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Abstract

Palindromes are symmetrical words of DNA in the sense that they read exactly the same as their

reverse complementary sequences. Representing the occurrences of palindromes in a DNA

molecule as points on the unit interval, the scan statistics can be used to identify regions of

unusually high concentration of palindromes. These regions have been associated with the

replication origins on a few herpesviruses in previous studies. However, the use of scan statistics

requires the assumption that the points representing the palindromes are independently and

uniformly distributed on the unit interval. In this paper, we provide a mathematical basis for this

assumption by showing that in randomly generated DNA sequences, the occurrences of

palindromes can be approximated by a Poisson process. An easily computable upper bound on the

Wasserstein distance between the palindrome process and the Poisson process is obtained. This

bound is then used as a guide to choose an optimal palindrome length in the analysis of a

collection of 16 herpesvirus genomes. Regions harboring significant palindrome clusters are

identified and compared to known locations of replication origins. This analysis brings out a few

interesting extensions of the scan statistics that can help formulate an algorithm for more accurate

prediction of replication origins.
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1. INTRODUCTION

DNA palindromes are words from the nucleotide base alphabet  that are

symmetrical in the sense that they read exactly the same as their complementary sequences

in the reverse direction (see Fig. 1(a)). A DNA palindrome is necessarily even in length
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because the middle base in any odd-length nucleotide string cannot be identical to its

complement. Palindromes are involved in a variety of biological processes. For example, the

recognition sites for bacterial restriction enzymes to cut foreign DNA are mostly

palindromic (Waterman, 1995, Chapter 2). Palindromes also play important roles in gene

regulation and DNA replication processes (Wagner, 1991, Chapters 6, 12, 18; Kornberg and

Baker, 1992, Chapter 1). It appears that palindromes have to do with DNA–protein binding.

The local two-fold symmetry created by the palindrome provides a binding site for DNA-

binding proteins which are often dimeric in structure. Such double binding markedly

increases the strength and specificity of the binding interaction (Creighton, 1993, Chapter 8).

The herpesvirus family includes some of the well-known pathogenic viruses such as herpes

simplex, varicella-zoster, Epstein-Barr, and cytomegalovirus. Some of these viruses are

believed to pose major risks in immunosuppressive posttransplantation therapies, while

others have been associated with life-threatening diseases such as AIDS and various cancers

(Bennett et al., 2001; Biswas et al., 2001; Labrecque et al., 1995; Vital et al., 1995). A

number of the animal herpesviruses are of agricultural concern. For example, the alcelaphine

herpesvirus 1, indigenous to the wildebeest, is a causative agent of the fatal

lymphoproliferative disease malignant catarrhal fever in cattle and deer (Bridgen, 1991).

Replication origins are places on the DNA molecules where replication processes are

initiated. As DNA replication is the central step in the reproduction of many viruses,

understanding the molecular mechanisms involved in DNA replication is of great

importance in developing strategies to control the growth and spread of viruses (Delecluse

and Hammerschmidt, 2000). For Epstein-Barr virus, one of these replication origins has

been shown to associate with cellular proteins that regulate the initiation of DNA synthesis

in human cells (Sugden, 2002). This suggests that these replication origins are also

important locations for studying possible mechanisms of infecting human host cells.

Knowledge of the locations of these replication origins will enhance the development of

antiviral agents by blocking viral DNA replication or by interfering with the infection

process.

As replication origins in DNA are considered major sites for regulating genome replication

in general, labor-intensive laboratory procedures have been used to search for replication

origins in various organisms (e.g., see Hamzeh, 1990; Zhu, 1998; Newlon and Theis, 2002).

With the increasing availability of genomic DNA sequence data, the value of using

computational methods to predict likely locations of replication origins before the

experimental search has already been recognized although no prediction scheme that works

for all DNA in general is available to date. The success of the computational prediction

depends critically on the observation of the characterizing patterns in the nucleotide

sequence around the replication origins of the particular kind of organisms under study. For

example, the algorithm of Salzberg et al. (1998) predicted the replication origins for a

number of bacterial and archaeal genomes based on the finding of seven-base and eight-base

oligomers whose orientation is preferentially skewed around the replication origins.

However, as pointed out by the authors, this algorithm is not suited for DNA molecules, like

those in many viruses and their eukaryotic hosts, where multiple replication origins exist. In
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those cases, one would need to rely on other relevant sequence patterns to locate the

replication origins.

The existence of high concentrations of palindromes in proximity of the replication origins

of herpesviruses has been reported in some early studies (Weller et al., 1985; Reisman et al.,

1985; Masse et al., 1992). This phenomenon is generally attributed to the fact that initiation

of DNA replication typically requires an assembly of enzymes such as the helicases to

locally unwind the helical structure of DNA and pull apart the two complementary strands.

Furthermore, Masse et al. (1992) have demonstrated that by looking for palindrome clusters,

among other features such as clusters of close repeats and close inversions on the nucleotide

sequence, likely regions containing replication origins can be predicted.

Leung et al. (1994) describe how a statistical criterion, based on the scan statistics (Glaz,

1989; Dembo and Karlin, 1992), is developed for identifying nonrandom palindrome

clusters by modeling the occurrences of palindromes in the genome as points randomly

sampled from the unit interval according to the uniform distribution. Despite the fact that the

criterion worked well for the cytomegalovirus genome sequence used for illustration in that

article, the authors point out that the assumption of uniform distribution of palindromes has

not yet been mathematically justified. In this paper, we shall justify this claim under the

model that the nucleotide sequence is generated as a sequence of independent and identically

distributed (i.i.d.) random variables.

The second, and more important, aim of this paper is to analyze a collection of herpesvirus

genome sequences for nonrandom palindrome clusters and examine their connections with

replication origins. Table 1 presents the collection of herpesvirus genomes to be analyzed.

The dataset comprises all the complete genome sequences of the herpesvirus family

downloaded from GenBank at the NCBI website in June 2001. Listed along with each virus

name in the table are an abbreviation that will be used throughout this paper, its accession

number in the GenBank database, its genome sequence length in number of bases, and the

relative frequencies of the four nucleotide bases in the genome. The experimentally

confirmed replication origins among the viruses in this dataset will help us assess the

palindrome-based algorithm and suggest directions for improving the rate of successful

prediction.

