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Abstract

A molecule called transcription factor usually binds to a set of promoter sequences

of coexpress genes. As a result, these promoter sequences contain some short substrings,

binding sites, with similar patterns. The motif discovering problem is to find these similar

patterns, motifs, from a set of sequences.

Most existing algorithms find the motifs based on strong-signal sequences only (i.e.

those contain binding sites very similar to the motif). In this paper, we use a probability

matrix to represent a motif to calculate the minimum total number of binding sites re-

quired to be in the input data set in order to confirm that the discovered motifs are not

artifacts.

Next, we introduce a more general and realistic energy-based model, which considers

all sequences with varying degrees of binding strength to the transcription factors (as mea-

sured experimentally). By treating sequences with varying degrees of binding strength,

we develop a heuristic algorithm called EBMF (Energy-Based Motif Finding algorithm)

to find the motif, which can handle sequences ranging from those that contain more than

one binding site to those that contain none. EBMF can find motifs for data sets that

do not even have the required minimum number of binding sites as previously derived.

EBMF compares favorably with common motif-finding programs AlignACE and MEME.

In particular, for some simulated and real data sets, EBMF finds the motif when both

AlignACE and MEME fail to do so.

Keywords: Motif Finding(Discovering), Transcription Factor, DNA Microarray, Bind-

ing Site, Binding Energy

This research is supported in part by an RGC grant HKU 7135/04E
∗Contact person. Phone: (852) 2241 5752
†Department of Computer Science, The University of Hong Kong, Hong Kong. Email: {cmleung2, chin,

smyiu, tsang}@csis.hku.hk
‡School of Computer Science, Carnegie Mellon University, USA. Email: Roni.Rosenfeld@cs.cmu.edu

1



1 Introduction

One great challenge in molecular biology is to understand the regulation of gene expression

- the process by which a segment of DNA is decoded to form a protein. Two main steps

for gene expression are transcription and translation. During the transcription process, an

mRNA molecule is formed by copying a gene from the DNA. During the translation process,

the mRNA is decoded to produce a protein.

To start the transcription process for a particular gene, one or more corresponding pro-

teins, called transcription factors, have to bind to several specific regions, called binding sites,

in the promoter region of the gene. A transcription factor can bind to multiple binding sites,

but these sites typically have similar length (usually about 8 to 20 bp) and a common DNA

sequence pattern. For most transcription factors, the common patterns for their correspond-

ing binding sites, simply referred to as the motifs, are still unknown. Many laboratory-based

methods for motif identification have been developed, however, these experimental methods

are both expensive and time-consuming.

A recent trend in motif-finding is to make use of computational methods based on mi-

croarray data. Most existing computational methods [Bailey 1994, Bailey 1995, Buhler 2002,

Chin 2005b, Hughes 2000, Lawrence 1993, Liu 1995, Pevzner 2000, Roth 1998] are based on

having a set of sequences that are known to contain binding sites with very similar pattern

(i.e. the strong-signal model) as input. These approaches assume that a sufficient number

of such strong-signal sequences are available. However, this assumption may not be valid for

some transcription factors, and the number of strong-signal sequences may be too small to

successfully find the motif using existing methods. Some motif-finding algorithms also con-

sider sequences that are known not to contain any binding sites, in addition to strong-signal

sequences [Barash 2001, Jakt 2001, Sinha 2003]. However, for these algorithms, the number

of weak-signal sequences (sequences that should not contain substring similar to the motif)

with plausible binding sites is used in the hyper-geometric analysis in order to compute the

probability of such occurrences under the null-hypothesis. The lower the probability, the

more confident we have on the discovered motif. No attempt is made to exploit the patterns

of sequences without binding sites in order to find the motifs more effectively. Weak-signal

sequences should not contain any patterns similar to the motif, and this can be a useful form

of information. In fact, all sequences, strong-signal or weak-signal, with multiple occurrences
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of binding sites or without binding sites, contain different information about the motifs in

various forms and can be useful for motif-finding. Some researchers [Segal 2002, Segal 2004]

adopted this information by assigning probabilities to each input sequence si which represents

the probability that si contains at least one binding sites. However, these probabilities are

assigned artificially by human and the value of these probabilities are usually either 0 or 1.

In this paper, we focus on finding motifs for data sets that contain insufficient number

of sequences with strong signals. We first study the limitations of existing methods that

are based on the strong-signal model, i.e. the minimum required information in the input

sequences in order to identify the motif. Then we introduce a more general and realistic

energy-based model for dealing with data sets containing insufficient number of sequences

with strong signals. The approach we use is different from that in [Barash 2001, Jakt 2001,

Sinha 2003] in the sense that our model can handle sequences containing a varying amount

of signal, i.e. varying from sequences contain multiple binding sites to sequences without any

binding sites. It is also different from [Segal 2002, Segal 2004] in the sense that no artificial

assignment of probabilities is needed. Last, we show how our algorithm finds the correct

motif under those situations that algorithms based on strong-signal model fail to do so.

1.1 Better Characterization for Strong-Signal Model

Buhler and Tompa [Buhler 2002] have studied the limitations of computational approaches

based on the strong-signal model. They proposed a method to calculate the minimum number

of input sequences required and showed that, if the number of input sequences is less than

the minimum requirement, it is unlikely that there exists a computational approach that can

identify the motif.

