found in close proximity in both genomes.

For the marked genes scenario (Section 3), we present an exact expression for the probability of observing
a complete max-gap cluster containing all m marked genes within a randomly ordered genome of size n.
Next we extend this analysis to evaluate the probability of observing a cluster containing only a subset of
the marked genes. We present an algorithm that calculates the exact probability of observing an incomplete
cluster containing &7 < m marked genes, as well as an analytic solution for the case where m/2 < h < m.
In Section 4, we discuss the statistical implications of choosing different algorithms for identifying max-
gap clusters in a whole-genome comparison. In Section 5, we develop upper and lower bounds for the
probability of observing amax-gap cluster of 2 homologs by a pairwise whole genome comparison scenario.

To investigate trends in the cluster probabilities for both models, we use the eguations presented in
Sections 3 and 5 to calculate the probability of clusters for common choices of parameter values and
for a range of typical sizes of prokaryotic and eukaryotic genomes. We present these results graphically
and discuss the influence of genome size, gap size, the number of marked genes, and the cluster size
on cluster significance. We also determine the regions of the parameter space that yield clusters that are
statistically significant. To demonstrate the use of our methods, a whole genome comparison of the E. coli
and B. subtilis genomes was conducted and the results analyzed statistically.

2. PRELIMINARIES

We employ a commonly used genome model in which a genome is represented as an ordered set of n
genes. G = 1...n. We assume a single unbroken chromosome and that genes do not overlap. The distance
between two genes in this model is simply the number of genes between them.

A max-gap cluster is described by a single parameter g:

Definition 2.1. A set of genes forms a chain if the distance from any gene in the chain to at least
one other gene in the chain is never more than g. A set of genes form a max-gap cluster if they form a
max-gap chain and are not included within any larger chain (i.e., the chain is maximal).

For example, when the maximum gap alowed is g = 3, two max-gap clusters (indicated by boxes) are
found in the example genome in Fig. 1. The remaining gene cannot be clustered with any other genes.
Clusters are characterized by their size and length, where the size of a cluster is simply the number of
marked genes it contains and the length is the total number of marked and unmarked genes. These concepts
are illustrated graphicaly in Fig. 1.

Cluster of size 3  Gap of size 4
and length 4 NG Cluster of size 5 and length 10 n=24, m=9, g=3
(@] * @O |+ +[+]0@+@[@]]*]|x@]«|x|x]|x]@]
FIG. 1. A sample genome (n = 24), with m = 9 marked genes shown in black. Two clusters are found when the
maximum gap allowed is g = 3. The rightmost marked gene is not part of any cluster.
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Preliminary computations. In the following sections, it will be helpful to have an expression for the
number of ways of arranging k& marked genes to form a max-gap cluster within a window of length 1.
When both endpoints of the window contain marked genes, the cluster will be of length exactly /. Since
such a cluster has k — 1 gaps with a cumulative sum of [ — k, the number of ways of creating a max-gap
cluster of size k and length [ is equivalent to the number of ways of rolling k — 1 dice, each with faces
numbered O to g, such that the sum of their faces is equal to I — k.> We can compute this quantity using
the following expression:

LI—=k)/(g+D)] .
Sk —1\ [l — 1) —
de(k, g )= Y (—1>’< )( He+D e>, )

i k—e
i=0

where the parameter ¢ is set to 2, indicating that both endpoints of the window are constrained to contain
marked genes. The number of ways of generating a cluster with length no greater than / is equivalent to
requiring that a marked gene be placed in the leftmost endpoint of the window (the rightmost window
may contain a marked gene but this is not required). Thisis simply er=k do(k, g, r), which can be shown
to be equivalent to d1(k, g, 1) (see Hoberman et al. [2005] for the proof). For large values of /, however,
there is a simpler expression for di(k, g, ). Let w;, be the maximum length of a chain of size k with
maximum gap g, that is, k + (k — 1)g. If I > wy,, then di(k, g, 1) = (g + D*¥L. Finaly, the number of
ways of arranging m genes so that they form a max-gap cluster anywhere within a window of size [ is
Y dalm, g, r) = do(k, g, 1).

3. STATISTICS FOR MARKED GENES

In this search scenario, m genes of interest are selected, or marked. These genes may be of interest, for
example, because their homologs are contiguous in another region or genome, or because they participate
in the same functional pathway. We are interested in the probability that all m genes, or a sizable subset,
appear in close proximity within the genome of interest.

3.1. Exact probabilities for complete clusters

In this section, | consider the significance of a complete chain, containing all m marked genes. The
null hypothesis is that the marked genes are randomly distributed in the genome, i.e., each permutation
of the n genes is equally likely to occur. For this scenario, the test statistic is the maximum gap between
the marked genes. We want to calculate a p-value, the probability of observing a gap between adjacent
marked genes of at least g in a random genome.

Given arandom permutation of n genes, the probability of observing all m marked genes (in any order)
such that the gap between adjacent marked genes does not exceed g is

Wy — M .
1 | —wme+ D +D" 1+ %(g + " ifwpe<n+1
P(n,m,g):_ (2)

n
<m> do(m, g, n) otherwise,

where n — wy,, + 1 is the number of ways of placing the first marked gene, (g + 1)1 is the number of
ways of placing the remaining marked genes (or equivaently, the number of ways of choosing m — 1 gaps
each between 0 and g), and the last term is the number of ways of constructing a max-gap cluster within
the last w — 1 genes in the genome. The derivation of the final term is given in Appendix 6.

IThis in turn is equivalent to the number of ways of rolling a set of k — 1 dice, each of which has faces numbered
1to g+ 1, so that their cumulative sum in equal to  — 1 (Uspensky, 1937).
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3.2. Complete clusters with length restriction

Cluster definitions are often designed to control the density of genes in the cluster based on the intuition
that clusters with very low density will often not be distinguishable from clusters that form by chance.
For max-gap clusters, the maximum gap parameter prevents clusters from becoming too sparse in local
regions. However, global density, i.e., the ratio of size to length, is only weakly constrained: it cannot
fall below 1/(g 4+ 1). Additional control over the global density can be achieved by constraining the total
length of the cluster. We simply add the restriction that al m marked genes must appear in a window of
size at most r. Given a genome of size n, the probability of observing all m marked genes (in any order)
in a max-gap cluster that is completely contained within a window of size r is

[(n —r+ 1)d1(m7 g, V) + do(mv 8, r— 1)]
. .
m
This length constraint may also be useful in situations in which only a local region of the genome is of
interest.