It would be of interest to ask whether our algorithm, developed for the herpesviruses, can be

applied to identify replication origins in other organisms, or even to identify other

functionally important regions, such as regulatory sites. While one would not anticipate that

palindrome clusters will be the universal characterizing sequence pattern for all kinds of

organisms and all types of functional sites, existence of palindrome clusters may serve as

one possible criterion for these general purposes. For example, we have already noted that

this approach adds to the skewed-oligomers method described by Salzberg et al. (1998)

because it is not limited to DNA molecules with single replication origins. It is our hope that

it will contribute to a general prediction tool that can be broadly applied to various domains

of the tree of life.
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The organization of the paper is as follows: Section 2 formulates the random process

representing the palindrome occurrences on a nucleotide sequence and introduces the

Wasserstein distance for measuring the difference between the palindrome process and the

Poisson process. Using a general mathematical Poisson process approximation theorem, we

derive an explicitly computable upper bound for this distance which approaches zero under

suitable conditions. Section 3 briefly reviews how the scan statistics are used to identify

nonrandom clusters of palindromes, treating them as points randomly sampled from a

uniform distribution. The significant palindrome clusters obtained from the herpesviruses

are presented in Section 4 where their association with replication origins is also discussed.

We conclude with a few remarks about future works towards a more accurate replication

origin prediction scheme in Section 5.

2. DISTRIBUTION OF PALINDROMES ON RANDOM DNA SEQUENCES

In this section, we shall see that if a DNA genome is assumed to be a sequence of nucleotide

bases generated as i.i.d. random variables taking values A,C,G,T with probabilities

pA,pC,pG,pT, respectively, the occurrences of palindromes above a certain minimal length

can be approximated by a Poisson process. This is achieved by deriving an upper bound for

the Wasserstein distance, also called the d2 metric (Barbour et al., 1992, Chapter 10),

between the palindrome process and the Poisson process. Under suitable conditions, this

Wasserstein distance dwindles to 0 as the sequence length increases indefinitely. Before

these results can be stated, we need to first make precise the notion of the palindrome

process and explain the concept of the Wasserstein distance.

2.1. The palindrome process and Wasserstein distance

Due to the complementary base pairing, it is often sufficient to represent DNA as a single

nucleotide sequence. Any segment of the nucleotide sequence consisting of 2L bases will be

a palindrome if its first base and its 2Lth base form a complementary pair, and so do its

second and (2L − 1)st bases, the third and (2L − 2)nd, … , up to the Lth and (L + 1)st bases

in the center of the segment (Fig. 1(b)). Using the center of the palindrome to indicate its

position, we say that a palindrome of length 2L occurs at position i of the sequence if the

bases i − j + 1 and i + j are complementary to each other for j = 1, … , L. This

characterization does not preclude the possibility that a palindrome of length 2L may be

extended to a longer length if the complementary pairing continues on for j > L. In this

paper, it will be understood that the term “palindrome of length 2L” actually means

“palindrome of length 2L or more.” For short, we shall just refer to it as a 2L-palindrome. If

there are multiple 2L-palindromes centered at the same position of the sequence, only the

longest one will be counted.

Because it is impossible for a nucleotide sequence of length M to have any 2L-palindrome

centered at positions 1, … , L − 1 and M − L + 1, … , M, we shall represent the occurrences

of palindromes as a random process on , where n = M − 2L + 1. The palindrome

process is defined as
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Here Ii is the indicator random variable for the occurrence of a 2L-palindrome centered at

base i + L − 1 of the DNA sequence and δi/n denotes the unit point mass at i/n. In this

definition, the DNA segment H of length 2L spanning bases i, … , i + L − 1, i + L, … , i +

2L − 1 is associated with the indicator Ii and the unit point mass at . For brevity, we shall

say that the DNA segment H is positioned at i for the rest of the paper.

In an i.i.d. random nucleotide sequence, the success probability for the random variable Ii is

(1)

with θ = 2(pApT + pCpG), and the expected number of palindromes is

(2)

Because palindromes occurring close to each other overlap, the Ii’s are locally dependent.

The neighborhood of dependence of Ii is

(3)

For all j outside of Ai, Ii and Ij are independent of each other.

We want to approximate the palindrome process Ξ defined on the n equally spaced discrete

points  in [0, 1] by the Poisson process Zλ with intensity λ on the continuous

interval [0, 1]. In a number of DNA related studies (e.g., Arratia et al., 1990, 1996; Reinert

et al., 2000; Reinert and Schbath, 1998; Schbath, 1995), the differences between two

random processes are quantified by the total variation distance dTV between them. However,

as explained in Chapter 10 of Barbour et al. (1992), the total variation distance is too strong

to be useful for point processes like Ξ and Zλ. Indeed,

where the supremum is taken over all measurable subsets1 of  where

is often called the configuration space of [0, 1]. From this, it can be shown that
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which always equals 1 because Ξ has support only in {i/n : 1 ≤ i ≤ n} whereas Zλ has no

points in {i/n : 1 ≤ i ≤ n} with probability 1.

Unlike dTV , the Wasserstein distance, also called the d2 metric, is less sensitive to small

changes in the positions of points. It is more suitable for our purpose of measuring the

discrepancy between the palindrome process and the Poisson process. Essentially, the

Wasserstein distance between two point processes X and Y is the supremum of all expected

differences between X and Y under test functions f that do not fluctuate too vigorously on the

configuration space of [0, 1] with respect to the d1 metric explained below. These test

functions are called Lipschitz functions. We give a concise explanation of the Wasserstein

distance below. A more detailed description can be found in Barbour et al. (1992, Chapter

10, Section 2).

The Wasserstein distance between two point processes X and Y is defined as

where  and

Here, d1(ξ1, ξ2) denotes the distance between two configurations ξ1 = (y11, … , y1m1) and

ξ2 = (y21, … , y2m2). It is defined to be 1 if ξ1 and ξ2 have different numbers of points in [0,

1] and is defined to be the average distance between ξ1 and ξ2 under the closest matching if

they have the same number of points. More precisely,

where the minimum is taken over all permutations π of (1, 2, … , m) with m being the

common value of m1 and m2. Since our point processes are defined on [0, 1], without loss of

generality, we can assume that y11 ≤ y12 ≤ … ≤ y1m1 and y21 ≤ y22 ≤ … ≤ y2m2. Then, when

m1 = m2 = m,

The above simplified expression for d1(ξ1, ξ2) will be formally proved as Proposition 3 in

the appendix.
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With this background, we present the following general theorem giving an upper bound for

the Wasserstein distance between a point process Ξ and the Poisson process Zλ. We will use

the following notations. Let I1, … , In be indicator random variables with P(Ii = 1) = 1 − P

(Ii = 0) = pi, and pij = P(Ii = Ij = 1) for 1 ≤ i, j ≤ n. For each i, Ii has a neighborhood of

dependence Ai which is a collection of those indices j such that Ij may be dependent on Ii.