One important assumption in their study is that each input sequence contains exactly one

binding site. In real situations, there can be multiple occurrences of binding sites, or multi-

ple binding sites, for the same transcription factor in one sequence [Bram 1984, Bram 1986,

Magdolen 1990]. In other words, even if the number of strong-signal sequences in the input

data set is small, there may still be enough binding sites or signals to enable the discovery

of the motif. This observation is supported by an experiment using only three very special

sequences with strong signal as input to identify the motif for GAL4, where each of the three

sequences contained multiple binding sites (see Section 2 for more details). According to the

results by Buhler and Tompa [Buhler 2002], these sequences are much less than the minimum
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number of input sequence required, which is 4, and it should be theoretically impossible to

find the motif for this input set (We set n = 787, t = 3, l = 13 and d = 2). However, we tested

this input set on two common motif-finding programs, AlignACE [Hughes 2000, Roth 1998]

and MEME [Bailey 1994], which are based on the strong-signal model. We found that both

programs could successfully identify the motif. Some natural questions to ask are then: how

do we decide whether an input data set has enough signals for motif recovery, and what are

the limitations of strong-signal model, i.e. minimum information, if we allow multiple binding

sites in each sequence?

Our first contribution is to improve Buhler and Tompa’s results by allowing multiple

binding sites in each sequence. We characterize the limitations of the strong-signal model in

terms of the minimum total number of binding sites, rather than the minimum number of

strong-signal sequences, required to be in the input data set. Buhler and Tompa represent a

motif of length l by a length-l string. A more general representation, which is used by most

existing approaches, makes use of a probability matrix. The probability matrix is a 4 × l

matrix where the rows are indexed by the nucleotides “A”,“C”,“G”,“T” and each entry in

the j-th column of the matrix represents the probability of the nucleotide’s occurrence at

position j of the binding site. So we represent a motif by a matrix instead of a string. Our

characterization on the limitation of the strong-signal model is confirmed by some data sets

on programs AlignACE and MEME.

1.2 Energy-Based Model

Existing algorithms are not effective to identify motif for input data sets that contain insuf-

ficient number of strong-signal sequences (see Section 2 for experimental results). Our main

contribution is a novel approach to solving this problem.

Existing algorithms have the following problems. They assume that each binding site in

the strong-signal model contains the same amount of signals. However, in reality, different

binding sites have different binding strengths with the transcription factor, thus contain

different amounts of signals. Also, sequences having comparatively weak signals (including

sequences with a weak binding to the transcription factor and sequences without binding

sites) are not used. In fact, these ignored weak-signal sequences also carry useful information

for identifying the motif.

In our model, we introduce a more general and realistic energy-based model to capture
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previously-ignored information. We make use of the additional information from experiments

and consider the binding strength (as measured experimentally) of each available sequence.

Intuitively the binding strength should relate to the degree of similarity between the motif

and the binding site in each sequence. Based on the binding strength, our model considers the

amount of signals that a sequence actually contains. This allows us to make use of sequences

with not so strong or even weak signals.

We then formulate the motif-finding problem in a way that allows multiple occurrences of

binding sites in each sequence. We develop a heuristic algorithm call EBMF (Energy-Based

Motif Finding algorithm) to solve the problem. We compare the performance of EBMF with

those of AlignACE and MEME. EBMF is shown to be effective on both simulated and real

data when the data sets contain insufficient number of sequences with strong signals. In

particular, in our test cases, EBMF is able to identify the motif while both AlignACE and

MEME fail to do so.

Our paper is organized as follows. Section 2 discusses the limitations of the strong-signal

model when given input sequences with multiple binding sites. Section 3 presents the energy-

based model. We also show how to convert existing experimental data to fit our model.

A heuristic algorithm EBMF is given in Section 4. Section 5 compares the performance of

EBMF with AlignACE and MEME. A conclusion is given in Section 6.

2 The Limitation of the Strong-Signal Model with Multiple

Binding Sites

With the assumption that each sequence contains exactly one binding site (a substring which

is close to the motif in Hamming distance), Buhler and Tompa [Buhler 2002] have studied

the minimum number of input sequences required for finding the motif based on strong-signal

model. In this section, we use a probability matrix to represent a motif and improve their

results by allowing multiple binding sites in a sequence.

Let a motif of length l be represented by a 4× l probability matrix M where M(c, j) repre-

sents the occurrence probability of the nucleotide c in the j-th position of a binding site. Given

t input sequences each of length n, those algorithms based on strong-signal model want to

find a probability matrix M and a background probability P0 = {P0(A), P0(C), P0(G), P0(T )}

(which represents the occurrence probabilities of “A”, “C”, “G”, “T” in the non-binding re-
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gions), which maximize the log likelihood (see [Bailey 1994]) of the t sequences generated

according to the background probability P0 with implanted binding sites generated according

to matrix M . Formally, the log likelihood of a binding site b generated according to matrix

M is

L(b,M) =
l
∑

i=1

log M(b[i], i)

The log likelihood of the non-binding regions generated according to the background proba-

bility P0 = {P0(A), P0(C), P0(G), P0(T )} is

LB = nA log P0(A) + nC log P0(C) + nG log P0(G) + nT log P0(T )

where nA, nC , nG and nT are the number of “A”, “C”, “G” and “T” in the non-binding

regions respectively. Since the length (tn − Bl) of non-binding regions is usually quite long

(over several thousand), it is expected that nA = P0(A)(tn − Bl), nC = P0(C)(tn − Bl),

nG = P0(G)(tn − Bl), nT = P0(G)(tn − Bl) and

LB = (tn − Bl)En0

where En0 = P0(A) log P0(A)+P0(C) log P0(C) +P0(G) log P0(G) +P0(T ) log P0(T ) which is

negative of the entropy of a nucleotide in non-binding regions. The log likelihood of t length-n

input sequences generated according to M and P0 is

Ltotal(M) = max

{

B
∑

k=1

L(bk,M) + (tn − Bl)En0

}

among all possible values of B and sets of B non-overlap binding sites {bk} in the t sequences.