(©)

3.3. Exact probabilities for incomplete clusters

In practice, researchers often look for clusters that contain only a subset of the m marked genes (Amores
et al., 1998; Coulier et al., 1997; Endo et al., 1997; Gibson and Spring, 2000; Hughes, 1998; Kasahara,
1997; Katsanis et al., 1996; Lipovich et al., 2001; Pebusgue et al., 1998; Ruvinsky and Silver, 1997,
Trachtulec and Forejt, 2001). Thus, in this section, we provide a statistical test for incomplete max-gap
clusters of size h < m, against a null hypothesis of random gene order. In this case, the maximum gap
value g is fixed in advance, we search the genome for all max-gap clusters of marked genes, and we want
to determine the significance of a cluster of size &. In this case, the test statistic is the size of the largest
cluster, and the p-value is the probability under the null hypothesis that the largest cluster will be of size i
or greater. This is simply the probability of observing at least one cluster of size i or greater in a random
genome.

Unlike complete clusters, there can be more than one incomplete cluster in the same genome. A simple
extension of Equation (2) to incomplete clusters would therefore lead to overcounting permutations con-
taining more than one cluster. Instead, we use dynamic programming to count those permutations which
do not contain a cluster of size i or larger and subtract to obtain the probability of observing at least one
incomplete cluster.

The algorithm is defined by the following recursion relation

0, ifc=horn<m
1, elseif m=0

n[namajvc]z .
nn—1Lm,j+Lcl+nn—1m—10c+1], edseifj<g

nNn—Lm,j+Lcl+nn—-1m-101], otherwise.

This algorithm moves along the genome, adding a marked or unmarked gene at each step. It keeps track
of runs of marked genes that satisfy the max-gap cluster criterion and avoids creating a cluster of size h
or larger by judicious placement of unmarked genes. The quantity n[n, m, j, c] represents the number of
ways to place m marked genes in n slots without creating a max-gap cluster of size greater than or equal
to i, where j is the distance to the previous marked gene and ¢ is the size of any cluster created so far.

The probability of observing at least one incomplete cluster of size at least 4 is then just one minus the
probability of observing no incomplete clusters:

[n,m, g+ 1,0]

O(n,m h,g) =1— T8 @
()
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The complexity of computing Q(n, m, h, g) is O (nmgh). Since h < m, thisis bounded above by O (nm?g).
However, in practice m will be significantly smaller than n. For example, the size of typical bacteria
genomes ranges from 500 to 5,000 (Skovgaard et al., 2001), whereas the average number of genesin an
operon is predicted to be between two and four, and the large majority of operons contain fewer than fifteen
genes (Zheng et al., 2002). Vertebrate genomes can be much larger. For example, the estimated size of
the human genome is around 25,000 genes (International Human Genome Sequencing Consortium, 2001),
but duplicated or conserved regions reported in the literature tend to include only five to thirty genes in
a window containing a hundred genes at most (surveyed in Durand and Sankoff, 2003; also Abi-Rached
et al., 2002, Danchin et al., 2003). If we make the conservative assumption that m < /n and that g is a
small constant, then the running time will be bounded above by O (n?).

When i > 7, each permutation can contain at most one cluster of size  or greater, so overcounting
permutations with more than one cluster is not an issue, and the dynamic programming agorithm is not
required. Instead, we directly count the number of permutations containing a cluster, enumerating them
by the length [ of the last # marked genes in the cluster. There are n — I — g positions in which to place
the last marked gene in the cluster. The number of ways to choose the gaps to obtain a cluster length of
exactly I is da(h, g,1). The remaining m — h genes must be placed outside the window of size /. Note
that they also must be placed at a distance of at least ¢ + 1 from the end of the cluster to avoid extending
the length of the cluster. Thus there are n — [ — ¢ — 1 ways of placing the remaining m — h genes. When
h > 7%, the probability of observing an incomplete cluster of size at least & is

h+g(h—1)

1 n—l—g-1y g n—1—i
(T) ; |:max(0,n—l—g)~d2(h,g,l)~< o >+;d2(h,g,l)-(m_h )] ()
n

where [ ranges over all possible lengths of a cluster of size & and the final term addresses edge effects.
The final term counts those clusters in which the last marked gene in the cluster is close to (within g of)
the end of the genome. If the last marked gene is the i*" gene from the end of the genome, then there are
n — [ — i ways to place the remaining m — h genes. Using the upper summation identity (Graham et al.,
1989) the final term can be further simplified to

S n—l—i n—1+1 n—l—g
= m—nh m—h+1 m—h+1

where the binomials are defined to be zero when the upper value is smaller than the lower value.

The complexity of computing Equation (5) depends on the extent to which subcomputations are reused,
but empirically we observe that even a naive implementation has a substantially faster running time than
Equation (4) (data not shown).

3.4. Experiments

The behavior of max-gap cluster statistics for a marked gene scenario was investigated by plotting the
probabilities computed by Equations (2), (4), and (5) graphically. We selected parameter values corre-
sponding to the range of values seen in real analyses. For example, we selected values of g ranging from O
to 50, since typical values of this parameter used in genomic analyses range from 3 in bacteria (Tamames,
2001) to about 30 in human (McLysaght et al., 2002). We calculated probabilities for genomes sizes of
500, 1000, 5000, 20,000, and 25,000, corresponding to typical gene sets for bacteria, yeast, worm, and
higher eukaryotes like human and Arabidopsis.

3.4.1. Complete clusters. The probability of observing a complete cluster in a random genome was
calculated from Equation (2), for varying values of n, m, and g. For complete clusters, we tested all values
of m ranging from 2 to the genome size n.

