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ABSTRACT

Many bioinformatics problems implicitly depend on estimating large-scale covariance ma-

trix. The traditional approaches tend to give rise to high variance and low accuracy due to

“overfitting.” We cast the large-scale covariance matrix estimation problem into the Bayesian

hierarchical model framework, and introduce dependency between covariance parameters.

We demonstrate the advantages of our approaches over the traditional approaches using

simulations and OMICS data analysis.
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1. INTRODUCTION

ESTIMATING A COVARIANCE MATRIX from high-throughput OMICS data is indispensable for many

tasks, notably for finding clusters in the data. The problem remains challenging due to the large

number of variables p (such as genes or proteins) and the comparatively small number of samples n (such

as conditions under which gene expression is measured). The existing approaches that rely on the maximum

likelihood estimation or the related unbiased empirical covariance matrix suffer from low accuracy and

high variance inherent in any “large p, small n” type of data. A regularized and conditioned covariance

matrix would be a great improvement over the unconstrained simple estimation of the covariance matrix

in the high-throughput OMICS data setting. Estimation of such a matrix is a difficult problem because

of inadequate degree of freedom to draw reliable statistical inference on tens of thousands of correlation

parameters. Proper constraints need to be imposed on these parameters to overcome this difficulty.

There are two existing approaches. One is based on pairwise correlation estimation followed by variance

reduction techniques such as bagging (Hastie et al., 2001) and bootstrap aggregation (Breiman, 1996).

Representative work includes the full order—also called Gaussian graphical modeling (GGM)–partial

correlation estimation approach (Schafer and Strimmer, 2005a), which introduced a Bayes model from

which all correlations are estimated using an empirical Bayes method. Another approach is to obtain

improved estimates of the covariance matrix via shrinkage combined with analytic determination of the

shrinkage intensity according to the Ledoit-Wolf theorem (Ledoit and Wolf, 2003). The authors showed

that the new regularized estimator greatly enhances inferences of gene association networks for synthetic

data (Schafer and Strimmer, 2005b). Their approach is based on the assumption that the OMICS data is
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independently and identically distributed (i.i.d) p-variate observations sampled from a p-variate Gaussian

distribution with the (p � p) covariance matrix of interest. The assumption is plausible only for small

sized homogenous data because the underlying statistical distribution of larger sized heterogenous data is

often mixed (Yeung et al., 2001). In both approaches, dependency was introduced among the correlation

parameters in different ways.

We advocate the framework of the first set of approaches since it relies on less stringent assumptions, and

its usage has been demonstrated by numerous biological examples. We improve over the existing Empirical

Bayes method by providing a full Bayesian treatment of the problem. In the Bayesian framework, we

derive the posterior distribution for each correlation parameter based on the observed n � p data matrix.

The posterior distributions allow statistical inference of the correlation parameters to be easily drawn.

In our previous work (Zhu et al., 2005a), we described an error control procedure based on a correlation

statistic that simultaneously controls statistical and biological significance of the estimated covariance

matrix. The correlation statistic works reasonably well for data with relatively large sample size. However,

it has poor accuracy for data with small sample size due to overfitting (Ledoit and Wolf, 2004; Schafer and

Strimmer, 2005b). Introducing some form of strong dependency among correlation parameters can lead

to improved accuracy in this small sample situation. Many approaches to introducing dependency can be

adopted. Bayesian hierarchical models accomplish this in a simple but effective manner.

The remainder of the paper is organized into four parts: Bayesian hierarchical model for large-scale co-

variance matrix estimation (Section 2); simulation studies comparing the Bayesian estimator versus simple

estimator (Section 3); analyzing the galactose metabolism data using the proposed Bayesian approach and

compared with the traditional approach (Section 4); and conclusion (Section 5).

2. BAYESIAN HIERARCHICAL MODEL OF COVARIANCE MATRIX

The framework of Bayesian hierarchical models allows for a high complexity of modelling structure

without a large number of parameters (pairwise correlation parameters in this context) (Gelman et al.,

2004). We assume the correlation parameters are exchangeable meaning that their joint distribution is

invariant to permutations of their indices. This assumption represents a kind of topological invariance

that imposes prior assumptions on the location of high correlations in the network. We then regularize

variances of the marginal correlation densities by specifying a parent Gaussian distribution from which

marginal correlation parameters are sampled. Using a prior population distribution, we are able to in-

troduce dependency into the parameters that tends to avoid problems of overfitting. Using quantiles of

posterior distributions of the correlation parameters provides a seamless combination of correlation esti-

mation and strength thresholding that can be used as an alternative to False Discovery Rate-Confidence

Interval (FDR-CI) methods (Benjamini and Yekutieli, 2005; Zhu et al., 2005a) for small samples.