Suppose the input sequences are generated based on this model, that is, we generate t

random sequences of length n based on the probability distribution P0 and plant in them

B∗ instances of a motif randomly generated according to an arbitrary profile matrix M∗.

Intuitively, if B∗ is small or M∗ looks too much like the background distribution, no algorithms

can possibly pick out the B∗ instances from the sequences without knowing M∗. It is because

there exist many matrices M different from M∗ (in the sense that the most probable strings

generated according to M are quite different from those generated according to M∗), which

have a log likelihood no less than Ltotal(M
∗). Therefore, the expected number of matrices
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with different consensus patterns, whose log likelihood are no less than Ltotal(M
∗), gives us

an idea if it is possible to find the motif M∗ from the input sequences. If the expected number

of matrices is large, then finding the motif is impossible, otherwise it is highly probable.

Given a string Q of length l and a Hamming distance d, we define a probability matrix MQ,d

such that for any j-th column of the matrix, the entry corresponding to the j-th character

in Q is (l − d)/l while the other entries in the same column are d/3l. We want to find the

expected number of matrices in this format which have log likelihood no less than Ltotal(M
∗).

If the expected number of matrices even in this restricted format and with log likelihood no

less than Ltotal(M
∗) is large, it is impossible to find the motif M∗ without extra information.

Assume the correct matrix is M∗ and the expected log likelihood of a binding site b

generated according to the matrix M∗ is LE . If the t sequences contain exactly B∗ binding

sites with respect to M∗, we can calculate the log likelihood of the t sequences generated

according to M∗ as Ltotal(M
∗) = B∗LE+(nt−B∗l)En0. Now let us consider the log likelihood

of a probability matrix MQ,d. If the Hamming distance between a binding site b and Q is

within d for d ≤ 3l/4, then we can show that L(b,MQ,d) ≥ (l − d) log[(l − d)/l] + d log(d/3l).

The log likelihood of the t sequences generated according to MQ,d is Ltotal(MQ,d) which is no

less than BL(b,MQ,d)+(nt−Bl)En0 if the input sequences contain B non-overlap substrings

whose Hamming distances from Q are within d (B can be different from B∗). Any MQ,d

may be considered as a possible solution for the motif-finding algorithm if Ltotal(MQ,d) ≥

Ltotal(M
∗).

Given a length-l random string Q with equal occurrence probabilities for “A”, “C”, “G”,

“T” and a length-l random substring b generated according to the background probabilities

P0, we show in the Appendix that the probability that the Hamming distance between Q and

b is at most d where 0 ≤ d ≤ l is

pd =
d
∑

i=0

(

l

i

)

(

3

4

)i (1

4

)l−i

Let X be the sequence formed by concatenating the t input sequences (the length of X is nt)

and bi be the i-th substring in X such that the Hamming distance between bi and Q is at

most d.

We want to partition the sequence X into several non-overlap segments X[ki−1 + 1 . . . ki]

such that at the end of each segment, there exists exactly one substring bi = X[ki− l+1 . . . ki]
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whose Hamming distance with a fixed string Q is at most d. Let Bpos(p, q) be the probability

for the substring X[p . . . q] such that the Hamming distance between Q and X[j . . . j + l −

1], where p ≤ j ≤ q − l, is larger than d while the Hamming distance between Q and bi =

X[q− l+1 . . . q] is at most d. Using the same assumption in [Buhler 2002] that the Hamming

distance between Q and X[j . . . j + l − 1] is independent for each substring in X, we have

Bpos(p, q) = (1 − pd)
q−p+1−lpd.

Consider the probability PQ,B that X contains exactly B non-overlap substrings bi at the

positions X[ki − l + 1 . . . ki] such that the Hamming distance between bi and Q is no more

than d while all other length-l substrings in X are of Hamming distance more than d from

Q. Depending on the position of the last substring bB , there are two cases to be considered.

Case I: kB > nt − l (the substring in X after the last binding site has length less than l, so

it is impossible to have a binding site after kB)

PQ,B =
B
∏

i=1

Bpos(ki−1 + 1, ki) = (1 − pd)
kB−BlpB

d

Case II: kB ≤ nt − l

PQ,B = (1 − pd)
nt−kB−l+1

B
∏

i=1

Bpos(ki−1 + 1, ki)

= (1 − pd)
nt−kB−l+1(1 − pd)

kB−BlpB
d

Note that the probability PQ,B is independent of the positions of the substrings bi but depends

on the ending position of the last binding site kB . The probability PQ,B can then be expressed

in term of the position of the last binding site j, the Hamming distance d and the number of

binding sites B, as follow,

PB(j, d,B) =











(1 − pd)
j−BlpB

d j > nt − l

(1 − pd)
nt−j−l+1(1 − pd)

j−BlpB
d otherwise

The probability of X that contains exactly B non-overlap substrings bi (without considering

the positions of the substrings) such that the Hamming distance between bi and Q ≤ d is the
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sum of probabilities PQ,B for all possible positions for the set of substrings {bi}

nt
∑

j=Bl













j − Bl + B − 1

B − 1






PB(j, d,B)







Assume X contains exactly B non-overlap substrings {bi} such that the Hamming distance

between bi and Q is no more than d. For each substring bi, L(bi,MQ,d) ≥ (l − d) log[(l −

d)/l] + d log(d/3l). Thus the log likelihood

Ltotal(MQ,d) ≥ B[(l − d) log[(l − d)/l] + d log(d/3l)] + (nt − Bl)En0.