Figure 2 shows the probability of observing a complete cluster containing all m marked genes in a
genome of size n = 1,000, as m ranges from 2 to 1,000 and g increases from 5 to 50. The probability of
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FIG. 2. Probability of a complete max-gap cluster of m marked genes in a genome of size n = 1,000 as a function
of m, for g = {5, 10, 20, 50}.

observing a complete cluster increases monotonically with g. We might also expect that this probability
will increase monotonically with m, or equivalently, that larger clusters will always be more significant,
but this is not the case. As Fig. 2 shows, as m increases, the cluster probabilities first decrease and then
increase. This makes sense intuitively if ones considers the extreme cases: when m = 1 or m = n the
probability of observing a complete cluster will clearly be one, and the values of m in between these
two extremes will have probabilities of less than one. Calculations with larger genome sizes indicate
that as n increases the probabilities decrease but the general trends seen in Fig. 2 remain the same
(data not shown).

Another question of interest is the range of values of m and g for which it is possible to obtain a
significant cluster. Figure 3 shows the parameter values for which the probability of observing a complete
cluster in a genome of size 1,000 is no more than 0.001. The significant region of the parameter space is
shown in black, indicating that as gap size increases, the range of values of m for which it is possible to
obtain a significant cluster becomes more and more restricted.

3.4.2. Incomplete clusters. We calculated the probability of observing an incomplete cluster from
Equations (4) and (5) for the values of n and g as stated above, and values of # ranging from 3 to m.

5 sl
915 S 15
25 8 25}
17 wn
g35 o35}
(o)) (=]
§ 45 3 45+
855 3 55}
£ 65 £ 65
3 o }
ET75 E 75
> x
g 85 g 85
95 95+
200 400 600 800 10 20 30 40
Number of genes of interest (m) Number of genes of interest (m)

(a) ®

FIG. 3. Region of the parameter space that is statistically significant (shown in black) at the @ = 0.001 level for
a complete cluster in a genome of size n = 1,000. (a) Complete parameter space where m ranges from 1 to 1,000.
(b) Detail for m < 50.
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FIG. 4. (a) Probability of an incomplete cluster of size at least = when n = 500 and m = 10. (b) Probability of an
incomplete cluster that contains at least half of al m marked genomes when n = 500.

Figure 4(a) shows that as the maximum gap size allowed increases, so does the probability of observing
an incomplete cluster. Increasing the required size (k) of the cluster, on the other hand, decreases its
probability of occurring by chance. Figure 4(b) shows the probability of max-gap clusters for varying
values of m, when i = 7. As in the case of complete clusters, the probabilities first decrease then
increase with m. Probabilities were also calculated for larger genome sizes. Again, as n increases cluster
probabilities decrease but the genera trends are similar (data not shown).

4. WHOLE GENOME MODELS

In awhole genome comparison, we are given two genomes, G1 and G, each of length »n, and a mapping
between the m homologs shared between G1 and G2. We use the term homolog either to refer to agenein
one genome that has a homolog in the other, or to refer to the pair, depending on context. A singleton is a
gene without a homolog in the other genome. We are interested in assessing the significance of a cluster
composed of a set of homologs found in proximity in both genomes, under the assumption that both the
homologs and the singletons are uniformly randomly distributed throughout the genome.

Just as we had a formal definition of a max-gap cluster for a marked gene scenario, we now need
to formulate a precise cluster definition of max-gap clusters found by whole genome comparison. Some
cluster definitions are constructive, i.e., they specify an agorithm to find clusters, while others are formal,
i.e., they specify precise criteria that a cluster must satisfy. Although a constructive definition makes it
clear how to find clusters, a formal definition must be abstracted from the algorithm in order to develop
statistical models. On the other hand, if a formal cluster definition is used, an additional search procedure
to find clusters that satisfy the definition is required for data analysis. In both cases, it is necessary to
verify that the constructive and formal definitions are equivalent.

Many groups state informally that they sought clusters where the maximum gap between genes is no
greater than g, but provide neither a formal definition nor a precise constructive definition. This can be
problematic, because an informal definition of a max-gap cluster could translate to more than one formal
definition. Furthermore, different constructive definitions can identify very different sets of clusters. These
clusters may have quite different properties and thus their statistical properties may differ substantially
as well.

In this paper, we define a max-gap cluster in the context of whole-genome comparison as follows:

Definition 4.1. A set of homologs form a max-gap cluster in two genomes if they form a chain in both
genomes of interest and are not a subset of any larger cluster.
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An efficient divide-and-conquer agorithm for finding max-gap clusters (as defined here) via whole-
genome comparison has been presented by Bergeron et al. (2002). Other groups use a greedy, bottom-up
heuristic, in which larger clusters are built iteratively from smaller clusters (Calabrese et al., 2003; Cannon
et al., 2003; Hampson et al., 2005; Hokamp, 2001). In each step, the heuristic “looks ahead” a certain
number of positions to see if additional homologs may be added to the cluster without violating the max-
gap criterion. It can easily be shown that a simple greedy approach with a lookahead in either direction of
size g + 1 will not find al max-gap clusters. For example, consider the two genomes G1 = 12%34* and
G> = 31%4x2, where numbers indicate homologs and stars represent singletons. Regardless of the gene
at which the algorithm starts, a greedy approach using a gap size of ¢ = 1 will never find the max-gap
cluster {1,2,3,4}. Unless the algorithm “looks ahead” al the way to the end of the genome—in which
case it is no longer greedy—it is not guaranteed to find all max-gap clusters.?

It can be shown that the subset of max-gap clusters identified with a purely greedy heuristic are exactly
the set of clusters that are nested, where a cluster of size & is nested if for each k € 1...h — 1 it contains
avalid (but not maximal) cluster of size k. For instance, in the example above, the cluster of size four was
not found precisely because it did not contain a max-gap cluster of size exactly three.