Without loss of generality, we employ the marginal correlation coefficient to demonstrate the Bayesian

hierarchical model for large-scale (marginal) correlation matrix estimation. The model can be easily ex-

tended for large-scale partial correlation matrix estimation, and we will discuss this issue in Section 5.

We use � to denote the true correlation coefficient between a pair of gene expression profiles (Bickel and

Doksum, 2000). Specifically, let Xgj .n/ be the n-th condition index of the j -th gene profile and let SXgi ;Xgi
,

SXgj ;Xgj
, and SXgi ;Xgj

be sample variances and covariance defined as:

SXgi ;Xgi
D .N � 1/�1

NX

nD1

.Xgi .n/ � Xgi /
2;

SXgj ;Xgj
D .N � 1/�1

NX

nD1

.Xgj .n/ � Xgj /2;

SXgi ;Xgj
D .N � 1/�1

NX

nD1

.Xgi .n/ � Xgi /.Xgj .n/ � Xgj /:
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FIG. 1. Bayesian hierarchical model structure (Gelman et al., 2004).

The true correlation coefficient is defined as

� D
EŒSXgi ;Xgj

�
q

EŒSXgi ;Xgi
�EŒSXgj ;Xgj

�
; (1)

where EŒ:� is statistical expectation. For G gene expression profiles in a gene microarray sequence, there

are ƒ D
�
G
2

�
of these correlation parameters � that need to be estimated, denoted as ��; � D 1; : : : ; ƒ. We

define O�� as the �th sample correlation coefficient, and O�� as the hyperbolic arc-tangent transformation

of O��. Then the transformed sample correlation coefficient O�� D atanh. O��/ is asymptotically Gaussian

distributed with means of �� and stabilized variance approximations of �2
� D 1=.N � 3/ (Fisher, 1923).

Here N is the sample size. We define �� D atanh.��/ as the corresponding transformed true correlation

coefficient.

Our previous simulation studies showed that this variance approximation works reasonably well even

at a relatively small sample size (e.g., N < 10) (Zhu et al., 2005a). In this sequel we assume known

variance of the transformed correlation matrix to reduce the computational complexity of the full Bayesian

correlation matrix estimation. In cases of unknown variances, the conditional posterior distribution can

not generally be written in closed form. For this reason, Markov Chain Monte Carlo (MCMC) techniques

might be applied but at high computational cost.

From our assumption that the f��gƒ
�D1 are exchangeable we model f��gƒ

�D1 as random variables drawn

from a Gaussian distribution with unknown hyperparameters .˛; ˇ2; Fig. 1).

p.�1; : : : ; �ƒj˛; ˇ2/ D

ƒY

�D1

P.��j˛; ˇ2/; (2)

where P.��j˛; ˇ2/ is a Gaussian distribution with mean ˛ and variance ˇ2.

In order to generate conditional posterior distributions p.��j˛; ˇ; y/ for each parameter ��; � D

1; : : : ; ƒ, where y represents a crude estimate of correlation (e.g. using Pearson correlation coefficient)

throughout this article, we performed simulation steps as follows (Gelman et al., 2004) (refer to Appendix

for details):

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.0151&iName=master.img-005.png&w=310&h=254
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� Assign prior distribution for ˇ, e.g. uniform prior distribution p.ˇ/ / 1. Note, the choice of uniform

prior yields a proper posterior density while other noninformative prior distributions such as, p.ˇ/ / ˇ�1

do not (refer to the Appendix for mathematical proof).
� Draw ˇ from posterior distribution p.ˇjy/.

p.ˇjy/ /

p.ˇ/

ƒY

�D1

N.b��j Ǫ ; �2
� C ˇ2/

N. Ǫ j Ǫ ; V˛/
(3)

/ p.ˇ/V 1=2
˛

ƒY

�D1

.�2
� C ˇ2/

�1=2
exp

 
�

.b�� � b̨/2

2.�2
� C ˇ2/

!
; (4)

where Ǫ and V˛ are defined as:

Ǫ D

ƒX

�D1

1

�2
�

C ˇ2
O��

ƒX

�D1

1

�2
� C ˇ2

; (5)

and

V �1
˛ D

ƒX

�D1

1

�2
�

C ˇ2
: (6)

See the Appendix for detailed derivation of p.ˇjy/.
� Draw ˛ from p.˛jˇ; y/. Combining the data with the uniform prior density p.˛jˇ/ yields,

p.˛jˇ; y/ � N. Ǫ ; V˛/: (7)

where Ǫ is a precision-weighted average of the O�s and V˛ is the total precision. Note, we define precision

as inverse of variance.
� Draw �� from p.��j˛; ˇ; y/

p.��j˛; ˇ; y/ � N. O‚�; V�/; (8)

where O‚�; V� are defined as:

O‚� D

1

�2
�

O�� C
1

ˇ2
˛

1

�2
�

C
1

ˇ2

; (9)

and

V� D
1

1

�2
�

C
1

ˇ2

: (10)

The atanh-transformed posterior mean correlation coefficient O‚� is a precision-weighted average of the

prior population mean ˛ and the �th sample mean O��.
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The posterior distribution (Eq. (8)) contains all the current information about the atanh-transformed

parameter ��. In particular, the posterior mean and posterior confidence interval can be derived. The

posterior mean is

EŒ��jy� D EŒatanh.��/jy�

D avg. O��/: (11)

For deriving the posterior interval of the ��, we used the fact that the cumulative density function (CDF)

of ��
0 D ��� O‚�p

V�
is ˆ, the cdf of standard Gaussian random variable. Hence, we define its quantile function

as ˆ�1, and write the .1 � q/ � 100% posterior interval of the parameter ��
0:

I ��
0

.q/ D Œˆ�1.q=2/; ˆ�1.1 � q=2/�: (12)

After some algebra derivation and based on the fact that tanh is a monotonically increasing function, we

have a .1 � q/ � 100% posterior confidence interval for the parameter ��:

I �� .q/ D Œtanh.
p

V�.ˆ�1.q=2// C O‚�/; tanh.
p

V�.ˆ�1.1 � q=2// C O‚�/�: (13)

3. SIMULATION STUDIES

3.1. Comparisons in terms of confidence interval, mean squared error, and variance

We evaluated the performance of full Bayesian hierarchical model estimation of correlations and com-

pared with the frequentist method in Zhu et al. (2005a). We define the frequentist confidence interval

(CI) as follows: If L and U are statistics (i.e., observable random variables) whose probability distribution

depends on some unobservable parameter � , and

P r.L � � � U / D q; q 2 .0; 1/;

then the random interval [L,U] is a .1�q/�100% confidence interval for � . A frequentist confidence interval

may strictly be interpreted only in relation to a sequence of similar inferences that might be made in repeated

trials, while a Bayesian (confidence) interval for an unknown quantity of interest can be directly regarded

as having a high probability of containing the unknown quantity. Therefore, the Bayesian approach, where

a reliable prior is available, facilitates a common-sense interpretation of statistical conclusions (Gelman

et al., 2004).

We first compared two point estimators of correlations in terms of the average width of the individual

frequentist (Pearson) CIs for the correlation parameters versus that of the posterior CIs for the same set of

correlation parameters at the corresponding significance levels. Obviously, more concentrated (narrower)

CIs, at the given significance level, are superior to less concentrated CIs. It is clear from Figures 2 and 3

that the average Bayesian posterior CIs are uniformly narrower than the average freqentist CIs in both small

(N D 4) and larger sample data (N D 20). This dramatic contrast indicates the advantages of the Bayesian

approach for small sample size problems (Fig. 3). From Eqs. (21) and (3), the posterior distributions of the

mean p.˛jˇ; y/ and of the variance p.ˇjy/ are decreasing functions of ƒ, i.e., the number of correlation

parameter �s. Therefore, narrower posterior CIs are expected for larger ƒ. On the other hand, wider CIs

are expected when transforming individual frequentist CIs into simultaneous FDR-CIs.

We also compared these two correlation estimators in terms of mean squared error (MSE) and variance

criteria. Similar to the definition in Zhu et al. (2005a), the MSE is defined as:

MSE. O��/ D E. O� � �/2/ D
1

ƒ

ƒX

�D1

. O�� � ��/2; (14)

where �� is the true population correlation, and O�� is the sample correlation estimator, � is the parameter

index, and ƒ is the total number of parameters.
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FIG. 2. Comparison of average posterior confidence intervals (CIs) versus average individual frequentist CIs over a

wide range of significance levels at a small sample size (n D 4).