The probability of X such that Ltotal(MQ,d) ≥ Ltotal(M
∗) is

⌊nt/l⌋
∑

k=B′











nt
∑

j=kl













j − kl + k − 1

k − 1






PB(j, d, k)

















where B′ is the smallest number of binding sites for a matrix MQ,d such that the log likelihood

of the t sequences generated according to MQ,d is no less than Ltotal(M
∗), i.e.

B′
[

(l − d) log
l − d

l
+ d log

d

3l

]

+ (nt − B′l)En0 ≥ B∗LE + (nt − B∗l)En0 (1)

By considering all possible substrings Q of length l and Hamming distance d, the expected

number of matrices MQ,d such that Ltotal(MQ,d) ≥ Ltotal(M
∗) is approximately

E(LE , B∗)

= 4l
⌊3l/4⌋
∑

d=0











⌊nt/l⌋
∑

k=B′











nt
∑

j=kl













j − kl + k − 1

k − 1






PB(j, d, k)



























According to Equation (1), B′ is a function of LE and B∗. (This is an approximation because

the log likelihood of a given motif MQ,d, Ltotal(MQ,d) ≥ Ltotal(M
∗) does not occur indepen-

dently. For example, if Ltotal(MQ,d) ≥ Ltotal(M
∗) when Q = “AAAAAA”, it is likely that

Ltotal(MQ,d) is also greater than or equal to Ltotal(M
∗) when Q = “AAAAAC”)

[Figure 1 about here.]

[Figure 2 about here.]
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[Figure 3 about here.]

Figure 1 shows the expected number E(LE , B∗) of matrices MQ,d with a log likelihood

Ltotal(MQ,d) ≥ Ltotal(M
∗) for 10 input sequences when P0 = {0.25, 0.25, 0.25, 0.25}. The

length of each sequence is 700 and the length of the motif is 17. It shows that the minimum

required number of binding sites in the input sequences should be 7, 8, 9 (when the expected

number of matrices E(LE , B∗) ≤ 1) for En = -0.5, - 0.6, - 0.7 and LE = -8.5, -10.2, -11.9

respectively, where LE is the expected log likelihood of a binding site and En = LE/l is

the expected log likelihood of a nucleotide in a binding site (note that it is negative of the

entropy of a column in M∗). If the value of En increases, it means that each binding site

contains more signal and less binding sites are required for finding motif. In other words,

if the input sequences do not contain the least amount of binding sites, it is unlikely that

any motif-finding algorithms based on strong-signal model can identify the real motif without

extra information. Figure 2 shows the minimum required length of the motif for 10 input

sequences of length 700 with 10 binding sites in total when P0 = {0.25, 0.25, 0.25, 0.25}. As

indicated in Figure 2, the shorter the motif, the less likely that the motif can be identified.

For En = -0.5, -0.6, -0.7, the minimum lengths of the motif are 11, 13 and 15 respectively.

Figure 3 shows the tendency of the values of E(LE , B∗) for different numbers of sequences of

length 700 when P0 = {0.25, 0.25, 0.25, 0.25}, the length of the motif is 17 and there are 10

binding sites in total. As indicated in Figure 3, if the total number of binding sites is fixed,

the more the number of sequences in the input, the more noise in the data and the more

difficult to find the motif.

[Table 1 about here.]

We can also confirm our analysis by experiments which illustrate the limitations of existing

programs, such as AlignACE and MEME. Gal4 is a well-studied transcription factor which

activates genes necessary for galactose metabolism. Bing Ren et al.[Ren 1993] found 10 genes

to be bound by Gal4 and induced in galactose. The exact binding sites for most of these

genes can be found in [Bram 1984, Bram 1986, Magdolen 1990]. Given the 9 sequences of

the intergenic regions (the gene Gal1 and Gal10 share one intergenic region), we want to test

whether MEME and AlignACE can find the published motif pattern CGGN11CCG of Gal4

in different input sequences with different values of B∗. From the published binding sites, we

calculate the expected log likelihood LE of a binding site which is -11.47 (En = −0.67). Table

10



1 confirms our analysis that motif can be found in the first three cases and definitely not in

the last case. In the first three cases, the values of E(LE , B∗) are very small and the numbers

of binding sites in the input data are more than the minimum number required. On the other

hand, in the last case, E(LE , B∗) is much larger than 1 and the number of binding sites is

less than the minimum number required, so it is difficult to find the correct motif pattern.

Although the intergenic regions may not be randomly generated, our calculations can still be

applied as both AlignACE and MEME assuming each nucleotide in the non-binding regions

is generated according the background probabilities independently.