Define a random point process

where δi/n denotes the unit point mass at i/n. We also define the point processes

We let

denote the number of points in these processes.

Theorem 1—Let Zλ denote the Poisson process on [0, 1] with intensity .

Assume (Ij, j ∉ Ai) is independent of Ii and (Ik, k ∉ Ai ⋃ Aj) is independent of (Ii, Ij) for all i,

j. Then we have

(4)

where

is the sum of products of the probabilities of observing 2L-palindromes at positions i and j

within the neighborhood of dependence of each other and
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is the sum of probabilities of observing overlapping 2L-palindromes at both positions i and j

(∉ i) within the neighborhood of dependence of each other.

The proof of this theorem, given in the appendix, is based on an adaptation of Stein’s

method (1972) for the Poisson process setting. We shall now examine how to use Theorem 1

to obtain a Poisson limit for the palindrome process. With long sequences, n is large, making

the last term in the above bound negligible. We have noted in Equations (1) and (2) that for

any i, pi = θL, giving λ = nθL. It is also easy to see from (3) that in the palindrome process

Ξ, the neighborhood of dependence of Ii can stretch in either the forward or backward

direction from base i for at most only 2L − 1 bases. This implies

(5)

To obtain an explicit upper bound for the Wasserstein distance between Ξ and Zλ, two

things remain to be done. First, we need to examine the b2 term which involves the

probabilities of overlapping palindromes. Second, we need to work out a uniform upper

bound for  which is independent of i, j.

The b2 term comprises the probabilities pij of observing overlapping 2L-palindromes at

positions i and j that are no more than 2L − 1 bases apart. For example, the sequence

ATCGATCG contains a 6-palindrome centered at position i = 3 overlapping with another 6-

palindrome centered at position j = 5. The following proposition expresses the overlapping

probability pij in terms of the base probabilities pA, pC, pG, and pT, the length parameter L,

and the distance h = ∣i − j∣ between the centers of the two palindromes.

Proposition 1 (probability of overlapping palindromes)—Let h = ∣i − j∣ > 0. If h <

2L, the probability pij of having overlapping palindromes at both positions i and j are given

by the following.

Case (a): L ≤ h ≤ 2L − 1. We have

Case (b): 0 < h < L. Here we let L = qh + r and consider two subcases according to how big

the remainder r is in relation to h.

Subcase (b1): 0 ≤ r < (h + 1)/2.

Subcase (b2): (h + 1)/2 ≤ r < h.
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Proof—Without loss of generality, we can assume i < j < 2L + i. Let Hi and Hj denote the

DNA segments of length 2L positioned at i and j, respectively. Because of their overlap, Hi

and Hj must share a common subsegment of length 2L − h at the right end of Hi and the left

end of Hj. Throughout the proof, we shall use a’ to denote the complement of base a (e.g.,

A’ = T), w’ to denote the inverse complement of word w, and P(w) to denote the probability

for w (e.g., if w = (ATC), then P(w) = pApTpC). We discuss the cases separately.

Case (a)—Let w = (a1, … , a2L−h) denote the common subsegment. For both Hi and Hj to

be palindromes, we must have the arrangement as shown in Fig. 2(a). At the left end of Hi

and the right end of Hj, the sequence must be w’. The center portions of Hi and Hj must be

2(h − L)-palindromes denoted, respectively, by (u’, u) and (v, v’). The probability of this

arrangement is

where the sum is taken over all possible DNA words w of length 2L − h. Writing out P(w) in

terms of the base probabilities, we have

where a is summed over the four bases in the alphabet .

Case (b)—This time, let w = (a1, … , ah) denote the first h bases to the right of the center

of Hi and to the left of the center of Hj. Let u = (a1, … , ar) and v = (ah−r+1, … , ah),

respectively, stand for the first and last r bases of w. Figure 2(b) displays the necessary

structure in Hi and Hj for both of them to be palindromes when q = 3. In general, the

probability of such arrangements can be computed as

Subcase (b1)— . If q is odd,
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If q is even, the calculation is exactly the same except a and a’ need to be swapped, reducing

to the same expression in terms of the base probabilities.

Subcase (b2)— .

when q is odd. Just like subcase (b1), a and a’ need to be swapped when q is even. Either

way, the expression reduces to

The following two lemmas will facilitate proving that the palindrome process approaches a

Poisson limit under the equal complementary probability (ECP) assumption of pA = pT and

pC = pG.

Lemma 1—Under the ECP assumption, pij ≤ θ3L/2 for 1 ≤ i ≠ j ≤ n.

Proof—When j ∉ Ai, the inequality is trivially true because Ii and Ij are independent and pij

= pipj = θ2L. We therefore only need to look at those pij’s with ∣j − i∣ < 2L. The calculations

needed involve expressions of the form (0.5 − x)l + xl where x = PG = PC is a number

between 0 and 0.5 and l is a positive integer. We note the following elementary algebraic

properties:

A. 1/8 ≤ (0.5 − x)2 + x2 ≤ 1/4 (i.e., 1/4 ≤ θ ≤ 1/2).

B. If α > β ≥ 0, then

It follows that for any positive integer q

and
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In Case (a), L ≤ h ≤ 2L − 1. Here

With θL = 2L[(0.5 − x)2 + x2]L, we have

This ratio is ≤ 1 because the numerator is ≤ 1 while the denominator is ≥ 1 by property A

noted above. Similar calculations lead to

for Subcase (b1) and

for Subcase (b2). Both of these ratios are ≤ 1 again because of property A.

Remark on Lemma 1—Although not directly relevant to the analysis in this paper, it is of

interest to point out that calculations similar to those in Lemma 1 will also show that if pA =

pT and pC = pG, pij ≥ pipj = θ2L. Equality is obtained when one of the following special

situations occur: Either all four probabilities are equal to 1/4, or one pair of probabilities is

equal to 0 while the other pair is equal to 0.5. These equalities have been obtained by Ghosh

and Godbole (1996). Other than these special cases, we now see that under the ECP

assumption, Ii and Ij are nonnegatively correlated indicator random variables. Furthermore,

we have carried out quite extensive computations, and the results indicate that the positive

correlation between Ii and Ij holds even without the ECP assumption. We have yet to prove

it analytically though. This positive correlation essentially says that when a palindrome

occurs, it enhances the probability of having another palindrome occurring nearby that

overlaps with it.
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Lemma 2—Assuming ECP, then for 1 ≤ i ≤ n and j ∈ Ai, we have

(6)

provided that 4 ≤ L ≤ n/500.