FIG. 3. Comparison of average posterior confidence intervals (CIs) versus average individual frequentist CIs over a

wide range of significance levels at a larger sample size (n D 20).
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FIG. 4. Mean squared errors (MSEs) (upper) and variances (lower) of the Bayesian estimations versus the frequentist

estimations over 500 runs of simulations.

The simulation steps proceed as follows:

� Draw ƒ population correlations from a normal distribution with known mean (˛) and variance (ˇ)

(hyperparameters) as defined in Eq. (2).
� Re-estimate the ƒ parameters either separately using the frequentist (Pearson) correlation estimator or

using the Bayesian hierarchical model estimator. For the Bayesian approach, the correlation estimator

is the posterior mean (Eq. (11)).
� Compare the two estimators in terms of both MSE and variance. An estimator with low MSE and

variance is considered to be superior.

Figure 4 plots MSEs (upper panel) and variances (lower panels) of Bayesian correlation estimators and

frequentist (Pearson) correlation estimators at a small sample size (e.g., N D 4) and a larger sample size

(e.g., N D 20) over 500 runs of simulations. It is evident in the upper panel of Figure 4 that the MSE

of Bayesian estimators is about three-fold smaller than the frequentist estimators for the larger sample

size. Similarly to the CIs comparisons, this indicates the advantages of the Bayesian correlation estimator

for small sample size problems (Fig. 4). The lower panel of Figure 4 plots variances of the Bayesian

correlation estimator and the frequentist correlation estimator. Again, the comparison of variances follow

the same trend as that of the MSEs (Fig. 4).

It is worth mentioning that the above simulations assumed a known Bayesian hierarchical model. In

order to test the robustness of our algorithm to model mismatch, we also generated data using uniform

distribution but implemented with Pearson CIs and Bayesian CIs that assume mismatched Gaussian and

hierarchical models, respectively. In Figure 5, we compared the average width of individual Pearson CIs

with that of individual Bayesian intervals. The superior performance of the hierarchical Bayesian estimator

(Figs. 2 and 3) is clearly offset by the invalid model assumption in that average Bayesian CIs are slightly

wider than average frequentist CIs (Fig. 5). This simulation result reflects the importance of the Fisher

transformation.

3.2. Evaluation of the Bayesian hierarchical model

In order to evaluate our Bayesian approach in terms of error control and compare with the frequentist

counterpart, we simulated pairwise gene expression data based on known population covariances, and then
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FIG. 5. Comparison of average confidence intervals (CIs) when the Bayesian model is unsustained.

simulated Bayesian confidence intervals for each parameter from the hierarchical model. The actual false

positive (FP) at a given minimal acceptable strength (MAS) level is calculated as a ratio of the number

of screened gene pairs whose corresponding population correlation parameters �i;j are less than the MAS

level specified, divided by the total number of gene pairs. The actual MAS is the minimum true discovery

of population correlation �i;j among the screened pairs. We specified 16 pairs of (FP,MAS) criteria (four

FP levels: 0.2, 0.4, 0.6, 0.8; four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a different upper

case Roman alphabet (red) in Figure 6. The 16 corresponding pairs of actual (FP,MAS) criteria are also

shown in Figure 6 using the same set of lower case Roman alphabets (Blue). It can be observed that

generally the actual FPs (lower case) fall further below the specified constraint (upper case) than those

in Figure 4 of Zhu et al. (2005a) (Fig. 6) did, and the actual MASs (lower case) fall above the specified

constraints (upper case). The more dramatic deviations of actual FPs from their specified levels are due to

multiple factors, such as, lack of multiplicity adjustment and the conservative asymptotic approximation

made in Zhu et al. (2005a). Simulations using some other combinations of N and ƒ, as compared with

the FDR-CI approach, give rise to similar results. We conclude that the Bayesian hierarchical model yields

better correlation estimates. However, the false positive rate is overestimated by the Bayesian procedure

and this leads to overly stringent error control.