3 Our Energy-Based Model and Problem Definition

In order to make use of the information contained in weak-signal sequences for motif finding,

we propose a more general energy-based model in this section. In the next subsection, we

show an example how to estimate the binding energy between a sequence and a transcription

factor from a real experiment.

3.1 Applying the Model to a Real Case

Consider the scenario that multiple copies of a particular DNA fragment si are mixed with

multiple copes of a particular transcription factor of interest. At the equilibrium state, some

copies of DNA fragment si are bound by transcription factors while some copies are free. Let

ei be the average binding energy between the transcription factor TF and DNA fragment

si, then ei = −ln(Keq) where the binding constant Keq = [TF • si]/[TF ][si] (ratio of the

number of bounded copies over the number of free copies) with the binding reaction modeled

by TF + si ⇐⇒ TF • si [Klotz 1986]. Note that the unit of ei is in (RT ) where T is the

constant temperature throughout the experiment in degree Kelvin and R is the gas constant

0.001987 kcal/mol K.

In the genome-wide location analysis [Ren 1993], cells were fixed with formaldehyde, har-

vested and disrupted by sonication. The DNA fragments cross-linked to the transcription

factor of interest were labeled with a fluorescent dye (Cy5) with the use of ligation-mediated-

polymerase chain reaction (LM-PCR) while the rest DNA fragments were subjected to LM-

PCR in the presence of a different fluorophore (Cy3). Both pools of labeled DNA were

hybridized to a single DNA microarray containing all yeast intergenic sequences. For each
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sequence si, we get an average color ratio of red intensity (Cy5) and green intensity (Cy3)

which represents the number of copies of si bound by the transcription factor over the num-

ber of copies of si that are not bound by the transcription factor. However, errors such as

background subtraction, hybridization non-uniformities, fluctuations in the dye incorporation

efficiency, scanner gain fluctuations, etc. may introduce inaccuracy in the value of color ratio.

With the application of the single array error model [Roberts 2000], a p-value is calculated to

represent the confidence level of the color ratio for each sequence. A small p-value means that

we are confident with the color ratio. Those DNA fragments with small p-values are chosen

as the input sequences for the EBMF algorithm and their corresponding color ratios are used

as the values of Ke, which estimate the binding energy between the transcription factor and

each input sequence si.

3.2 Energy-Based Model

In our model, we do not treat the input sequences equally. Each sequence is associated with a

value ei which represents the binding energy between the transcription factor and its binding

sites (which can be multiple). Let sequence si contain Bi binding sites and E(bij ,M) be the

binding energy between the transcription factor and the j-th binding site bij in sequence si.

The probability that the transcription factor binds to bij [Klotz 1986] is

Pij =
e−E(bij ,M)

∑Bi

k=1 e−E(bik ,M)
(2)

We use a 4× l energy matrix M to represent the motif where the row of this matrix is indexed

by “A”,“C”,“G”,“T”. M(c, j) represents the binding energy of the transcription factor and

the nucleotide c at the j-th position of the binding site. The total binding energy between

binding site b and the transcription factor can be approximated by E(b,M) =
∑l

j=1 M(b[j], j)

where b[j] is the j-th character of b.

The set of substrings in a sequence si, which are likely to be bound by the transcription

factor, is said to be the binding sites of si. For a sequence si, the binding sites bij are those

substrings with E(bij ,M) ≤ α where α is a determined threshold. If si does not contain

any substring b such that E(b,M) ≤ α, the substring b with the lowest E(b,M) will be

chosen as its binding site. As for those binding sites that are too close to each other, i.e.,

the distance between each of two binding sites is less than some determined value dmin, we
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assume that there will not be two or more transcription factors bound to these binding sites

simultaneously. While for those binding sites whose distances are larger than dmin, each of

them can be bound by a transcription factor at the same time. We define Etotal(si,M) to be

the expected binding energy between the transcription factor and sequence si given that at

least one binding site in si is bound by the transcription factor.

3.3 Problem Definition

Given the length of binding sites l, an energy threshold α, a distance threshold dmin, t

sequences S = {si} in which each sequence si has a corresponding binding energy ei, we want

to find a 4 × l energy matrix M to minimize the prediction error

t
∑

i=1

(Etotal(si,M) − ei)
2

Note that we try to minimize the mean square error because we assume the binding energy

follow the normal distribution. Factors like concentration of transcription factor and tem-

perature are not taken into account as we assume the binding energies {ei} are getting from

experiments in the same condition. Although these factors may affect the values of each

entries in the energy matrix M , they have a linear effect on all entries and will not affect the

pattern of the motif.

4 Energy-Based Motif Finding Algorithm

EBMF tries to predict the 4× l energy matrix M from the input sequences using two steps. In

the first step, we identify a set of candidate matrices based on the strings that occur frequently

in the input sequences of strong signal. In the second step, we refine each candidate matrix

using an EM-like iteration, which can be described as follows. Based on the candidate matrix,

find the best possible binding sites for each sequence (see Section 4.2). These binding sites

together with the given binding energy for each sequence are used to calculate another energy

matrix so as to minimize the prediction error. The iteration process is repeated until there

is no further decrease in the prediction error or the number of iterations reaches a certain

value. After processing all candidate matrices, the top 10 matrices that give the smallest

prediction errors are considered as the actual energy matrices. We first describe the details

of an EM-like step in refining the candidate matrix.
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4.1 Refine the Candidate Motif

