
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 13, Number 9, 2006
© Mary Ann Liebert, Inc.
Pp. 1565–1573

Fold Recognition via a Tree

YU CHEN1 and GORDON M. CRIPPEN2

ABSTRACT

Recently, we developed a pairwise structural alignment algorithm using realistic structural
and environmental information (SAUCE). In this paper, we at first present an automatic
fold hierarchical classification based on SAUCE alignments. This classification enables us to
build a fold tree containing different levels of multiple structural profiles. Then a tree-based
fold search algorithm is described. We applied this method to a group of structures with
sequence identity less than 35% and did a series of leave one out tests. These tests are
approximately comparable to fold recognition tests on superfamily level. Results show that
fold recognition via a fold tree can be faster and better at detecting distant homologues than
classic fold recognition methods.
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1. INTRODUCTION

With the progress in structural genomics, the number of protein structures is increasing rapidly.
The ongoing Protein Structure Initiatives (PSI) has set its ultimate goal to make structural anno-

tations available for almost every protein sequence (Norvell and Machalek, 2000). Since experimentally
determining a three-dimensional (3D) structure is still far more expensive compared to sequencing, much
of the structural annotations have to rely on computational work. If all of the unique folds are known, then
the structure determination problem can be re-formulated into the fold recognition problem, i.e., finding
the most suitable 3D-fold for a given protein sequence.

Machine learning methods including neural network (NN) and support vector machine (SVM) have been
widely used in the fold recognition field (Ding and Dubchak, 2001; Han et al., 2005; Xu et al., 2003; Jones,
1999). Those methods improve fold recognition performance greatly by extracting sequence- or structure-
based features to construct more comprehensive scores to measure the overall similarity between sequences
and structures. However, machine learning methods do not solve the fundamental alignment problem: they
either bypass the alignment procedure completely (Ding and Dubchak, 2001) or rely on other methods to
generate alignments (Xu et al., 2003; Han et al., 2005).

Structural profiles can be used to bridge 3D structures and 1D sequences and generate alignments. A
structure profile is equivalent to a position specific scoring matrix (PSSM), where each position on a 3D
structure will have different propensity scores for different amino acids. Usually the propensity score is
calculated based on the log-likelihood ratio between the probability of a certain amino acid occupying that
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position versus the probability of that amino acid occurring in nature (Equation (1)).

s(AA, pos) = log
P(AA, pos)

P (AA)P (pos)
= log

P(AA|pos)

P (AA)
(1)

There are two approaches to convert a 3D structure into a (single) structural profile. One is the sequence-
based approach: after a database query of the sequence of a given structure, a multiple sequence alignment
(MSA), including all homologous sequences, can be built. Then a PSSM can be easily calculated based on
the MSA. In PSI-BLAST (Altschul et al., 1997), a further database query of the PSSM is used to update
the PSSM iteratively. Such sequence based profiles can achieve good performance in fold recognition if
sequence identity is high, while their performance drops dramatically when sequence identities are below
the twilight zone (20–30%).

Another approach is the structure-based 3D profile approach, which was first introduced by Eisenberg
and his colleagues in 1991 (Bowie et al., 1991). Instead of calculating propensity scores based on multiple
sequence alignments, they defined a set of environmental states based on structure-derived descriptors
such as secondary structure, solvent accessibility, etc. The propensity scores of each amino acid for each
environmental state were log-likelihood scores (LLS) calculated based on a survey of known 3D structures
(Equation (2)).

LLS(AA, ENV) = log
P(AA, ENV)

P (AA)P (ENV)
= log

P(AA|ENV)

P (AA)
(2)

Eisenberg’s method is also known as 3D-1D method and the corresponding substitution table containing
the above propensity scores is called 3D-1D table. In their initial paper, Bowie et al. (1991) defined 18
environmental states to characterize 3D structures. By incorporating other information such as predicted
secondary structure and residue types, the number of environmental states may easily increase to thousands
(Mallick et al., 2002).

Instead of defining more environmental states to describe 3D structures, we can use linear combinations
of a set of basis environments to create more enriched descriptions. If a multiple structural alignment
(MSTA) is available, for each aligned column, the combination of environments of aligned residues may
be used to generate a new environment, and the propensity scores of each amino acid in such a hybrid
environment can be calculated as:

LLS
(
AA,

∑
ENV

)
= log

P
(
AA,

∑
ENV

)

P(AA)P
(∑

ENV
) = log

P
(
AA

∣∣ ∑
ENV

)

P(AA)
(3)

In this work,
∑

ENV is defined as a combination of equally weighted, non-duplicated, structurally aligned
environment states.