4. APPLICATIONS TO NETWORK CONSTRUCTION

AND SEEDED CLUSTERING

4.1. Constructing relevance networks

We applied the Bayesian hierarchical model to high-throughput data and compared it with the frequentist

approach using the same subset of yeast galactose catabolism two-color microarray data that was described

in Zhu et al. (2005a). The data contains 997 gene expression profiles across 20 genetic/physiological

conditions that was identified by Ideker et al using the generalized likelihood ratio test (Ideker et al.,

2000).
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FIG. 6. Evaluation of error control of the Bayesian hierarchical model. Sample size n D 20, and ƒ D 1000

correlation coefficients were simulated. Simulations using smaller sample size data yield more stringent error control.

Following the procedure described in Section 2, we simulated the empirical posterior distribution for

each of the
�

997
2

�
D 496,506 correlation parameters ��. The .1 � q/ � 100% posterior interval for each

“parameter” was obtained by thresholding q=2 � 100% and .1 � q=2/ � 100% of its quantile function

(Eq. (13)). Analogous to the FDR-CI screening procedure described in Zhu et al. (2005a), a network

edge is declared to be present at the significance level q and the MAS level cormin if its posterior CI

does not intersect with Œ�cormin; cormin�. We sought to compare the two approaches in terms of network

topological properties that are interesting to biologists. In particular, we compared the biological functional

annotations of the top hub genes of the two networks. In Zhu et al. (2005a), we controlled FDR at 5%,

and constructed networks at five MAS levels, i.e., 0:5, 0:6, 0:7, 0:8, 0:9. Correspondingly, 18,135, 9337,

4151, 1346, 133 edges were declared to be present using Pearson correlation statistic alone. Controlling

the significance level at 5%, we screened the same set of numbers of edges using the Bayesian hierarchal

model to construct the five networks that are more comparable to those in Zhu et al. (2005a). A list of

stable hub genes was obtained by calculating and sorting the average rank of each vertex (gene) degree

over five networks (Table 1).

Comparing Table 1 with that reported in Zhu et al. (2005a), note that the GO biological process

annotation “protein biosynthesis [GO:0006412]” and/or its children annotations “hypusine biosynthesis

[GO:0046515],” “branched chain family amino acid biosynthesis [GO:0009082],” and “tryptophan biosyn-

thesis [GO:0000162]” are significantly enriched in both tables. This is consistent with the established fact

that protein biosynthesis plays a key role in galactose metabolism (Berg et al., 2006). The underlying biolog-

ical mechanism is that many types of proteins need to be synthesized upon switching from primary carbon

source (glucose) to secondary carbon source (galactose) or the other way around (Wieczorke et al., 1999).

A salient feature in Table 1 that differs from that of Zhu et al. (2005a) is that it includes several trans-

porters and regulators such as GAP1 [GO:0006865], YBR043C [GO:0006855], and ASC1 [GO:0006417].

These proteins are essential for a smooth transition from glucose to galactose (Berg et al., 2006; Wieczorke

et al., 1999). In addition, Table 1 also includes several uncharacterized genes that are hypothesized to be

important for galactose metabolism. In general, the Bayesian data analysis results not only conform to

the previous frequentist data analysis results, but also provide additional justification for the biological

mechanism and motivation for illustrating new gene functions.
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TABLE 1. TOP TWENTY “HUB GENES” FROM BAYESIAN HIERARCHICAL MODEL APPLIED TO

THE GALACTOSE METABOLISM DATA (IDEKER ET AL., 2000)

Gene name Average rank GO annotation

YJR070C 4 Hypusine biosynthesis [GO:0046515]

YBR043C 4.4 Multidrug transport [GO:0006855]

AGA2 4.4 Agglutination [GO:0000771]

RPP0 4.6 Protein biosynthesis [GO:0006412]

RPL26A 4.6 Protein biosynthesis [GO:0006412]

YOR263C 5 Biological process unknown

TRP2 5.4 Tryptophan biosynthesis [GO:0000162]

ASC1 5.6 Regulation of protein biosynthesis [GO:0006417]

YIL064W 5.6 Biological process unknown

BOP2 5.6 Biological process unknown

GAP1 5.8 Amino acid transport [GO:0006865]

RPS2 6 Protein biosynthesis [GO:0006412]

RPL11A 6.2 Protein biosynthesis [GO:0006412]

SSF2 6.2 Ribosomal subunit assembly [GO:0042257]

ILV5 6.2 Branched chain family amino acid biosynthesis [GO:0009082]

YPL185W 6.2 Biological process unknown

PCK1 6.4 Hexose biosynthesis [GO:0019319]

YDR100W 6.4 Biological process unknown

YMR291W 6.6 Biological process unknown

ATC1 6.6 Bipolar bud site selection [GO:0007121]

The rank of each gene is the average rank over five different networks with the same set of edge numbers as

in Table 1 of Zhu et al. (2005a). The highest ranked gene is the most connected and stable gene under varying

constraints of (FP,MAS).