Let the Bi best possible binding sites be bi1, . . . , biBi
for each sequence si with respect to

candidate matrix M . Based on the user input dmin, we estimate the expected binding energy

Etotal(si,M
′) for an arbitrary matrix M ′ as follows. We group the Bi binding sites bij into p

subsets BSi1, . . . , BSip where BSi1∪ . . .∪BSip = {bi1, . . . , biBi
}. For any two binding sites in

the same group BSik, the distance between them is within dmin (i.e. if bim, bin ∈ BSik then

the distance between bim and bin ≤ dmin) while the distance between any two binding sites in

different groups is larger than dmin. Note that BSi1, . . . , BSip are disjoint and each contains

only one binding site in practice. The expected binding energy of a transcription factor bound

to a binding site in BSik is
∑

bij∈BSik
PijE(bij ,M

′) where Pij is given in Equation (2). Given

that at least one binding site is bound by the transcription factor, the expected binding energy

between the transcription factor and sequence si can be calculated as follows:

Etotal(si, M
′) =

∑

all BSik

















∑

bij∈BSik

PijE(bij , M
′)

1 −
∏

all BSik



1 −
∑

bij∈BSjk

Pij





















=

∑

j∈{1,...,Bi}

PijE(bij , M
′)

1 −
∏

all BSik



1 −
∑

bij∈BSik

Pij





The expected binding energy Etotal(si,M
′) is the sum of the expected binding energy between

the transcription factor and each group of binding sites given that the transcription factor has

bound to at least one binding site in the sequence.
∑

bij∈BSik
PijE(bij ,M

′) is the expected

binding energy between the transcription factor and a binding site in group BSik and 1 −

∏

all BSik
(1 −

∑

bij∈BSjk
Pij) is the probability that the transcription factor has bound to at

least one binding site in the sequence.

We then formulate an equation by setting this expected binding energy equal to the given

binding energy of that sequence, that is, Etotal(si,M
′) = ei. With t input sequences, we have

a system of t equations. We use QR decomposition to solve this system of equations to obtain

all 4l entries of the new energy matrix M ′ that minimizes the predication error.

Technically, we convert each character in bij for any j in BSik to a 4-dimensional vector

by using (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) to represent “A”, “C”, “G” and “T”

respectively. The resultant 4l-dimensional vector vij is used to represent the binding site bij
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of length l. For example, we convert “ATC” to a 12-dimensional vector (1,0,0,0,0,0,0,1,0,1,

0,0). Then, the equation for sequence si can be represented as follows,



























Bi
∑

j=1















Pij

1 −
∏

all BSik

(

1 −
∑

bim∈BSik

Pim

) × vij









































× V (M ′)T = ei

where Pij is the probability that the transcription factor is bound to bij with respect to M

(see Section 2.2) and V (M ′) = (M ′(1, 1), M ′(2, 1), M ′(3, 1), M ′(4, 1), M ′(1, 2) , . . . ,M ′(4, l))

represents the vector formed by concatenating the column entries of M ′.

4.2 Finding Candidate Matrices

When the algorithm based on the energy model is applied to find the motif, not all the initial

matrices can converge to the correct matrix M∗. The success of the algorithm depends very

much on the set of candidate matrices chosen as “seed”. For example, if we use a random

string Q of length l to construct a 4 × l matrix M as the seed where M(Q[i], i) = −1 for

1 ≤ i ≤ l and 0 for all other entries, it can be confirmed from experiments that the success

rate is very low at about 0.3%. In the following, we show a better method of finding the

seeds.

4.2.1 Improved Method for Finding Seed

Our approach to find a seed matrix is to select the most likely length-l string Q among the

4l possible strings by voting. Each σ of length l appearing in the input sequences will give a

score to every string Q with similar pattern (that is, the Hamming distance between σ and Q

is within a given threshold). The set of strings received the highest scores will be chosen for

converting to seed matrices. However, the votes should carry different weights depending on

the binding energy ei of the sequence from where σ is derived. In our experiment, we have

defined the score function as follows.

Score(si, σ,Q) =







































−ei/
∏l/2

k=1 P0(Q[k])

if ∃ a substring σ in si s.t. H(σ,Q) ≤ ⌊l/8⌋

0 otherwise
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where H(σ,Q) defines the Hamming distance between σ and Q and P0(c) the occurrence

probability of c in the input sequences where c is “A”, “C”, “G”, or “T”. The score of a

length-l string Q is
∑

i

∑

σ

Score(si, σ,Q)

In general, it is very time-consuming to find the highest scoring Q among the 4l (= 234 if

l = 17) possible strings. In order to reduce the number of tests, we need to reduce the length

of the “seed”. One way to do this is the following. Given a string Q of length l, we project

the l/2 characters at the odd positions of Q to form a representative string of length l/2.

For example, when l = 8, we will use “ACAC” to represent “ATCGATCG”. We modify

the scoring function such that H(σ,Q) is the Hamming distance between the representative

string of σ and Q, and we calculate the product of P0(Q[k]) for odd number k only. Instead

of finding the scores of all the 4l possible strings of length l, we find the scores for the 4l/2

representative strings of length l/2 and use those representative strings with high scores to

predict the candidate matrices. Similarly, we can get another set of candidate matrices if we

project the even positions of a string to form the representative string. In practice, we can

still find the seed even if we peform the above projection.