Proof—Notice that ∣Vij∣ = ∑k∈Ai⋃Aj Ik, which is of the form ∑k∈Γij Ik. For simplicity, we

suppress the notational dependence of Γij on i, j and write

Lemma 3.1 from Brown et al. (2000) states that for any random variable X ≥ 1,

(7)

where κ = Var (X)/E(X). Here, we let X = 1 + W. Then

For k, l ∈ Γ. where ∣k − l∣ ≥ 2L, Ik and Il are independent. So we have

Consequently, κ ≤ 5. We observe that the upper bound on E(1/X) in (7) is an increasing

function in κ. Replacing κ by 5 yields

The middle inequality comes from the fact that

The last inequality follows from L ≤ n/500.
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2.2. Poisson limit for the palindrome process

We shall make use of Lemmas 1 and 2 in conjunction with Theorem 1 to prove the

following proposition stating that the palindrome process approaches a Poisson process in

the limit under suitable conditions. This is done by showing that the Wasserstein distance

between Ξ and Zλ can be made arbitrarily small provided that n → ∞ and L grows at a

suitable rate proportional to log n.

Proposition 2—Assume ECP and suppose that n, L → ∞ in such a way that nθL = λ,

where λ ≥ 1/32 is a fixed positive constant, then

where c is an absolute constant no greater than 131.

Proof—First note that the condition 4 ≤ L ≤ n/500 in Lemma 2 is easily satisfied when n

and L become large with nθL = λ. This condition will continue to be assumed true. It has

been pointed out in (5) that b1 ≤ n(4L − 1)θ2L ≤ 4LλθL. From Lemma 1, it follows that b2 ≤

n(4L − 2)θ3L/2 ≤ 4LθL/2λ. Combining the two inequalities gives

(8)

because θL/2 ≤ (1/2)L/2 ≤ 0.25 for L ≥ 4. From Lemma 2, it follows that

(9)

where the supremum is taken over 1 ≤ i ≤ n, j ∈ Ai \ {i}. Combining Inequalities (8) and (9),

we see that first term in the upper bound for the Wasserstein distance in Theorem 1 is less

than 130LθL/2. It can be verified that the second term 1/(2n) ≤ LθL/2 when λ ≥ 1/32. Putting

the two terms together gives

Furthermore, as nθL = λ, L must be growing at the rate log n, and hence

2.3. Remarks on various assumptions in Proposition 2

Various assumptions and constraints have been made in order to prove the result in

Proposition 2. How restrictive are these assumptions? Are they satisfied, at least to a

reasonable extent, by the actual viral genome DNA data? We shall discuss these questions in

the following remarks.
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Remark 1. The ECP assumption—It should be noted that the ECP assumption is

sufficient but not necessary for obtaining the Poisson process limit. The proofs of Lemma 2

and Proposition 2 require only the inequality pij ≤ θ3L/2, which can be computationally

verified to hold for many base frequencies that do not satisfy the ECP assumption (e.g., pA =

0.1, pC = 0.2, pG = 0.3, pT = 0.4). In those cases, the palindrome process still approaches a

limiting Poisson process.

Intuitively, the ECP assumption is quite believable, and it has been used in a number of

genomic or chromosomal DNA sequence analysis studies (e.g., Burge et al., 1992; Karlin et

al., 1993). Looking at the base composition of the herpesviruses in Table 1, we see that the

relative frequencies of A and T are quite close to each other, and so are those of C and G. It

is tempting to believe in the ECP assumption.

To examine this more objectively, one can turn to the Bayesian information criterion (BIC).

For each genome, we compare the saturated multinomial model where the bases are

generated with probabilities (pA, pC, pG, pT) summing to 1 against the ECP model with the

extra condition that pA = pT and pC = pG. As summarized in Tavaré and Giddings (1989), the

BIC of a model D can be computed by

where M is the sequence length, k is the number of free parameters in model D (k = 3 in the

saturated model and k = 1 in the ECP model), and

is the log likelihood for the data, with n(a) representing the count of base a in the sequence

and  the maximum likelihood estimate of the base probability pa. In the saturated model,

 is the relative frequency of a. In the ECP model,  is the averaged relative frequency of

a and a’. When comparing two statistical models, the model with smaller BIC is considered

superior.

It turns out from the BIC that in 8 out of the 16 herpesviruses in our dataset, the ECP model

is preferred hence justifying the ECP assumption for their DNA sequences. For the rest of

the viruses, we do not have such a nice statistical justification. Fortunately, one can

computationally verify, by working out the values of pij and θ, that the inequality in Lemma

1 remains true for those base probabilities estimated from each of the 16 viruses,

ascertaining the Poisson process limit for the palindrome process in each genome as

explained above.

Remark 2. Restrictions on n, L, and λ—We have also posed the restriction of 4 ≤ L ≤

n/500 and λ ≥ 1/32 in Lemma 2 and Proposition 2. These restrictions offer no difficulty at

all to our application. In each of the herpesviruses to be analyzed, n is of the order 105 and θ
is close to 1/4. The values of L of interest are in the range of 4–8. One can easily verify that

in each case, these requirements on n, L, and λ are satisfied.
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Remark 3. The constant c—The constant c in Proposition 2 can be made much smaller

than 131 in most cases of practical interest in DNA sequence analysis. The θ value

calculated from real DNA base frequencies are usually close to 1/4 rather than 1/2, making

the upper bound in (8) quite close to 4.25LλθL/2 and the upper bound in (9) close to 17/λ.

This will reduce the constant c to about 73. There are places in Theorem 1 and Lemma 1

where the bounds can be made tighter also. However, since the main goal of Proposition 2 is

to give a Poisson limit for the palindromes process, the actual value of c is not of great

concern.

Remark 4. Can the Poisson limit approximate the palindrome process in real
DNA?—Proposition 2 gives only an asymptotic result stating that the palindrome process

will approach a Poisson process in the limit. In the proof of Proposition 2, it was further

shown that the rate of convergence is of the order log . As this result is to serve as the

basis of approximating the palindrome process in a real DNA sequence which is finite in

length, one would naturally have to ask how large n and L have to be in order to make the

Poisson process a good approximation of the palindrome process. Since the d2 distance has

not been previously applied to any practical setting, at this point there is no firm basis for a

reliable assessment of how good the approximation is. However, we refer to a previous work

of Leung et al. (1994) where the Poisson approximation was demonstrated to be reasonable

by Q-Q plots for the cytomegalovirus genome with n = 229,354 and L = 5. The d2 distance

calculated for this case is 0.1644 (see Table 2). In our application to the herpesvirus genome

coming up in Section 4, we shall use this value of the d2 distance as a benchmark to pick

values of the parameter L for the given genome lengths and compositions.