FP, false positive; MAS, minimal acceptable strength.

4.2. Seeded clustering

In parallel with the application of the two-stage algorithm to rediscover the galactose metabolic pathway

reported in Zhu et al. (2005a), we also applied the Bayesian hierarchical model to perform the seeded

(one-to-all) clustering. Performance was evaluated according to the relative ranks of a handful of known

members of the galactose metabolic pathway. The gene ranks were reported instead of p-values due to

substantial differences of the two statistical frameworks.

We selected gene “GAL10” as the “seed gene” in order to compare the results with those reported in

Zhu et al. (2005a). The comparison was made at a large sample size N D 20 and a smaller sample size

N D 4, respectively, aiming to examine the performance of the two methods as a function of the sample

size. In the former, we used all the 20 genetic/physiological conditions under which gene expression levels

were measured (Table 2). In the latter, we sampled a small subset (e.g., N D 4) of these 20 conditions

each time without replication and repeated a number of times to obtain a “bagged” (stable) estimation of

gene ranks in the seeded clusters (Table 2).

When all the 20 observations were used, the two approaches gave rise to very similar seeded clusters

indicating that the Bayesian hierarchial model approach is as powerful as the frequentist approach for

relatively large sample size problems. As shown in Table 2, all of the top 20 seeded gene pairs have

identical ranks across two methods. When multiple random subsets of the data were used, many genes

had dissimilar average ranks across the two approaches. Among the top five genes (GAL10, GAL7, GCY1

GAL1, GAL2) screened by the seeded clustering using “GAL10” as the seed gene (Zhu et al., 2005a)

(Table 3), four out of five (GAL10, GAL7, GAL1, GAL2) genes ranked higher in Bayesian estimation

than those in frequentist estimation, and the remaining “GCY1” gene received tie ranks. See supplemental

figures (Figures S-1 and S-2) for comparing untransformed and transformed example posterior distributions.

In addition, our results provide strong experimental motivation for examining the genes that received higher
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TABLE 2. COMPARISON OF BAYESIAN ESTIMATIONS VERSUS FREQUENTIST ESTIMATIONS

USING “SEEDED” CLUSTERING AT SMALL AND LARGER SAMPLE SIZES

n D 4 n D 20

Gene 1 Gene 2 Bayesian Frequentist Gene 1 Gene 2 Bayesian Frequentist

GAL10 GAL1 5.25 5.35 GAL10 GAL7 1 1

GAL10 GAL2 6.65 7.4 GAL10 GCY1 2 2

GAL10 GAL7 6.7 6.85 GAL10 GAL1 3 3

GAL10 GCY1 7.7 7.7 GAL10 GAL2 4 4

GAL10 YOR121C 8.05 7.8 GAL10 YOR121C 5 5

GAL10 YEL057C 8.55 10.6 GAL10 YEL057C 6 6

GAL10 SSU1 8.6 7.65 GAL10 YDR010C 7 7

GAL10 FKS1 8.75 8.25 GAL10 SSU1 8 8

GAL10 PCL10 9.95 7.85 GAL10 PCL10 9 9

GAL10 YJL212C 11 8.85 GAL10 YJL212C 10 10

GAL10 MET14 11.1 10.4 GAL10 FKS1 11 11

GAL10 YDR010C 11.3 10.9 GAL10 MET14 12 12

GAL10 MCM1 11.35 12.3 GAL10 MCM1 13 13

GAL10 EXG1 11.85 13.1 GAL10 EXG1 14 14

GAL10 CRH1 12.05 12.95 GAL10 ARG1 15 15

GAL10 ARG7 12.8 12.3 GAL10 CRH1 16 16

GAL10 YPR157W 13.2 15.35 GAL10 PRY2 17 17

GAL10 PRY2 14.4 13.3 GAL10 YPR157W 18 18

GAL10 YKR012C 14.6 16.25 GAL10 YKR012C 19 19

GAL10 CPA2 16.15 14.85 GAL10 CPA2 20 20

In the former, the ranks were averaged over 100 estimations, in each of which a subset data of sample size n D 4 was randomly

sampled from the whole data of sample size n D 20. In the latter, the ranks were obtained using the whole data of sample size

n D 20. Known genes in the pathway are in bold face.