How does this nested subset differ from general max-gap clusters (the set of all clusters that satisfy
Definition 4.1)? First, the requirement that a max-gap cluster be nested implicitly introduces some con-
straints on gene order within the cluster. The general max-gap cluster definition allows gene order to be
arbitrary—the order of genes in the cluster is irrelevant as long as the gaps between genes remain small.
Gene order in a nested max-gap cluster, on the other hand, may become disordered only to a limited
degree. Second, unlike general max-gap clusters, the set of nested max-gap clusters is not guaranteed to
be digoint; i.e., two maximal nested max-gap clusters may both contain the same homolog. For example,
if g =0, the genomes G1 = 12345 and G2 = 21354 contain two nested clusters of size three: {1,2,3}
and {3,4,5}. These two clusters both contain gene 3, yet cannot be merged because {1,2,3,4,5} is
not a nested cluster (it does not contain any max-gap cluster of size four). We will see in Section 5 that
these two properties have implications for the computation and use of statistics as well as the design of
algorithms.

5. WHOLE GENOME COMPARISON STATISTICS

In this section, we present a statistical model for general max-gap clusters identified through whole
genome comparison. The probability of observing a complete max-gap cluster containing all m homologous
gene pairs when comparing two random genomes of size n is [P (n, m, g)1%, where P(n, m, g), defined in
Equation (2), is the probability of observing a complete cluster of m marked genes in one genome. For
whole genome comparison, m is the number of shared homologs rather than the number of marked genes.
Figure 2 shows how P(n, m, g) varies as m ranges from 2 to n. Note that for whole genome comparison
the percentage of homologous genes shared between two closely related genomes may be quite high. Thus,
sguaring the probabilities in Fig. 2 would result in many parameter values for which the probability of a
complete cluster will approach one.

To understand this, first consider the simpler case in which the gene sets are identical; e.g., m = n.
In this case P(n, m, g) equals one: under a simple model of identical gene content, there will aways be
a max-gap cluster of size n, since a window that spans the entire genome will contain n genes with no
gaps, and the n genes will be identical in both genomes. Even without assuming identical gene content,
when m - g is large with respect to n, it will still be possible to create extremely large clusters. Indeed, a
complete cluster will be found whenever g is greater than the longest contiguous run of singletons. This
observation has implications for the design of statistical tests for such clusters.

The traditional approach in hypothesis testing is to determine the probability under the null hypothesis
of obtaining a value of the test statistic that is at least as extreme (e.g., less likely) as the observed value.

2Bergeron et al. (2002) have made similar observations in the context of the development of efficient algorithms
for finding max-gap clusters, as opposed to the statistical questions considered here.
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Remember that for a marked gene scenario we calculated the probability of observing a cluster of size at
least £. That will not work in this case, however, since the probability of observing a cluster by whole
genome comparison may actually increase with the size of the cluster. For example, as Fig. 2 shows, the
probability of a complete cluster is often greater than 0.5. Whenever this is the case, the probability of
observing a cluster of size m — 1 must be less than 0.5. Thus, a larger cluster is not necessarily less
likely to occur by chance, and so is not more “extreme” from a statistical viewpoint. Conseguently, for
whole-genome comparison, rather than calculate the probability of observing a cluster of size at least 4, we
determine the probability of a cluster of exactly size k. These calculations can then be used to determine
the probability of observing a cluster whose size is more extreme than 4.

5.1. Enumeration strategy

We calculate the probability of a cluster by counting the permutations of n genes that result in a max-gap
cluster of exactly 4 homologs, then divide that by the total number of permutations possible. One strategy
for counting al permutations that contain a shared cluster of size exactly 4 is to first count the ways of
creating a cluster of 2 homologs and then count the number of ways of judiciously placing the remaining
m — h homologs so that they cannot extend the cluster to make it larger. The challenge is to determine
which regions are “safe” for these m — h outer genes.

To answer this question, it can be useful to think about a cluster shared between two genomes in a two-
dimensional space, such as the dot plotsin Fig. 5, where G1 is on the vertica axis, G2 is on the horizontal
axis, and a cluster is represented by a black rectangle in the center. When ¢ = 1, Figure 5(a) contains a
maximal cluster of size h = 3, namely {124%}. For this gap size, which configurations of the remaining
three outer genes are “safe,” i.e., do not extend the cluster of size three? Clearly the black rectangle defined
by the cluster itself is unsafe, as is the dark gray “moat” of width g + 1 around its border, since any gene
that lies in these regions will increase the size of the cluster beyond & = 3. Suppose outer genes are
prohibited from the black and dark gray regions, but allowed in the white and light gray regions. At first,
this may seem like the appropriate constraint. The arrangement of outer genes in Figs. 5(a) and 5(b) is
considered safe in both cases, correctly classifying both as configurations containing a cluster of size three.
However, in Fig. 5(c), this rule fails. Although neither genes 5 nor 6 can independently extend the cluster
(since each is further than ¢ away from the cluster on one of the genomes), together they successfully
extend the cluster of size three to a cluster of size five ({12456}) (shown in Fig. 5(d)).

Although the light gray region may sometimes be unsafe, ruling it out entirely will cause us to exclude
some configurations that contain a maximal cluster of size h. Indeed, since max-gap clusters are not
nested, it is difficult to exactly specify the unsafe regions so that we count all permutations containing a
maximal cluster of exactly size i, while at the same time not counting those permutations which contain
only a nonmaxima cluster of size k. Instead, we use the above intuition to devise upper and lower
bounds for the probability of observing a cluster of size exactly &, when conducting a whole-genome
comparison. The upper bound is too lenient and will erroneously count the configuration of Fig. 5(c) as
one containing a maximal cluster of size 2. The lower bound is too strict. Although both Figs. 5(a) and 5(b)
contain a maximal cluster of size k, the lower bound will only enumerate configurations such as Fig. 5(a).
Configurations such as Fig. 5(b) will be unnecessarily excluded.