Remark 5. The i.i.d. sequence model—Proposition 2 is proved only for a random

nucleotide sequence generated as i.i.d. random variables. While in many studies it has been

pointed out that this i.i.d. sequence model does not fit well with real DNA sequences, the

model is still frequently used for deriving statistical criteria to evaluate whether certain

observed sequence patterns are unlikely to be observed simply by chance, mostly because of

the difficulty in deriving analytical results with more elaborate models. It is also because of

this limitation that the i.i.d. model is used to derive Proposition 2. The assumption of

independent bases is rather hard to relax. However, one may consider allowing the base

probabilities pA, pC, pG, pT to vary from one region of the sequence to another so that the

local base frequencies are better reflected in the model. Indeed, there is evidence indicating

that base frequencies change from one region of the genome to another. For example,

Mrazrek and Karlin (1998) report a change of base preference in some herpesvirus

replication origins from having more G’s than C’s on one side of the origin to having more

C’s than G’s on the other. Because of the possibility of fluctuation of palindrome

probabilities due to these changes in base composition, we have checked the regions around

all the known replication origins in our dataset to see whether there are base compositional

differences substantial enough to cause the θ value to become significantly different from

that estimated from other segments of similar lengths sampled from the rest of the genome.

The result in every case shows no significant difference. We have therefore chosen to simply

use a value of θ estimated by the overall base frequencies in the entire genome for our

analysis.
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3. USE OF THE SCAN STATISTICS TO LOCATE PALINDROME CLUSTERS

In light of the mathematical result of the previous section, we can justifiably make the

assumption that the midpoints of the 2L-palindromes are distributed like the events of a

Poisson process on the unit interval. It then follows from the properties of a Poisson process

that if the total number of 2L-palindromes is known, say, m, then these m points are

distributed in the same way as m i.i.d. uniform random variables on (0, 1) (Karlin and

Taylor, 1981, Chapter 4).

For a set of points X1, … , Xm distributed independently and uniformly over the unit interval

(0, 1), the traditional scan statistic Nw = max1≤i≤m Nw(i), where 0 < w < 1 is a prescribed

window length and Nw(i) is the number of points in the interval [X(i), X(i) + w), is a

generalized likelihood ratio test statistic that has been shown to be most powerful among a

class of statistics to test against the clustering alternative (Naus, 1965). More recently,

Dembo and Karlin (1992) define the r-scan statistic Ar to be the minimal cumulative lengths

of r consecutive distances between the ordered statistics X(1), … , X(m). Formally, let Si denote

the distance between the ordered ith and (i + 1)st points, i.e., Si = X(i+1) − X(i), i = 1, … , m −

1. For any fixed integer r between 1 and m − 1, the r-scan is Ar = min{Ar(i), i = 1, … , m −

r} where , i = 1, … , m − r Both the traditional and the r-scan statistics

are used quite extensively in DNA sequence analysis (see Glaz et al., 2001, Chapter 6).

These two scan statistics are essentially equivalent. Consider the event {Nw(i) ≥ r + 1 for i =

1, … , m − r, which says that there are at least r + 1 points contained in the window [X(i), X(i)

+ w). This is equivalent to the event {Ar(i) < w} which says that there are at least r adjoining

spacings, starting at X(i), whose cumulative length is less than w. See Fig. 3 for illustration

with r = 3. We therefore have a simple duality relationship between Nw and Ar:

(10)

If either of the above probabilities is too small (say, < 0.05), then a cluster of at least r points

in a window of length w is statistically significant.

There is a very simple asymptotic approximation for the distribution of Ar (Cressie, 1977;

Dembo and Karlin, 1992): For any x > 0,

When m is large, it yields the following approximation:

(11)

Leung et al. (1994) make use of Equation (11) to identify nonrandom palindrome clusters

for the HCMV but they observe that in some cases the approximate probabilities so

computed have rather large discrepancies when compared with simulated probabilities such
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as those obtained by Glaz (1989). It is therefore not advisable to routinely apply this

approximation to evaluate the statistical significance of palindrome clusters without first

considering whether the desired accuracy can be achieved.

Leung and Yamashita (1999) review a few other Poisson type approximations to the

distribution of the scan statistics with special interest in their accuracy when used on data

from the palindrome occurrences in seven herpes genomes which is part of our dataset in the

present paper. Their simulation results show that the compound Poisson distribution put

forth by Glaz et al. (1994) based on a result of Roos (1993) produces the best approximation

to Ar. We have, therefore, adopted their result to evaluate the statistical significance of

palindrome clusters for the genomes in our dataset. Explicitly, this approximation is

(12)

where π = Q1, p = 1 − Q2/Q1, with

(13)

(14)

and . The approximation in (12) is used in the next

section to assess the statistical significance of the r-clusters of palindromes observed in the

herpesvirus genomes.

4. PALINDROME CLUSTERS IN HERPESVIRUS GENOMES

4.1. Choosing L

Our study of palindromes is motivated by their association with replication origins. In

HCMV, the replication origin “oriLyt” is successfully located by a significant cluster of

palindromes with L = 5 using the r-scan statistic The name “oriLyt” is designated to the

origin of replication where DNA replication is initiated during the lytic phase of the virus

life cycle. A detailed explanation of the terminology as well as the methodology is given in

the article of Leung et al. (1994). The choice of L = 5 turns out to be crucial for the

successful detection of the oriLyt. When the analysis is done with L = 4, too many

statistically significant clusters were detected over very diverse regions of the genome. With

L = 6, no significant palindrome cluster was detected at all. This indicates that the choice of

L can be quite influential on the success rate of predicting a replication origin. Too small a

value of L degrades the specificity while too large a value reduces the sensitivity of this

method of replication origin prediction. However, apart from the knowledge that L should

increase like the logarithm of the sequence length for the palindrome process to approach

the Poisson limit, we do not have any guideline on what is the best length of palindromes

one should examine.

LEUNG et al. Page 17

J Comput Biol. Author manuscript; available in PMC 2014 May 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We have therefore set up our algorithm in such a way that L is a parameter in the program so

that its value can be easily reset by the user. The prediction accuracy is tested on our dataset

with L = 4, 5, 6, 7, and 8. L = 5 is found to work best for many of the genomes, but there are

several exceptions. For example, choosing L = 5 for BHV1 produced 17 significant

palindrome clusters, only two of which are close to replication origins. Increasing L to 6

reduces the number of significant clusters to five, which is a more acceptable number. This

is at first somewhat surprising because the BHV1 genome is much shorter than that of

HCMV. On closer examination, we notice that BHV1 has a much higher C/G content than

all the other genomes, yielding a higher θ, which affects the palindrome probability.