TABLE 3. CLUSTERING CO-EXPRESSED GENES WITH BAYESIAN HIERARCHICAL

MODEL AT THE SIGNIFICANCE LEVEL 5% USING “GAL10” AS THE “SEED GENE”

Gene 1 Gene 2 2.5% 50% 97.5%

GAL10 GAL7 0.699967273 0.843269806 0.919377659

GAL10 GCY1 0.695895931 0.83904824 0.917448689

GAL10 GAL1 0.685628575 0.824914454 0.906837751

GAL10 GAL2 0.664031223 0.817631953 0.903466008

GAL10 YOR121C 0.652511568 0.814118521 0.901500909

GAL10 YDR010C 0.574348042 0.77081336 0.875409524

GAL10 YEL057C 0.582835775 0.769743768 0.880618535

GAL10 SSU1 0.584487078 0.769335123 0.879019784

GAL10 PCL10 0.552529392 0.751817344 0.871763977

GAL10 YJL212C 0.543601479 0.747480187 0.862433646

GAL10 MET14 0.525320838 0.723128249 0.852859396

GAL10 FKS1 0.515021843 0.719874179 0.854759107

GAL10 MCM1 0.474061933 0.697313988 0.834101087

GAL10 EXG1 0.446476056 0.666889754 0.818233838

GAL10 ARG1 0.382292245 0.63708452 0.807736956

GAL10 CRH1 0.344971636 0.594425382 0.773435199

GAL10 PRY1 0.299057555 0.588919717 0.774038296

GAL10 YPR157W 0.29645952 0.576125639 0.765975044

GAL10 CPA2 0.303356019 0.571475575 0.745218878

GAL10 YKR012C 0.262900828 0.566724743 0.748081117

Known genes in the pathway are in bold face (n D 20).
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FIG. S-1. Transformed and untransformed posterior distributions at small and large sample size (Example 1).

ranks in the Bayesian analysis, for example, gene YEL057C. The evaluation using “GAL7” as the “seed

gene” gave similar results.

5. CONCLUSION

Numerous previous studies have demonstrated the suitability of using gene co-expression networks for

functional discoveries (Butte and Kohane, 2000; Zhu et al., 2005b). Different approaches to estimating

correlation matrix, of testing the significance of these correlations, and of controlling the error rate have

been proposed. We emphasize that our goal is to estimate the correlation matrix with reduced variance and

improved accuracy.

Towards this goal, the major improvement that we have made is that we provided a full Bayesian

treatment that combines correlation estimation and significance testing. For estimation, we improve over

existing approaches by providing a regularized full Bayesian estimation. For the hypothesis test, the main

improvement over the existing approaches is that we test whether the magnitude correlation is different

from a non-zero threshold. This allows for more stringent control of biological significance. For example,

in small-sample data the traditional test declares many small but statistically significant correlations to be
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FIG. S-2. Transformed and untransformed posterior distributions at small and large sample size (Example 2).

biologically relevant. However, these may be caused by non-biological effects such as spatial and positional

effects of genes along the chromosome (Kluger et al., 2003).

Our framework is sufficiently general to be extended to many different correlation measures, such

as full order (Schafer and Strimmer, 2005a) and limited order (Fuente et al., 2004) partial correlation

statistics. The rational is that these correlation statistics are asymptotically normal distributed through

transformations (Hotelling, 1953). Our approach is also not computationally cumbersome. In deriving the

posterior distributions of the correlation “parameters,” the conjugate prior and likelihood (i.e., Gaussian

parental distribution) were assumed in order to keep the posterior distributions in a closed form. The

computational load is thus greatly reduced, making the application to larger networks feasible.