5.2. Upper bound for incomplete clusters

Our upper bound counts the number of configurations of the m homologs on both genomes which satisfy
the following criteria: there exist 2 homologs that form a chain on both chromosomes, and there does not
exist any other homolog that is within a distance g of the chain on both genomes. The sole constraint is
that an outer gene is permitted within a distance g of a cluster in G1 only if its homolog is located at
least ¢ + 1 genes from the cluster on G, (like genes 3 and 6 in Fig. 5(a)). This strategy is guaranteed
to count all permutations that contain a maximal cluster of size i, but because of its limited lookahead
(as discussed in Section 4) it will also incorrectly count some permutations which contain a cluster of
size h, but for which that cluster is not maximal (such as the cluster of size three in Figure 5(c)). Thus,
enumerating all configurations that satisfy this constraint provides an upper bound on the probability of
observing a maximal cluster of 4 genes.



1092 HOBERMAN ET AL.

A O O OENEIFYTSFFTNO O O
A O O Lt O ENEIFYTSFeF YO O O

(@) (b)

(@] O
O O
(@] O
1 1
O O
2 2
G, K 3
(@] O
4 4
©) (@)
5 ) 5
6 6
(0] : [@)
(e} : : H O

- [S——

g+l g+l

(c) ()

FIG. 5. Dot plots comparing two genomes—G4 on the vertical and G on the horizontal axis—that share m = 6
homologous gene pairs. Singletons are drawn on the axes as circles, but not shown in the dot plot. (a) and (b): A
maximal cluster of size three. Genes 5 and 6 are placed so the cluster cannot be extended. (¢) A non-maximal cluster
of size three. The placement of genes 5 and 6 alows the cluster to be extended, resulting in (d) a larger cluster of
size five. In al figures, the region of the cluster is shown in black, the dark gray area is unsafe, and the white area is
safe. The light gray area is sometimes safe and sometimes unsafe.

Let M be the set of all m homologs shared between the genomes. We divide the set M into three
subsets:

1. H C M isthe set of h» homologs that form a chain in both genomes.

2. T C M — H isthe (possibly empty) set of + homologs that are located within a distance g from the
cluster on G but not Go.

3. R=M—H—-T istheset of r = m — h —t genes that are not within a distance g from the cluster
on Gi.
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The first subset comprises the 2 genes in the cluster, and the last two subsets together comprise the m — A
outer genes. Note that, although T and R are defined asymmetrically with respect to genome, we assume
equal genome sizes, so the probability will be the same regardless of whether we restrict the position of
genes with respect to G or Go.

The upper bound is the number of ways of placing these three subsets of genes on both genomes for
all choices of ¢ so that the constraints on each subset are satisfied, divided by the total number of ways
to place the m homologs when their positions are unconstrained. To compute the upper bound on the
probability of observing a cluster of size i, we must sum over al possible values of ¢, which yields

" Rl
PM‘U:Z m‘ 'ql[nshatvrsg]'qz[nvhvtsrag]v (6)

=0

where ¢ is the probability of “safely” placing the genes (according to the constraints on each set) in
G1 and g2 is the probability of “safely” placing the genes in G2. The factorias account for the different
number of ways of ordering the genes within each subset (H, T, and R) versus the unrestricted case in
which al m homologs can be permuted indistinguishably.

To compute g1 and g2, we present a general equation parameterized by the quantities X and Y, which
represent the number of “safe” positions for the genes in 7 and R, respectively, and are set to different
expressions depending on specific location constraints. We enumerate over all possible values of [, where
[ is the length of the cluster and ranges from & to L = min(n, (h — 1)g + h). Thus, the genera form of

qgi is

L . .
1 3 [max(o, n—1—2g—Ddoh, g, 1) (Xt(’)> <Y£’)) + E} , @
I=h

()

where X is the number of lega positions for the genes in the set T, Y is the number of legal positions
for the genes in the set R, and the last term handles edge affects. The expression E accounts for those
clusters within a distance j < g of either end of the genome. Generally, there are two possible clusters of
length [ within i of either end of the genome: one near the beginning of the genome and one near the end.
However, when ! > n — j — g, the cluster spans almost the entire genome and will be simultaneously close
to both ends, so there is only one possible cluster. Putting these together yields the following expression:

min(g,n—1) . . . )
W@\ (ZG) 1 ifi>n—j—g,
E= E da(h, g,1 . !
=0 28 )< ! )( r ) {2 otherwise.

The values of X, Y, W, and Z needed to compute g1 and g» are given in Table 1.

TaBLE 1. THE VALUES OF ¢;, FOR i = 1..42

i Case X (@) Y(@@) W (i) Z(i)

1 q1 b—nh n—>b c—h n—c

2 q2 n—>b n—h—t n—c n—h—t

3 q3 l—h n—>b l—h n—c

4 qa4 n—>b n—h—t—b+l1 n—c n—h—t—c+I

8The length of the cluster plus its bounding moats (as shown in Fig. 5) is given by b =
l +2(g +1). Note that W(i) and Z(i), which account for edge effects, are identical to X (i)
and Y (i), respectively, except that every instance of b isreplaced by ¢ = min(n,/+ j + g+ 1),
which is the size of the cluster plus its bounding moats when the cluster is located within j < g
genes of either edge of the genome.
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5.3. Lower bound for incomplete clusters

A similar approach can be used to calculate a lower bound on the probability of observing a maximal
cluster of size h, for all h > 7. To compute the upper bound, an outer gene was allowed to be within a
distance g of the chain on G1 or G2 but not both. However, as explained previously, this constraint on
the location of the outer genes is not sufficient to guarantee that the cluster is maximal. For example, both
genes 5 and 6 in Fig. 5(c) are individually “safe,” but together they extend the cluster. Consequently, the
constraint is not strict enough and thus yields an upper bound rather than the exact probability.

To compute the lower bound, we strengthen the constraint on the placement of the outer genes. Let I3
represent the set of configurations for which the genes in H form a max-gap cluster and no outer gene
(agenein M — H) is located within a distance g of the cluster on G1, regardiess of where it is located
in G. Let I, represent those configurations for which the genesin H form a max-gap cluster and no outer
gene is located within a distance g of the cluster on G,. Both constraints are unnecessarily restrictive,
but will guarantee that the outer genes do not extend the cluster and that the genes in H form a maximal
cluster.