In using the scan statistics to detect palindrome clusters, the choice of L should be made so

that the overall palindrome process can be approximated reasonably by a Poisson process on

one hand, but it should still allow the unusual palindrome clusters to be detected on the other

hand. Proposition 2 tells us that the Wasserstein distance between the palindrome process

and the Poisson process is bounded above by a quantity proportional to LθL/2, which

depends on the base frequencies as well as L. Table 2 contains the values of LθL/2 computed

at L = 4, 5, 6, 7, 8 for the base frequencies of the 16 herpesvirus genomes. If we use the

value of LθL/2 with L = 5 for HCMV as a benchmark (that is, for each virus, we choose L

such that LθL/2 is closest to 0.1644), L is chosen to be 5 for most of the viruses with the

exceptions of BHV1, HSV1, and HSV2 whose genomes are more C/G rich than the others.

For these three viruses, L = 6 is the closest choice. The entries corresponding to the chosen L

are bold-printed in Table 2.

Eventually, we hope to be able to formulate a criterion of choosing L for each genome that

has a biological basis on the type of genome structure under analysis. However, this can be

achieved only if we have a larger database of experimentally confirmed replication origins.

For now, our hope is that by reporting these regions of significant palindrome clusters, we

will be able to facilitate the experimentation to expand this database, which will in turn help

improve the prediction scheme.

4.2. The palindrome clusters and replication origins

Having chosen L, we have a computer program, which is a simple adaptation of an

algorithm of Leung et al. (1991), to examine each of the herpes genome nucleotide

sequences and find all 2L-palindromes. It should be noted that we choose to use this

particular program mainly because we have easy access to it and there are other programs

for finding palindromes available in standard sequence analysis packages such as EMBOSS

(Rice et al., 2000). Only the nonredundant 2L-palindromes are used for the analysis. That is,

if one palindrome is completely contained in a longer one, the shorter palindrome will be

discarded. The S-Plus functions developed by Leung and Yamashita (1999), based on the

compound Poisson approximation to the r-scans described in Section 3, are then applied to

examine the palindrome locations and identify all the nonrandom (r + 1)-clusters with r

ranging from 1 to 15. Table 3 shows the spans of all the significant clusters found in HCMV,

where the span of a cluster is the range of bases starting at the beginning position of the first

palindrome in the cluster to the ending position of the last palindrome in the cluster. Not

surprisingly, the spans of many of these clusters overlap one another. To reduce redundancy,
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we go through the list of clusters and join them to become one if their spans overlap. After

this joining process, typically only a few nonoverlapping regions of a genome emerge. Each

region contains one or more significant clusters. Table 4 lists all the regions found from the

herpesvirus genomes.

Although our ultimate goal is to eventually make use of palindrome clusters to help predict

the likely locations of replication origins, it must be recognized that at this stage, it is not yet

possible to achieve much prediction accuracy. There are two main problems. First, the

prediction procedure must also include information about clusters of close repeats and

inversions which are also known to be characteristics of replication origins. A close repeat

(respectively, inversion) is a segment of DNA with an exact (respectively, inverted

complementary) copy of itself present in close vicinity, say, within 150 bases. A palindrome

is actually a special case of close inversion because it is a segment of DNA followed

immediately by its inverted complement. The statistical assessments of clusters for close

repeats and inversions still need to be developed. Second, reports on confirmed location of

replication origins is relatively scarce. We hope that the findings of the palindrome clusters

in this paper will be helpful towards the experimental determination of more replication

origins so that more information is available for prediction accuracy testing in the future.

Nevertheless, even with limited information, it is still of interest to examine the

correspondence between these significant palindrome clusters and the actual confirmed

locations of the replication origins. From various sources like the annotations in the

GenBank file of these sequences and the references therein, plus published genetic maps and

other biomedical articles (Farrel, 1993; Masse et al., 1992; McGeoch and Schaffer, 1993;

Baumann et al., 1989), we are able to compile a list of replication origins in 10 of the 16

herpesviruses. These include one herpesvirus hosted in the cow, two in the horse, and seven

in humans. It is not surprising that these viruses have been studied more than the others

because of their agricultural and medical importance. The location of those origins are

displayed in Table 5, and we also indicate them in the last column of Table 4 whenever they

are close (within 2% of the genome length) to one of the regions found to contain significant

clusters.

While we see some agreements between palindrome cluster regions and replication origins

in BHV1, EBV, and HCMV, many clusters regions have not been found to contain

replication origins. There are two possibilities. First, there may be a replication origin which

has not yet been experimentally located so that it is not documented in the biomedical

literature. Second, a cluster region may correspond to a regulatory site rather than a

replication origin. For example, the region 195029–195268 in HCMV is actually an

enhancer element (Weston, 1988).

We also note that among the 19 replication origins compiled in Table 5, only five of them

have palindrome clusters in their proximity. Palindrome clusters by themselves, therefore,

will not be sufficient in terms of replication origin prediction. This is not unexpected

because the sequence features of close repeat and inversion still need to be incorporated into

the prediction scheme. Indeed, for the 14 replication origin sequences which do not contain

any palindrome clusters, we further analyze the sequence structure around them using the
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program developed by Leung et al. (1991). Highly noticeable close repeats or inversions are

found in all of these sequences, with only one exception.

The one exception is the oriL in the herpes Simplex I (HSV1) virus. This replication origin,

located at position 62475 of the genome, is not identified by any significant palindrome

clusters, nor does it have any unusual clusters of close repeats and inversions in its

proximity. Instead, it has a perfect palindrome of length 144 stretching from base 62404 to

base 62547. This means that it is possible to have a replication origin sequence with a highly

unusual palindrome, yet our method has failed to identify it because it contains only a single

long palindrome instead of a cluster of shorter ones. Upon further examination for long

palindromes in the other genomes in our dataset, we find that the two replication origins of

the chicken pox virus (VZV) located at bases 110087–110350 and 119547–119810 also

contain two palindromes of length 36 from base 110194 to 110229 and 119668 to 119703.

Again, despite the presence of a long palindrome, no significant palindrome cluster is

detected.