In fact, the multiple structural profile approach is not new. A few (but not many) other multiple-structure
based fold recognition methods have been reported, including Fugue (Shi et al., 2001), 3D-PSSM (Kelley
et al., 2000), and S3 (Zhou and Zhou, 2005).

Fugue (Shi et al., 2001) adopted a very similar way to incorporate MSTA information into fold recog-
nition, where weighted means over single structural profiles for each aligned position were used to build
a multiple structural profile (Equation (4)).

LLSm

(
AA,

∑
ENV

)
=

∑
i

fis(AA, ENV i ) =
∑

i

fi

P (AA|ENV i )

P (AA)
(4)

3D-PSSM (Kelley et al., 2000) also used MSTA information to build multiple structural profiles. How-
ever, it differs from other purely structure based fold recognition methods in that structural profiles in
3D-PSSM were derived from PSI-BLAST PSSMs of each single structure’s sequence, while structures
were only used to generate multiple alignments. Therefore, a 3D-PSSM is actually a concatination of
single-sequence based PSSMs.

S3 (Zhou and Zhou, 2005) defined PSSM on fragment level. Each structure was divided into fragments
(nonapeptides) and each fragment was used to query the fragment database. Fragment similarities were
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measured by both fragment structural similarity and environment similarities, and multiple structure align-
ments were then generated. Since the alignment is on the fragment level, the number of structures in an
MSTA is much larger than for other methods (>225 for each nonapeptide). Therefore those structure-based
multiple fragment alignments can be directly used to calculate the PSSMs by Equation (1).

The performance of multiple structural profiles is still being studied. It was reported by the Fugue inves-
tigators that profiles generated by multiple structural alignments on family levels improve the recognition
performance (Shi et al., 2001). However, further studies showed that multiple structural profiles based
on alignments of divergent sequences sometimes may not perform better than single structural profiles
(Mizuguchi et al., 2004). Therefore, Fugue3 is currently using a highly redundant fold library containing
both single structural profiles and multiple structural profiles.

As the number of available protein folds increases, we think it is time to revisit the multiple structural
profile approach. Particularly, we are interested in two questions: the first question is can we make fold
recognition faster by using multiple structural profiles? With such a large number of structures, we will
have no time to search a large redundant fold library as Fugue3. Secondly, how can we make multiple
structural profiles perform better than a cluster of single structural profiles? Intuitively, multiple structural
profiles contain more information than single structures. Thus, multiple structural profiles should have
better performance. However, if there are too many diverse sequences in a structural cluster, there will be
too much noise in the multiple structural profile. If we can reduce the noise, we should be able to get
better performances in fold recognition.

A tree-based fold recognition is proposed here because (1) searching along a tree can be fast; and (2 in
a tree containing multiple levels of fold clusters, the lower the level is, the less noise will be observed. As
a depth-first searching proceeds from root to leaves along the tree, we should observe less and less noise.

One fundamental difference between our tree-based fold recognition approach and other approachs is
that we make use of different levels of multiple structural alignments, and each node in the fold tree is
represented by a multiple structural profile (in the form of PSSM) rather than a single structural profile
based on one representative structure. Since a multiple structural alignment can grasp the common core
structure of a whole family, we expect performance improvements over using the single representative
structure.

The quality of structural alignments is essential for the multiple-structure-based fold recognition. For
the full-length pairwise protein structural alignment, few existing methods ensure environmental similarity
in the final alignments. Due to the same reason, although there are several well maintained hierarchical
fold classification databases [especially CATH (Orego et al., 1997), SCOP (Murzin et al., 1995), and FSSP
(Holm and Sander, 1996)], we can not use them as our fold tree because they are not tailored for fold
recognition purposes. In fold recognition, similarities between structures should not only be measured by
how structures can be superimposed in 3D space, but also be measured by how corresponding structural
profiles agree with each other. It is very important because 3D superpositions will only handle isolated
protein chains while neglecting all inter-chain interactions.

Recently, we developed a new pairwise structural alignment method, SAUCE, which can measure both
structural and environmental similarities between protein structures and guarantee environmental matching
in pairwise structural alignments (Chen and Crippen, 2005). We think SAUCE is especially suitable for
the fold recognition problem. An automatic hierarchical clustering of all-to-all SAUCE pairwise alignment
results, therefore, has been performed and multiple structural alignments are built at each node of the tree
via SAUCE-(IRIS)-TCOFFEE. IRIS is a multiple structural alignment step developed by our group (Chen
and Crippen, 2006). The resulting fold trees are used for further recognition experiments.