Our lower bound is the union of these two cases. Py, = P(I1 U Ip) = P(I1) + P(I2) — P(I1 N D).
Assuming equal genome sizes, I; and I, are symmetric, and consequently P(I1) = P(I2). In this case,
the lower bound can be written as Py, = 2P(I1) — P(I1 N I).

P(I1) can be computed by Equation (6), replacing g1 with g3 (specified in Table 1). The intersection
of the two constraints P (11 N I2) is the probability of observing a configuration in which no outside
gene is within a distance g of the cluster in either genome. This probability can also be computed from
Equation (6), except we again replace g1 with g3, and g2 is replaced by g4 (specified in Table 1). Combining
these two applications of Equation (6) yields a lower bound on the probability of observing a cluster of
exactly size h:

m—h
hlt!r!
Piow =, g2l hit.r gl (2-qs[n. . t.r. g1 = qaln. hot.rg). ()
t=0 ’

When h > m/2, Equation (8) is a strict lower bound on the probability of observing a cluster of
size h. However, when i < m/2 a permutation may contain more than one shared cluster of size 4. The
strategy described above enumerates clusters according to their position in the genome, so a permutation
containing two clusters of size i at different locations will be double-counted. As / decreases, the percent
of random genomes that share multiple clusters will increase, and the probability will be correspondingly
overestimated. Thus, for small values of 4, it is possible that the probability computed by Equation (8)
will actually exceed the true probability. For all parameter values tested in Section 5.4, however, the
probabilities obtained by Equation (8) were always lower than those estimated by sampling.

5.4. Experiments

In order to investigate the accuracy of the bounds in different regions of the parameter space, we
compared them to the probability of observing max-gap clusters in randomly permuted genomes, estimated
through simulation. A number of different parameter values and genome sizes were analyzed. For each
set of parameter values, we generated one million random permutations of two genomes and used the
Gene Teams software (Bergeron et al., 2002) to find all maximal max-gap clusters. In Fig. 6, the upper
bound (dashed line) and lower bound (dotted line) are compared to the probabilities estimated from the
simulations (solid line). Notice that in Figs. 6(a) and 6(b) the simulated probabilities are shown only for
h < 10 since only one million random trials were generated and that is the cluster size at which the
probabilities drop below 1076,

First, we considered how the ratio of gap size to genome size affects the accuracy of the bound. Our
experiments suggest that when the maximum gap size is small with respect to n (about 1%), the upper
bound is extremely accurate for all values of & (asillustrated in Fig. 6(b)). However, when the maximum gap
size is larger with respect to n (2% or 3%), then the bounds are exact only when estimating the probability
of alarge or complete max-gap cluster. This is illustrated in Fig. 6(d), which shows the behavior of the
bounds when n = 500, m = 166, and ¢ = 15. For these parameter values, the bounds are extremely
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FIG. 6. The probability of observing at least one max-gap cluster of size » when (a) n = 1,000, m = 250, and
g = 10, (b) detail of Fig. 6(a) for 1 < 10, (c) n = 1,000, m = 250, and g = 20, and (d) » = 500, m = 166, and
g = 15. Salid lines indicate simulations results, dashed lines the upper bound, and dotted lines the lower bound.

accurate for large values of &, but begin to diverge significantly as 4 drops below 100. To what extent
does the divergence of the upper bound effect the conclusions we may draw about cluster significance? At
a significance level of @ = 0.01, for example, the error in the upper bound would lead to the unnecessary
rejection of significant clusters of size 8 to 15. At a significance level of « = 0.001, however, the upper
bound could be used to correctly determine that no matter how large the cluster size, the null hypothesis
cannot be rejected.

In addition to accuracy, we also considered the monotonicity of the probabilities with respect to cluster
size. Our analysis shows that, under a null hypothesis of random gene order, the probabilities of observing
a max-gap cluster are not always monotonic with respect to cluster size, but often decrease initially and
then increase as h approaches m. For example, when n = 1,000, m = 250, and g = 20, Fig. 6(c) shows that
the chance probability of observing a cluster of 50 genes is actually smaller than the chance probability of
observing a cluster of 100 genes. This nonmonotonic behavior can be understood intuitively by observing
that, as the size of the cluster increases, the max-gap criteria implicitly increases the maximum length of
the cluster as well. As a result, as the size of the cluster sought increases, the probability of observing
such a cluster may grow substantially.
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TABLE 2. NUMBER OF MAX-GAP CLUSTERS OF VARYING
SI1ZES SHARED BETWEEN E. coli AND B. subtilis FOR A
RANGE OF GAP VALUES

Cluster size
Gap 2-3 4-10 11-26 27-60 > 60
1 108 21 1 0 0
5 112 26 1 0 0
15 144 32 2 0 0
50 165 50 6 2 1
100 0 0 0 0 2

In order to demonstrate the utility of our statistical tests, we conducted a whole genome comparison
of the E. coli and B. subtilis genomes. A mapping of orthologs between the two genomes was obtained
from the GOLDIE database (Bansal, 1999). The E. coli genome has n = 4,108 known genes and the
B. subtilis genome has n = 4,245 known genes. After eliminating ambiguous orthologs, the map yields
m = 1,315 homologous pairs. Using the Gene Teams software (Bergeron et al., 2002), we identified all
max-gap clusters shared between the two genomes for values of g ranging from 0 to 125. When g = 110,
all homologs formed one complete cluster.

A subset of the results selected to illustrate the general trends is shown in Table 2. In addition, Fig. 7
shows the sizes of the clusters found with a range of different gap sizes. Our results fall into three regimes.
When g = 0..40, cluster sizes range from 2 to 12, except for one larger cluster of size 20 to 30. When
g = 40..70, clusters sizes grow from 2 to about 600. Finally, for gap sizes of g > 70, the homologs form
only one or two large clusters.