These observations suggest the necessity of a generalization of our method of identifying

palindrome clusters to take the length of the palindrome into consideration. Presently, we

represent the occurrence of a palindrome by a point placed at its center. These points are

considered equally as events in a Poisson process. Hence, the 144 bp palindrome carries the

same weight as a 10 bp palindrome and counts as only one point. Suppose that we weigh the

palindromes proportional to their lengths; then the 144 bp palindrome would count as 14

points and be deemed a significant cluster by itself. The idea of letting weights be given to

events in a point process is encompassed in the theory of marked point process where each

point is attached with a real-valued random variable called a mark. The Wasserstein distance

between the new palindrome process and the appropriate marked Poisson process, as well as

the distribution of the scan statistics will need to be developed. Such extension of the present

model is under way. Together with the future incorporation of close repeats and inversions,

we anticipate that a more accurate and efficient prediction scheme for replication origins can

be established.

For the time being, the nonrandom palindrome clusters located by the method in this paper

can be used for prioritizing which segments of DNA should be experimentally tested for

replication origins first. Among the 10 herpesvirus genomes in Table 5, 12 nonrandom

palindrome clusters have been identified of which 5 (over 40%) are in proximity of

replication origins. One would, therefore, expect that for those herpesviruses where no

replication origins have yet been identified, the chance of finding a replication origin in a

segment of about 5% the length of the genome around a palindrome cluster would be much

better than that of a random genome segment of similar length. We believe that, like the

work of Masse et al. (1992) on HCMV, a good initial choice of genome segments for testing

can expedite the experimental search for replication origins.

5. CONCLUDING REMARKS

In this paper, we have focused our analysis on herpesvirus genomes. We shall be conducting

a broader analysis on other families of double-stranded DNA viruses such as the
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adenoviruses and papillomaviruses to gain more insight into the relationship between

palindrome clusters and replication origins in other viral genomes. Moreover, we would like

to point out that palindrome clusters may also be associated with the other biologically

relevant functional sites (e.g., enhancer elements, transcriptional regulators as indicated in

Table 4). The general statistical criterion for significant palindrome clusters will allow

exploratory studies of such possible associations to be undertaken. The computer programs,

implemented in C and S-Plus, for locating statistically significant clusters of palindromes

using scan statistics will be accessible from the web page www.bioinformatics.utep.edu/

mleung so that interested readers can adapt them for other applications.

Recently, predictions for various biological features, such as CpG islands and coding

regions on the genome sequence, have been accomplished using hidden Markov models. We

expect that the hidden Markov model approach can also be useful for prediction of

replication origins. The difficulty, at least for now, is insufficient known replication origins

that can be used for estimation of the model parameters. In cases where data is scanty, it has

been suggested (Durbin et al., 1998) that Bayesian estimation should be used instead of

maximum likelihood estimation. In this regard, the knowledge gained from understanding

the connection between clusters of palindromes and repeats can be useful for choosing

reasonable prior distributions for the model parameters.

It is a well known fact that nucleotide sequences in real DNA molecules do not fit well with

the model of i.i.d. random variables (Philips et al., 1987; Prum et al., 1995; Leung et al.,

1996; just to name a few). Preferably a Markov model of order at least 3 should be used.

This motivates the need to generalize Theorem 1 to a Markov chain context. Even from a

purely mathematical point of view, such a generalization is an interesting problem worthy of

in depth investigation. Once more, this illustrates that the interaction between mathematical

and biological research will prove fruitful for the advancement of both sciences.
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APPENDIX: TECHNICAL PROOFS

Proposition 3

Let Γ = [0, 1] with metric d(x, y) = ∣x − y∣. If  with 0 ≤ t1 ≤ ⋯ ≤ tm ≤ 1 and

 with 0 ≤ s1 ≤ ⋯ ≤ sm ≤ 1, then

(15)

for all permutations π of (1, ⋯ , m), and hence
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Proof

We use mathematical induction to prove the claim. Suppose first that m = 2. Without loss of

generality, we may assume t1 = min{t1, t2, s1, s2}. Then it suffices to consider the following

three cases.

(i) t2 ≥ s2, then

(ii) s1 ≤ t2 < s2, then

(iii) t2 < s1, then

Now, suppose (15) holds for m ≤ k with k ≥ 2; we shall prove it holds for m = k + 1 and all

permutations π of (1, ⋯ , k + 1). As a matter of fact, the claim is obvious if π(k + 1) = k + 1.

Assume π(k + 1) ≠ k + 1, then follows that

Proof of Theorem 1

Define a Poisson process, , on  as follows:

where ζ1, ζ2, … are independent random variables uniformly distributed on J and N is a

Poisson random variable with mean λ and is independent of the ζi’s. For coupling argument

below, we need to represent the usual Poisson process on [0, 1] as
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where Ui’s are independent and uniformly distributed on [0, 1]. This can be seen as follows:

first we pick a point from J at random and then move it to the left in a uniform manner

within a distance 1/n. We shall prove Theorem 1 in two steps: first, we apply a coupling

argument to show that

And in the second step, we apply Stein’s method to bound , giving the

first two terms in Theorem 1. Then Theorem 1 will follow immediately by the triangle

inequality:

Step 1

We see that,

Step 2

Let  be an independent copy of {Ii, 1 ≤ i ≤ n}. We first derive Stein’s

equation (16) follows:
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where

and

Hence, we have derived Stein’s identity,

Consider Stein’s equation:

(16)

where  and .

We need a from Brown and Xia (2001, Theorem 5.1) which gives a nonuniform bound on

the solution of Stein’s equation: Suppose f satisfies  and hf is the solution to

Stein’s equation; then we have

(17)

where ∣ξ∣ denotes the number of points in the configuration ξ.

Back to the proof of Theorem 1. We have
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where

In the second inequality, we write hf (Ξ) − hf (Ξ − δi/n) − hf (Vi + δi/n) + hf (Vi) as a

telescoping sum and apply (17). Similarly,

Combining the bounds on the error terms R1(hf) and R2(hf) which are independent of f, we

take the supremum over all f with  to get the d2 distance. This completes the

proof of Theorem 1.