As discussed in Zhu et al. (2005a), one should seek a good combination of level of significance and

correlation strength. The Bayesian approach prescribed here imposes a model of the parameters as random

variables sampled from a parental population distribution. This model structure allows the regularization

of variances by introducing dependency between the parameters. Using simulations, we have shown the

superior performance of the Bayesian hierarchical model approach to frequentist estimation approach, in

terms of width of the CIs, MSE, and variance, especially for small sample size. The posterior distribution

provides a natural way of correlation thresholding that bridges between statistical correlation and biological

relevancy.
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6. APPENDIX

Selecting prior distribution

We need to show the joint posterior density p.�; ˛; ˇjy/ is improper if we select the hyperprior distribu-

tion p.ˇ/ / ˇ�1, while p.�; ˛; ˇjy/ is proper if we select the hyperprior distribution p.ˇ/ / 1. Interested

readers may refer to Exercise 2.8 in Gelman et al. (2004).

Deriving posterior distribution p.ˇjy/

Here we present the mathematical details for the posterior distribution p.ˇjy/ as described in Section 2.

The following is adapted from Chapter V of Gelman et al. (2004).

We factor the marginal posterior density of the hyperparameters as follows:

p.˛; ˇjy/ D p.˛jˇ; y/p.ˇjy/; (15)

which is equivalent to:

p.ˇjy/ D
p.˛; ˇjy/

p.˛jˇ; y/
: (16)

We then derive p.˛; ˇjy/ and p.˛jˇ; y/, respectively, as follows. For hierarchical model,

p.˛; ˇjy/ / p.˛; ˇ/p.yj˛; ˇ/: (17)

For many problems, the decomposition in Eq. (17) is of no help, since p.yj˛; ˇ/ cannot generally be

written in closed form. For the Gaussian distribution, the marginal likelihood has a particularly simple form.

The marginal distributions of the sample correlation b�� are independent (but not identically distributed)

Gaussian:

p.b��j˛; ˇ/ / N.˛; �2
� C ˇ2/: (18)

Thus, we can write the marginal posterior density as

p.˛; ˇjy/ / p.˛; ˇ/

ƒY

�D1

N.b��j˛; �2
� C ˇ2/: (19)

Assume a uniform conditional prior density p.˛jˇ/, and p.˛jˇ; y/ is Gaussian, i.e.,

p.˛jˇ; y/ / N. Ǫ ; V˛/; (20)

with

Ǫ D

ƒX

�D1

1

�2
� C ˇ2

b��

ƒX

�D1

1

�2
�

C ˇ2

; (21)

and

V �1
˛ D

ƒX

�D1

1

�2
� C ˇ2

: (22)
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Here, Ǫ is a precision-weighted average of �s and V˛ is the total precision. We define precision as inverse

of variance. From Eqs. (16), (19), and (20),

p.ˇjy/ D
p.˛; ˇjy/

p.˛jˇ; y/
(23)

/
p.ˇ/

Qƒ
�D1 N.��j˛; �2

� C ˇ2/

N.˛j Ǫ ; V˛/
(24)

This identity holds for any value of ˛; in particular, it holds if we set ˛ to Ǫ , which makes evaluation of

the expression quite simple.

p.ˇjy/ /
p.ˇ/

Qƒ
�D1 N.b��j Ǫ ; �2

� C ˇ2/

N. Ǫ j Ǫ ; V˛/
(25)

/ p.ˇ/V 1=2
˛

ƒY

�D1

.�2
� C ˇ2/

�1=2
exp

 
�

.b�� � b̨/2

2.�2
�

C ˇ2/

!
; (26)

where Ǫ and V˛ are defined in Eqs. (21) and (22). Both expressions are functions of ˇ, which means that

p.ˇjy/ is a complicated function of ˇ.

On implementations and computational complexities

Overall, the proposed simulation procedure is computationally inexpensive. The step of drawing ˇ from

p.ˇjy/ using the inverse cumulative density function (CDF) method requires iterative computation:

� (Numerically) Scale p.ˇjy/ (Eq. 3) into a probability distribution, i.e., P.ˇjy/ so that
R

P.ˇjy/ D 1.
� (Numerically) Calculate the CDF of the P.ˇjy/, denoted, P.ˇjy/.
� Draw X from P.ˇjy/ using inverse CDF method, i.e., X D P�1.U / � P, where U is drawn from

Œ0; 1� bounded uniform distribution.
� Re-scale to obtain random draws from p.ˇjy/.

Each of first three steps require n iterations.

Drawing ˛ from p.˛jˇ; y/ and drawing �� from p.��j˛; ˇ; y/ do not require iteration since they follow

normal distributions specified in Eqs. (7) and (8) and can be drawn directly.
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