5 Experimental Results

We have implemented EBMF in C++ and tested it on both real data and simulated data. We

compared EBMF with common motif-finding programs AlignACE and MEME. The results

showed that EBMF is effective and compares favorably with these programs.

[Table 2 about here.]

[Table 3 about here.]

5.1 Simulated Data

Let m be the total number of sequences, n be the length of each sequence, t be the number

of sequences with binding sites and B∗ be the number of binding sites in the t sequences, we

generated the simulated data as follow. A 4× l energy matrix E∗ was generated randomly and

a corresponding probability matrix M∗ was constructed such that for each column j in M∗, the

probability of the occurrence of a nucleotide c was directly proportional to e−E∗(c,j). Then we
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generated m sequences of length n where each nucleotide occurred with equal probability, and

planted B∗ binding sites (generated according to the probability matrix) in these t sequences

at random positions. Finally, we used the energy matrix E∗ to calculate the energy level

ei = Etotal(si, E
∗) of each sequence si. As many other research in motif finding [Buhler 2002,

Segal 2002], we have used a relatively large n when generating input sequences. It is because

in real biological data, we usually do not know the accurate positions of the binding regions

as the cost for getting more accurate result is high and error may occur in the experiments.

Tables 2 and 3 show the results of AlignACE, MEME and EBMF on the simulated data.

We arranged the m sequences according to their energy level ei in increasing order. The t

sequences with planted binding sites should have the lowest energy level. We used the m

sequences and the corresponding energy levels ei as input for EBMF. For AlignACE and

MEME, we used the k (k = t, t + 1, . . . ,m) sequences with the lowest energy level as input.

There are situations in which EBMF finds the motif while AlignACE and MEME fail to do so

for all k in the range [t,m]. This is because when the number of binding sites in the sequences

is small, there exist many matrices whose log likelihoods are no smaller than that of matrix

M∗. In fact, there is an infinite number of such matrices. When these matrices in turn

represent many different strings, AlignACE and MEME will fail. The EBMF algorithm can

help in these situations by using weak-signal sequences to eliminate the number of matrices

and, more importantly, the number of different strings they represent, to the extent that the

motif can be found.

[Table 4 about here.]

5.2 Real Data

Using Gal4 as an example, we know from Section 2 that once we remove several sequences

containing multiple binding sites, both MEME and AlignACE cannot find the motif pattern

CGGN11CCG. [Bram 1984, Bram 1986, Magdolen 1990]. In this section, we test whether our

algorithm can discover the correct pattern in similar situation.

From the mircoarray experiment (data from [Ren 1993]), we obtained 6000 intergenic

regions (the length of the sequences is in the range [100, 1000]), each with a color ratio. After

sorting the sequences according to their color intensities in decreasing order, we removed the

2,3,4 and 6 sequences from the data set, which contain multiple binding sites with strong

signal. We tried to find the motif using this weak data set.
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For AlignACE and MEME, no matter how we set the threshold for selecting the top

strong-signal sequences, the motif cannot be found. However, since the EBMF algorithm

takes advantage of weak-signal sequences, we can find the CGGN11CCG pattern using the

top 100 sequences(Table 4).

6 Conclusion

In this paper, we have characterized data sets for which existing motif-finding algorithms,

which are based on the strong-signal model, succeed to find the motif in terms of the minimum

number of binding sites the data set (instead of the minimum number of sequences with

binding sites) must have. This characterization provides a better description of the data set

for which we can expect success.

Commonly-used motif-finding programs, such as AlignACE and MEME, are based on

strong-signal model, where the patterns of weak-signal sequences are ignored. Clearly, weak-

signal sequences, such as sequences without binding sites, also contain information about motif

in the negative sense, although possibly less than information from strong-signal sequences.

For data sets which do not have the minimum number of binding sites, we have proposed

a new EMBF algorithm for finding motifs, which makes use the information of weak-signal

sequences in order to outperform AlignACE and MEME. However, our EBMF algorithm in

its present state has two shortcomings which require attention and will be addressed in our

future papers.

1. Comparatively, our EBMF algorithm is rather slow and takes a much longer time to

identify the motif than other motif-finding algorithms. We believe, however, time im-

provement can be realized through a more efficient way of finding “seed” matrices (Sec-

tion 4.2.1).

2. For most data sets, exact information about each sequence’s binding energy is not

available. It is then desirable to devise another approach to address data sets with only

two groups of sequences - those with and those without binding sites [Chin 2005a].
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Appendix

In this section, we prove by induction that the probability that the Hamming distance be-

tween a randomly chosen string Q and a string b generated according to some background

probabilities P0 is smaller than or equal to d can be represented by

d
∑

i=0

(

l

i

)

(

3

4

)i (1

4

)l−i

where l is the length of Q and b.

Denote H(x, y) as the Hamming distance between two string x and y of the same length.