2. EXPERIMENTS AND RESULTS

2.1. Dataset

A total of 379 chains were selected based on CATH v2.5.1. All of them are single domain proteins
with length of 30 to 100 residues. Membrane proteins and proteins containing nonstandard residues were
excluded. Each of them belongs to a different S35 family, which means most sequence identities between
those chains are less than 35%. Based on CATH v2.5.1, these 379 chains fall into 155 homologous clusters.
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2.2. Hierarchical classification of folds

Using SAUCE (Chen and Crippen, 2005), we performed 379×378
2 all-to-all pairwise structural compar-

isons. The greater value between the two SAUCE E-values obtained is used as the distance between two
protein structures. A hierarchical clustering using complete linkage was performed using function hclust
from R (R Development Core Team, 2005). By choosing a cutoff at 0.1, we partitioned the 379 chains
into 154 clusters. Since the complete linkage method was used, all structural pairwise alignments within
each cluster should have E-values less than 0.1.

A comparison between our fold classification and CATH classification is shown in Figure 1. We can see
our SAUCE classification with cutoff 0.1 is approximately equivalent to homologous families in CATH (or
superfamilies in SCOP). We got fewer orphan clusters (clusters containing only one structure) and large
clusters, but more medium clusters. Our SAUCE classification in general agrees with the CATH classifi-
cation except for mostly-alpha structures. One reason is that one alpha helical strand can be superimposed
perfectly on any other alpha helical strand, and the environmental differences between those strands are
sometimes negligible.

As we can see, SAUCE classification merges/splits CATH families. In one of the most extreme examples,
nine CATH homologous families over three CATH topologous families are merged (Fig. 2). In the other
case, a CATH homologous family 1.10.10.10 containing 20 structures was split into six SAUCE groups.
A further investigation showed that among these 20 structures, some of them are free monomers, some
of them are dimers and some of them are complexed with DNA (data not shown). Another example of
splitting two different oligomers belonging to the same CATH homologous family has been shown in Chen
and Crippen (2005).

2.3. Fold tree

The hierarchical clustering tree can be used as a fold tree. For each node in the tree, a (multiple)
structural profile is built. In order to make reliable multiple structural profiles, it is necessary that only
highly similar structures are used to build those profiles. Since each of the SAUCE clusters at level 0.1
can be treated as a fold superfamily, we built our fold trees starting from the above 154 SAUCE clusters.

In order to build multiple structural profiles, we need to build multiple structural alignments first. Then
multiple structural profiles can be obtained from multiple alignments based on a modified 3D-1D table.

2.4. Multiple structural alignment

Multiple structural alignments are built using TCOFFEE (Notredame et al., 2000). SAUCE alignments
have three levels of structural similarity: (a) 3D structurally and environmentally similar, (b) 3D structurally
similar only, and (c) environmentally similar only. We used three different weights on these three different
types of similarities: 4,000 for (a), 800 for (b), and 100–800 for (c) depending on environmental similarities.
We imposed such large weights on structural based alignments that sequence information will generally
be disregarded. Then a TCOFEE library is generated for each pairwise structural alignment. We used two
gap penalties: open gap penalty −300 and extension penalty −30. It is also possible to use IRIS to refine
SAUCE based pairwise alignment libraries before the TCOFFEE assembly step.

2.5. Multiple structural profiles

In the original 3D-1D table obtained (Chen and Crippen, 2005), we have 75 environmental states, each
of which has different propensities for different amino acids. Given a multiple structural alignment, aligned
environments will be merged to form a new environmental state and the log-likelihood will be recalculated
(Equation (3)). For columns containing gaps, pseudo counts based on background frequencies were added.
The more gaps in a column, the less specific to amino acids the column will be.

2.6. Threading via the fold tree

We used a simple Smith-Waterman dynamic programming method to align sequences to structural
profiles. Given gap opening and extension penalties as 300/30, we found that the raw alignment scores
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FIG. 1. Comparison between SAUCE classification results and CATH classification. (A) Comparison of cluster sizes
between SAUCE and CATH v2.5.1 over 379 protein chains. (B) Comparison of 154 SAUCE clusters with 155 CATH
homologous families. Black dots represent overlapping between corresponding cluster pairs. The bars on the top of
the plot represent the four major CATH classes (from left to right: mainly-alpha, mainly-beta, mixed alpha-beta, and
few secondary structures).

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1565&iName=master.img-000.jpg&w=263&h=527


1570 CHEN AND CRIPPEN

FIG. 2. An example of merging CATH families. (A) Hierarchical clustering of nine CATH homologous families/three
CATH topologous families by complete linkage method. Similarities between proteins are measured by SAUCE E-
values. Leaves are labeled with PDB ids as well as CATH homologous family ids. (B) An example of SAUCE pairwise
alignment. We found that all these structures contain an environmentally similar helical bundle motif. In this particular
example, it is interesting to see that a helical hairpin dimer (1hs7: white/gray) has an environment very similar to that
of a three helical bundle monomer (1g6u: black).

follow EVD (similar to SAUCE scores, see Chen and Crippen [2005]) and the EVD parameters can be
determined from Equations (5) and (6).