The upper bound on the probability of observing at least one cluster of size & under the null hypothesis
was calculated from Equation (6) for n = 4,108, m = 1,315, and a range of values of # and g. These
probabilities are indicated by the dashed linesin Fig. 8. To assess the accuracy of our upper bound for this
bacterial dataset, we again compared it with estimates of the probability of observing max-gap clusters
in randomly permuted genomes of the same size, obtained through simulation. We generated one million

random permutations of two genomes with n = 4,108 genes and m = 1,315 homologs and again used
the Gene Teams software (Bergeron et al., 2002) to find all maximal max-gap clusters with gap sizes
ranging from g = 0 to ¢ = 100. Figure 8 compares our upper bound (dashed lines) with the probabilities
estimated from simulations (solid lines). The accuracy of the bound depends on both /4 and g. The bound
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FIG. 7. The distribution of observed cluster sizes between E. coli and B. subtilis for g ranging from 0 to 125.
The dashed line indicates the largest cluster found and the dotted line indicates the smallest cluster found for each

value of g.
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FIG. 8. Probability of observing max-gap clusters of size & in the E. coli and B. subtilis genome comparison for
g = 0to g = 25. Solid lines show probabilities estimated via simulation and dashed lines indicate the upper bound
on the probabilities, calculated using Equation (6).

is extremely accurate when g is between one and fifteen, but as g becomes larger the bound diverges from
the estimated probabilities for small values of 4. However, as h approaches m, the bound provides a very
accurate estimate of the probability even for large g. Note that although one million random permutations
were carried out to estimate the cluster probabilities, clusters of size 20 < & < 1,314 occurred only
infrequently in randomly ordered genomes, and thus for g = 15 the probability estimates from randomized
genomes are still noisy in this region. Although the upper bound appears to drop below the simulated
probability for 2 = 1,312 and » = 1,306, this is due to the fact that one million iterates are insufficient to
obtain a precise probability estimate in this region of the parameter space.

Since the upper bound is highly accurate for 0 < g < 15, it can be used to evaluate the significance
of clusters detected through whole genome comparison. If we consider a significance threshold of 0.001,
then Fig. 8 shows that clusters of size three and larger are unlikely to be observed given random gene
order when g = 0. When g = 15, however, only clusters of size seven or larger appear to be significant.
Using these statistics, we find a total of 128 homologs in some significant cluster when ¢ = 0, whereas
191 homologs are in a significant cluster when g = 1 and only 82 are in a significant cluster when g = 15.
This suggests that using a gap value of ¢ = 1 provides more discriminatory power than either g = 0 or
g = 15 for this dataset.

For ¢ < 40, most max-gap clusters contain 2 to 10 genes, which corresponds to the range of sizes for
typical operons (Zheng et al., 2002). We compared the clusters to the RegulonDB database of experimen-
tally determined operons in E. coli (Salgado et al., 2004) and verified that for gap sizes of 0 to 10, over
90% of the clusters are comprised entirely of genes from a single operon. The single large cluster of over
20 genes is composed entirely of ribosomal proteins, which together form the ribosomal “ super-operon”
in E. coli.

An intriguing observation is that the number of large clusters seems to be fewer than expected under the
null model. When g > 25, the null model predicts that the probability that all genes will form a complete
cluster is close to one. However, a gap size of g > 100 is required to obtain a complete max-gap cluster
in the bacterial dataset. This discrepancy can be explained by the presence of operons. Since the genes in
operons are densely clustered (Chen et al., 2004), the singletons will be clustered more densely as well.
These runs of singletons form large gaps and prevent large clusters from occurring as often as they would
under a model of random gene order. This is one piece of evidence that the max-gap cluster definition
is a good discriminator, since the frequency of both small and large clusters is clearly different than that
expected under the null hypothesis, at least for this dataset. In eukaryotes, clusters will generally be due to
shared ancestry rather than conserved operons, and so the difference between the observed and predicted
cluster sizes remains to be seen.
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6. CONCLUSION

We have presented the first rigorous statistical treatment of max-gap clusters, a definition that is frequently
used in empirical studies (Blanc et al., 2003; Bourque et al., 2005; Chen et al., 2004; Friedman and Hughes,
2001; Luc et al., 2003; McLysaght et al., 2002; Overbeek et al., 1999; Simillion et al., 2002; Tamames,
2001; Vandepoele et al., 2002; Vision et al., 2000). Analytical statistical models such as ours are useful for
analyzing specific datasets, especially when only partial data is available, as well as choosing parameter
values and evaluating the discriminatory power of different cluster definitions. We provide exact statistical
tests for a marked gene scenario and an upper and lower bound on the probability of observing a cluster of
size h through a pairwise whole genome comparison. Finally, we demonstrated the utility of our statistical
model in a comparison of the E. coli and B. subtilis genomes, and confirm that for this dataset the max-gap
cluster definition provides excellent discriminatory power.

The results presented here suggest a number of other interesting directions for future work. For example,
the statistics presented in Section 4 are based on general max-gap clusters identified through whole genome
comparison, but are not applicable to clusters found with a greedy heuristic or for studies in which only
nested clusters are of interest. In particular, since nested max-gap clusters are a subset of general max-gap
clusters, we expect to find fewer nested clusters than general under the null hypothesis. This is especially
true for large clusters. In addition, the enumeration strategy we use to derive the statistics below relies
on the fact that max-gap clusters are digoint and that gene order is irrelevant. Thus, statistics for nested
max-gap clusters remain an open problem.

The model considered here treats the genome as an ordered set of genes, disregarding actual distances
between genes. This assumption can be advantageous because physical distances between genes often
differ substantially across genomes. Furthermore, it eliminates the need to model the variation in gene
density that can lead to gene-rich and gene-poor regions of chromosomes. A distance-based model would
have to take into account the fact that a cluster that is surprising in a gene-poor region might easily occur
by chance in a gene rich region. However, since prokaryotic genomes tend to be gene dense, it would
not be difficult to modify the model used here to explicitly consider physical distances for bacteria. When
analyzing clusters in bacterial genomes, statistical models that take into account the orientation of genes
and the possibility of circular instead of linear chromosomes are also of interest.