Given a length-l random string Q with equal occurrence probabilities for “A”, “C”, “G”,

“T” and a length-l random substring b generated according to the background probabilities

P0 = {P0(A), P0(C), P0(G), P0(T )}, let S(l) be the proposition that for any d, 0 ≤ d ≤ l, the

probability that H(Q, b) = b is
(

l

d

)

(

3

4

)d (1

4

)l−d

When l = 1

Case I: d = 0

P (H(Q, b) = 0)

= P (Q = “A” ∧ b = “A”)

+P (Q = “C” ∧ b = “C”)

+P (Q = “G” ∧ b = “G”)

+P (Q = “T” ∧ b = “T”)

= 1
4 · P0(A) + 1

4 · P0(C) + 1
4 · P0(G) + 1

4 · P0(T )

= 1
4(P0(A) + P0(C) + P0(G) + P0(T ))

= 1
4

=
(

1

0

) (

3
4

)0 (
1
4

)1−0
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Case II: d = 1

P (H(Q, b) = 1)

= P (Q 6= “A” ∧ b = “A”

+P (Q 6= “C” ∧ b = “C”)

+P (Q 6= “G” ∧ b = “G”)

+P (Q 6= “T” ∧ b = “T”)

= 3
4 · P0(A) + 3

4 · P0(C) + 3
4 · P0(G) + 3

4 · P0(T )

= 3
4(P0(A) + P0(C) + P0(G) + P0(T ))

= 3
4

=
(

1

1

) (

3
4

)1 (
1
4

)1−1

S(1) is true

Assume S(k) is true, consider S(k + 1)

Case I: 1 ≤ d ≤ k

P (H(Q, b) = d)

= P (H(Q[1...k], b[1...k]) = d)P (H(Q[k + 1], b[k + 1]) = 0)

+P (H(Q[1...k], b[1...k]) = d − 1)P (H(Q[k + 1], b[k + 1]) = 1)

=
(

k

d

) (

3
4

)d (
1
4

)k−d
·
(

1

0

) (

3
4

)0 (
1
4

)1

+
(

k

d − 1

) (

3
4

)d−1 (
1
4

)k−(d−1)
·
(

1

1

) (

3
4

)1 (
1
4

)0

=

(

(

k

d

)

+
(

k

d − 1

)

)

(

3
4

)d (
1
4

)(k+1)−d

=
(

k + 1

d

) (

3
4

)d (
1
4

)(k+1)−d

Case II: d = 0

P (H(Q, b) = d)

= P (H(Q[1...k], b[1...k]) = 0)P (H(Q[k + 1], b[k + 1]) = 0)

=
(

k

0

) (

3
4

)0 (
1
4

)k
·
(

1

0

) (

3
4

)0 (
1
4

)1

=
(

1
4

)k+1

=
(

k + 1

0

) (

3
4

)0 (
1
4

)k+1

Case III: d = k + 1

P (H(Q, b) = d)

= P (H(Q[1...k], b[1...k]) = k)P (H(Q[k + 1], b[k + 1]) = 1)

=
(

k

k

) (

3
4

)k (
1
4

)0
·
(

1

1

) (

3
4

)1 (
1
4

)0

=
(

3
4

)k+1

=
(

k + 1

k + 1

) (

3
4

)k+1 (
1
4

)0

Therefore S(k + 1) is true.
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By induction, S(l) is true for all positive integer l > 0.

Since the probability that H(Q, b) = d is

(

l

d

)

(

3

4

)d (1

4

)l−d

the probability that the H(Q, b) ≤ d is

d
∑

i=0

(

l

i

)

(

3

4

)i (1

4

)l−i
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Table 1: Results of AlignACE and MEME on Gal4

n B∗ Min B E(LE , B∗) AlignACE MEME
Find? rank Find? rank

9 seq. 762 18 9 3.055 × 10−52 yes 1 yes 1
3 seq. 787 11 7 1.491 × 10−23 yes 1 yes 1
8 seq. 736 13 9 8.925 × 10−25 yes 1 yes 1
7 seq. 746 9 9 2.298 × 10−7 yes 1 no -
6 seq. 749 7 9 2534 no - no -

Min B is the minimum value of B such that E(LE , B) ≤ 1. The background probabilities P0 are {0.2, 0.3, 0.3, 0.2}

which are calculated according to the number of “A”, “C”, “G” and “T” occurrences in the intergenic regions of yeast.

30



Table 2: Results on simulated data

E(LE , B) EBMF AlignACE MEME
Find? rank Find? rank Find? rank

B = 7 149475 yes 1 no - no -
B = 8 0.000439 yes 1 no - yes 1
B = 9 7.70349 × 10−7 yes 1 yes 1 yes 1

We generated 200 length-700 sequences. Then we planted B length-17 binding sites with expected likelihood -10 in these

sequences. EBMF, AlignACE and MEME were used to discover the motif.
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Table 3: Results on simulated data

E(LE , B) EBMF AlignACE MEME
Find? rank Find? rank Find? rank

B = 6 619609 yes 1 no - no -
B = 7 0.000439 yes 1 no - yes 1
B = 8 7.70353 × 10−7 yes 1 yes 1 no -

We generated 200 length-700 sequences. Then we planted B length-17 binding sites with expected likelihood -8.8 in

these sequences. EBMF, AlignACE and MEME were used to discover the motif.
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Table 4: Results of the algorithms on Gal4

EBMF AlignACE MEME
Find? rank Find? rank Find? rank

Using the top 100 sequences yes 2 yes 1 yes 1
in the original data
Using the top 100 sequences yes 1 no - no -
except sequences 2,3,4 and 6
Using the top 100 sequences yes 10 no - no -
except sequences 1 to 6
Using the top 100 sequences yes 5 no - no -
except sequences 1 to 8

We set the numbers of input sequences be different values for AlignACE and MEME. We say AlignACE and MEME

can find the motif if they can find the CGGN11CCG pattern in at least one setting.
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