Remark

Theorem 1 has been extended by Chen and Xia (2004) using Palm theory to a more general

setting with wider applicability.
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FIG. 1.
DNA palindrome. (a) This is a palindromic nucleotide sequence on the two complementary

strands of DNA which are always read in opposite directions from the 5′ end to the 3′ end

as shown by the arrows. The displayed segment reads exactly the same on both strands. (b)

On each strand, the first base of the palindrome is complementary to the last, the second to

the second last, and so on. This is a schematic representation of such complementary pairing

between the bases in a 2L-palindrome centered at base i.
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FIG. 2.
Overlapping palindromes. (a) When L ≤ h ≤ 2L − 1, the DNA segments Hi and Hj must have

this structure for both of them to be 2L-palindromes centered at positions i and j,

respectively. The center position of each segment is represented by a bold vertical bar. (b)

Similarly, this displays the structures of Hi and Hj for both of them to be palindromes when

0 < h < L. In this illustration, q = 3.
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FIG. 3.
The w- and r-scan statistics. The equivalence of the events {Nw ≥ r + 1} and {Ar < w} is

illustrated with r = 3.
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Table 1

The List of Herpesvirus Genomes to be Analyzed

Name Abbrev. Accession Length Base composition

Alcelaphine herpesvirus 1 AHV1 NC_002531 130608 (.27, .24, .22, .26)

Ateline herpesvirus 3 AtHV3 NC_001987 108409 (.32, .19, .17, .31)

Bovine herpesvirus 1.1 BHV1 NC_001847 135301 (.14, .36, .37, .14)

Equine herpesvirus 1 EHV1 NC_001491 150223 (.22, .29, .28, .22)

Equine herpesvirus 4 EHV4 NC_001844 145597 (.25, .25, .25, .25)

Gallid herpesvirus 1 MDV2 NC_002530 110637 (.24, .25, .25, .25)

Gallid herpesvirus 2 MDV NC_002229 138675 (.28, .22, .21, .29)

Human herpesvirus 1 HSV1 NC_001806 152261 (.16, .34, .34, .16)

Human herpesvirus 2 HSV2 NC_001798 154746 (.15, .35, .35, .15)

Human herpesvirus 3 VZV NC_001348 124884 (.27, .23, .23, .27)

Human herpesvirus 4 EBV NC_001345 172281 (.20, .30, .29, .20)

Human herpesvirus 5 HCMV NC_001347 229354 (.22, .28, .29, .21)

Human herpesvirus 6 HHV6 NC_001664 159321 (.29, .22, .21, .29)

Human herpesvirus 7 HHV7 NC_001716 144861 (.32, .18, .17, .32)

Ictalurid herpesvirus CCV1 NC_001493 134226 (.21, .28, .28, .22)

Saimiriine herpesvirus 2 HVS2 NC_001350 112930 (.33, .18, .16, .32)
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Table 2

Values of LθL/2 at L = 4, 5, 6, 7, 8

Virus L = 4 L = 5 L = 6 L = 7 L = 8

AHV1 0.2523 0.1580 0.0950 0.0556 0.0318

AtHV3 0.2867 0.1854 0.1151 0.0695 0.0411

BHV1 0.3605 0.2469 0.1624 0.1038 0.0650

EHV1 0.2586 0.1630 0.0986 0.0580 0.0334

EHV4 0.2500 0.1563 0.0938 0.0547 0.0313

MDV2 0.2500 0.1562 0.0937 0.0547 0.0312

MDV 0.2600 0.1641 0.0994 0.0586 0.0338

HSV1 0.3213 0.2138 0.1366 0.0848 0.0516

HSV2 0.3400 0.2295 0.1487 0.0937 0.0578

VZV 0.2531 0.1587 0.0955 0.0559 0.0320

EBV 0.2700 0.1720 0.1052 0.0626 0.0365

HCMV 0.2603 0.1644 0.0996 0.0587 0.0339

HHV6 0.2615 0.1653 0.1003 0.0592 0.0342

HHV7 0.2948 0.1920 0.1200 0.0730 0.0434

CCV1 0.2577 0.1623 0.0981 0.0577 0.0332

HVS2 0.2997 0.1960 0.1231 0.0751 0.0449
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Table 3

Segments of the HCMV Genome Spanned by Significant r + 1-Clusters

r Clusters

1 None

2 None

3 92701–92792

4 92526–92718, 92569–92756, 92643–92792, 92701–92868, 195029–195227, 195109–195268

5 92526–92756, 92569–92792, 92643–92868, 195029–195268

6 92526–92792, 92569–92868, 92643–93119

7 91953–92792, 92526–9286, 92569–93119, 92643–93260, 92701–93520, 92709–93610 AU1

8 91635–92792, 91953–92868, 92526–93119, 92569–93260, 92643–93520, 92701–93610

9 91490–92792, 91635–92868, 91953–93119, 92526–93260, 92569–93520, 92643–93610, 92701–94183

10 91490–92868, 91635–93119, 91953–93260, 92526–93520, 92569–93610, 92643–94183

11 90759–92868, 91490–93119, 91635–93260, 91953–93520, 92526–93610, 92569–94183

12 90251–92868, 90759–93119, 91490–93260, 91635–93520, 91953–93610, 92526–94183

13 90251–93119, 90759–93260, 91490–93520, 91635–93610, 91953–94183

14 89585–93119, 90251–93260, 90759–93520, 91490–93610, 91635–94183

15 89585–93260, 90251–93520, 90759–93610, 91490–94183
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Table 4

Regions of the Herpesvirus Genomes Containing Significant Clusters

Genome Region Palindrome Feature

BHV1 77155–77168 3

102895–106948 22

113462–113636 5 1.75 mua from Ori

124582–124756 5 1.61 mu from Ori

131268–135221 21

EHV1 115125–119094 17 Overlaps transcriptional regulator

144064–148033 17 Overlaps transcriptional regulator

EHV4 None

HSV1 None

HSV2 None

VZV None

EBV 6772–11675 19 Contains OriP

49460–54858 25 Contains OriLyt

HCMV 89585–94183 19 Contains OriLyt

195029–195268 8 Enhancer element

HHV6 None

HHV7 120758–124422 16

AHV1 113456–113759 5

ATHV3 95350–100098 17

MDV2 93143–93243 4

109331–110590 8

MDV None

CCV1 None

HVS2 None

a
Here, mu stands for a map unit, which is 1% of the genome length. The distance is calculated from the midpoint of the cluster region to the

midpoint of the closest replication origin.
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Table 5

Location of Replication Origins in Ten Herpesviruses

Virus Replication origins

BHV1 111080–111300(OriS), 126918–127138(OriS)

EHV1 126187–126338

EHV4 73900–73919(OriL), 119462–119481(OriS), 138568–138587(OriS)

HSV1 62475(OriL), 131999(OriS), 146235(OriS)

HSV2 62930(OriL), 132760(OriS), 148981(OriS)

VZV 110087–110350, 119547–119810

EBV 7315–9312(OriP), 52589–53581(OriLyt)

HCMV 92270–93715(OriLyt)

HHV6 67617–67993(OriLyt)

HHV7 66685–67298
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