The current model also disregards the presence of tandem duplications and gene families. Since tandem
duplications can be detected easily in genomic data due to their regular spatial patterns, they can be taken
into account by a preprocessing step in genomic analysis. Gene families are more problematic, however.
Virtually all genomes contain gene families, sets of genes with similar sequence and function, that arose
through duplication of genetic material. Large gene families will increase the likelihood of observing a
conserved cluster by chance and, hence, can have a substantial impact on the statistical significance of
a particular cluster. Unfortunately, factoring gene families into an analytical statistical model is difficult
because the exact size of each gene family in a genome cannot be easily determined.

Finally, this work assesses the significance of spatial clusters of genes with respect to a null hypothesis
of random gene order. When searching for genomic regions that share a recent common ancestor (either
due to a duplication or speciation event), this null hypothesis is adequate. However, in order to distinguish
significant gene clusters that are merely due to a shared common ancestor from sets of genes that remain
clustered due to functional selection, the phylogenetic distance between the organisms will have to be
incorporated into the null hypothesis. This remains as future work.

In our analysis of the statistical properties of spatialy clustered genes under the maximum gap criterion,
we have shown that the precise formalization of the max-gap cluster definition has surprising implications
both for designing algorithms to find clusters and testing cluster significance. Most groups that choose a
max-gap cluster definition explicitly state that they do not consider the order of genes within the cluster
but only the distance between them. However, constructing max-gap clusters with a naive agglomerative
algorithm implicitly introduces constraints on gene order within the cluster and thus will find only a
subset of all max-gap clusters. In addition, our statistical analysis demonstrates that when a whole genome
comparison is being conducted, the chance probability of observing a max-gap cluster is not monotonic
with respect to cluster size. Although there is a widespread belief that cluster significance grows with
the number of homologs in the cluster, it is critical to recognize that if only a max-gap criterion is used
without additional constraints, larger clusters do not aways imply greater significance.
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APPENDIX: SIMPLIFIED EXPRESSION FOR dy(k, g, wig — 1)
The following three lemmas are needed to obtain a closed-form expression for do(k, g, wig — 1).

Lemma A.1. For all x such that k < x < wig, da(k, g, x) = da(k, g, wig + k — x).

Proof. Let S(k, g, x) be the set of max-gap clusters of size k and length x, with no gap greater than

g. Clearly, |S(k, g, x)| = do(k, g, x). Let (x1,...,x,—1), where 0 < x; < g, denote a member of this
Set, i.e,, a max-gap cluster of size k and length x = k + Zf:—llxi, with gap sizes xi, ..., x¢,—1. Define

a function f({x1,...,x,-1) = (¥1,..., vk-1), where y; = g — x;. We clam f maps S(k, g, x) to
S(k, g, wkg + k — x). To see this, observe that 0 < y; < g and the length of the cluster (y1, ..., yx—1) is

k-1 k—1 k—1
k+Y yi=k+) g—xi=k+(k-Dg—> x
i=1 i=1 i=1
=k+(k—1g—(x —k) = wg +k—x.
Since f is abijection, |S(k, g, x)| = |S(k, g, y)|. ]
Lemma A.2. For all x such that k < x < wyg, di(k, g, x) +di(k, g, wig +k—x —1) =di(k, g, wig).
Proof. By definition,

wig+k—x—1

X
dik, g, x) +dik, g, wig +k—x =) = dotk, g, i)+ Y dok, g ).
i=k j=k
Lemma A.1 can be used to simplify the second term, yielding
X x+1 Wkg
D dak.g. i)+ Y datk.g. j) =Y dalk. g. j) = di(k. g. wig). u
i=k J=wig j=k

Lemma A.3. If (wie +k —1) is even, then 2d(k, g, %(wkg +k—1) =di(k, g, wig).

Proof.
Wig %(wkg+k—1) Wig
dik, g, wig) = Y dalk, g, i)=Y datk, g, i)+ Y dak, g, ).
=k i=k J=% (weg+k+1)

Lemma A.1 can be used to simplify the second term, yielding

3 (wrg+k—1) k
Yo dkgi+ ), dakg))
i=k j=3%(wig+k—1)
1 (wrg+h—1)

1
= ). bk g i) =2dik g S(weg +k —1) u
i=k
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Theorem A.4.

wig — k

do(k, g, wgg — 1) = (g +DF L

Proof. Either wy, + k is even or it is odd. When it is even

wig—1 L (wig+)-1 wig—1
dotk, g, wig =) = Y ditk, g, i)=Y dik,g, )+ Y duk g )
=k i=k J=3 (wig+h)

Rewriting the summation index on the second term yields

3 (wig+h)—1 k
Yo dk.g.d+ Y ditkgowg+k—j—1)
i=k J=3 (wrg+h)—1

3 (wig+h)—1

= Y dik.gi)+dik. g wg+k—i—1).
i=k

By Lemma A.2, this simplifies to

3 (wig+6)—1

Wie — Kk _
> itk gowg) = —5— @+ D
i=k
as desired. Otherwise, if wie + k is odd, then
3 (wig+k—3) wig—1
. 1 :
dotk. g wig —=D= Y dik.g.)+dilk. g S thk=D)+ Y ditk.g. ).
i=k =% (wig+k+1)
The second term can be simplified by Lemma A.3, yielding
1 2 (wig+k—3) wie—1
Sk, g, wig) + }[j dik,g,)+ Y, ditk, g, ).
i=k j:%(u)kg+k+l)

As for the even case, the last two terms can be combined and simplified by Lemma A.2:

(wig —k = 1)
2

wig — k k-1
1
5 g+,

1
Edl(k, g Wrg) + di(k, g, wrg) =

as desired. [ |
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ADDENDUM

While this paper was in press, three publications with relevance to gene cluster statistics have ap-
peared: He and Goldwasser, J. Comp. Biol., 12(6), 2005; Raghupathy and Durand, 2005 RECOMB Ws.
on Comparative Genomics, published as Lecture Notes in Bioinformatics, volume 3678; and Hoberman
and Durand, ibid. The first of these papers provides an approximation (page 654) to our Equation 2, but
does not provide the closed form solution given here precisely because it disregards the edge cases.