λ = 0.01610 − 0.00081 log(MN) (5)

µ = −622.3 + 154.1 log(MN) (6)

In order to evaluate whether our fold tree can assist fold recognition, we only used sequences from
clusters containing 3 or more structures as queries to search the fold tree containing 154 folds. There
are 220 test sequences in such nontrivial clusters out of all 379 proteins used to build the tree. We align
each test sequence to its native SAUCE cluster (with and without the native structure) as well as to other
nonnative SAUCE clusters. Ranks for native SAUCE clusters were recorded.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1565&iName=master.img-001.jpg&w=263&h=411


FOLD RECOGNITION VIA A TREE 1571

Table 1. Comparison of Fold Recognition Performance

Self recognition Leave-one-out

Routine ID Search routines
Max

searches Top 1 Top 5 Top 1 Top 5

1 Leaves only 379 100.00% 100.00% 22.07% 40.99%
2 Roots only 154 59.46% 70.27% 18.02% 30.18%
3 Leaves and nodes 644 99.10% 99.10% 27.47% 42.79%
4 Nodes only 274 81.98% 90.09% 30.18% 45.94%

Four search routines were used:

(1) Leaves only: only use single structural profiles, 379 profiles in total
(2) Roots only: only use the highest level multiple structural profiles in the tree, 154 profiles in total
(3) Leaves and nodes: a depth-first search is performed from the root (superfamily) to the leaves (single

structural profile), 654 profiles altogether in the tree
(4) Nodes only: similar to leaves and nodes but does not include single structural profiles, totaling 274

profiles in the tree.

Routine 1 is equivalent to conventional (single) fold recognition methods which do not use multiple
structural alignment information at all, while routine 3 mostly resembles the idea of redundant fold library
in Fugue3, in which both single structural and multiple structural profiles are used.

A depth-first walk was performed to search the tree. Starting from the root, if there was any son node
having a more significant E value than the parent, a further search was done in that son’s branch. If none
of son nodes can perform better than the parent, the search will end at this branch and backtrack.

We did two fold tree tests. The first one is the self recognition test, which included the native structure
for the query sequence in the tree. This is a simple test. We want to see whether the native sequence can
find the native structure. The other test is the leave-self-out test. We left out the native structure of the
query sequence from the tree, rebuilt multiple structural alignments and multiple structural profiles. We
want to see whether the sequence can find its native fold superfamily. The second test simulates a real fold
recognition test, where the native fold of a sequence is unknown.

The results (Table 1) show that all native structures, if included in the library, are ranked as the best hit
by their corresponding sequences (leaves only search routine). In most cases, tree walk methods (leaves
and nodes and nodes only routines) will be able to guide the sequence to find the native structure via the
tree. The leave-self-out results show that although using only one multiple structural profile per fold cluster
is the fastest, the performance is the worst (routine 2). Via our fold depth-first tree searches (routines 3
and 4), the recognition performance is better (correct fold recognition increases around 5%) with a greater
speed than conventional threading (routine 1).

3. DISCUSSION

If we only use single structure profiles to do fold recognition, we can see that as the number of single
structures in a fold cluster increases, the fold searching space expands, which should result in a better
performance in fold recognition (Fig. 3A: P vs. Ns). If we use multiple structural profiles, the situation is
more complicated: with more and more sequences added to the multiple structural alignment, the proportion
of gaps/misaligned regions may increase. Such noise can sometimes offset the benefits of extra structural
information. As we can see from Figure 3B, for small clusters (Ns<6), multiple structural profile (nodes
only) can lead to an overall better performance than single structural profiles (leaves only). But as the cluster
size grows too large, the performance of multiple structural profiles is undermined by noise (probably due
to large amount of gaps), and therefore is no better than that of single structural profiles. We also used
the number of CATH homologous families (Nc) in a cluster to measure cluster diversity. It seems that
the larger the Nc is, the more diverse the sequences will be. As shown in Figure 3, performance of fold
recognition drops dramatically for large Nc. The better performance of single structures in large Nc and
Ns suggests maybe we need to remodel threading algorithms in the gapped regions.
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FIG. 3. Relationship between cluster diversity and threading performance. (A) Leaves only. (B) Nodes only. P (first)
is probability that the native cluster has the top rank; P(top 5) is the probability that the native cluster is ranked in the
top 5; Ns is the number of structures in the SAUCE cluster; Nc is the number of CATH homologous families in the
SAUCE cluster.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1565&iName=master.img-002.png&w=263&h=533
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