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ABSTRACT

Protein fold recognition is an important step towards understanding protein three-dimen-
sional structures and their functions. A conditional graphical model, i.e., segmentation con-
ditional random fields (SCRFs), is proposed as an effective solution to this problem. In
contrast to traditional graphical models, such as the hidden Markov model (HMM), SCRFs
follow a discriminative approach. Therefore, it is flexible to include any features in the model,
such as overlapping or long-range interaction features over the whole sequence. The model
also employs a convex optimization function, which results in globally optimal solutions to
the model parameters. On the other hand, the segmentation setting in SCRFs makes their
graphical structures intuitively similar to the protein 3-D structures and more importantly
provides a framework to model the long-range interactions between secondary structures
directly. Our model is applied to predict the parallel β-helix fold, an important fold in bac-
terial pathogenesis and carbohydrate binding/cleavage. The cross-family validation shows
that SCRFs not only can score all known β-helices higher than non-β-helices in the Pro-
tein Data Bank (PDB), but also accurately locates rungs in known beta-helix proteins. Our
method outperforms BetaWrap, a state-of-the-art algorithm for predicting beta-helix folds,
and HMMER, a general motif detection algorithm based on HMM, and has the additional
advantage of general application to other protein folds. Applying our prediction model to
the Uniprot Database, we identify previously unknown potential β-helices.

Key words: protein structure prediction, fold recognition, graphical models.

1. INTRODUCTION

It is widely believed that protein structures reveal important information about protein functions.
One key step towards modeling a tertiary structure is to identify how building blocks of secondary

structures arrange themselves in space, i.e., the supersecondary structures or protein folds. There has been
significant work on predicting some well-defined types of structural motifs or functional units, such as
αα- and ββ-hairpins (Murzin et al., 1995; Orengo et al., 1997; Karplus et al., 1998; Durbin et al., 1998).
The task of protein fold recognition is the following: given a protein sequence and a particular fold or
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supersecondary structure, predict whether the protein adopts the structural fold and if so, locate the exact
positions of each component in the sequence.

The traditional approach for protein fold prediction is to search the database for homologs of sequences
with known structures using PSI-BLAST (Altschul et al., 1997) or match against an HMM profile built
from sequences with the same fold by HMMER (Durbin et al., 1998) or SAM (Karplus et al., 1998).
These approaches work well for short motifs with strong sequence similarities. However, there exist many
important motifs or folds without clear sequence similarity and involving the long-range interactions, such
as the folds in the beta class (Menke et al., 2004). These cases necessitate a more powerful model, which can
capture the structural characteristics of the protein fold without requiring sequence similarity. Interestingly,
the protein fold recognition task parallels an emerging trend in the machine learning community, i.e.,
the prediction problem for structured data, which predicts the labels of each node in a graph given an
observation with particular structures, for example webpage classification using the hyperlink graph or
object recognition using grids of image pixels. The conditional graphical models prove to be one of the
most effective tools for this kind of problem (Kumar and Hebert, 2003; Pinto et al., 2003).

In fact, several graphical models have been applied to protein structure prediction. One of the earliest
approaches to this problem has been applying simple hidden Markov models (HMMs) to protein sec-
ondary structure prediction and protein motif detection (Karplus et al., 1998; Durbin et al., 1998; Bystroff
et al., 2000); Delcher et al. (1993) introduced probabilistic causal networks for protein secondary structure
modeling. Recently, Liu et al. (2004) applied conditional random fields (CRFs), a discriminative graphical
model based on undirected graphs, for protein secondary structure prediction; Chu et al. (2004) extended
the segmental semi-Markov model (SSMM) under the Baysian framework for predicting protein secondary
structures.

The bottleneck for protein fold prediction is the identification of long-range interactions, which refers
to the hydrogen bending between amino acids far apart within the linear polypeptide sequence but close in
space. For example, they could be either two β-strands with hydrogen bonds in a parallel β-sheet or helix
pairs in coupled helical motifs. Generative models, such as HMM or SSMM, assume a particular data-
generating process, which makes it difficult to consider overlapping features and long-range interactions.
Discriminative graphical models, such as CRFs, takes on a single residue or residues of fixed length as an
observation variable. Thus, they fail to capture the features over a whole secondary structure element or
the interactions between adjacent elements in 3-D, which may be distant in the primary sequence. To solve
the problem, we propose segmentation conditional random fields (SCRFs), which retain all the advantages
of original CRFs and at the same time can handle observations of variable length.

2. CONDITIONAL RANDOM FIELDS (CRFS)

Simple chain-structured graphical models, such as hidden Markov models (HMMs), have been applied to
various problems. As a “generative” model, HMMs assume that the data are generated by a particular model
and compute the joint distribution of the observation sequence x and state sequence y, i.e., P(x, y). However,
generative models might perform poorly with inappropriate assumptions. In contrast, discriminative models,
such as neural networks and support vector machines (SVMs), estimate the decision boundary directly
without computing the underlying data distribution and thus often achieve better performance.

Recently, several discriminative graphical models have been proposed by the machine learning com-
munity, such as maximum entropy Markov models (MEMMs) (McCallum et al., 2000) and conditional
random fields (CRFs) (Lafferty et al., 2001). Among these models, CRFs proposed by Lafferty et al., are
very successful in many applications, such as information extraction, image processing, and so on (Pinto
et al., 2003; Kumar and Hebert, 2003).

CRFs are “undirected” graphical models (also known as random fields, as opposed to directed graphical
models such as HMMs) to compute the conditional likelihood P(y|x) directly. By the Hammersley–Clifford
theorem (1971), the conditional probability P(y|x) is proportional to the product of the potential functions
over all the cliques in the graph; that is,

P(y|x) = 1

Z0

∏
c∈C(y,x)

�c(yc, xc),
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where �c(yc, xc) is the potential function over the clique c, and Z0 is the normalization factor over all
possible assignments of y (see Jordan [1998] for more detail). For a chain structure, CRFs define the
conditional probability as

P(y|x) = 1

Z0
exp

(
N∑

i=1

K∑
k=1

λkfk(x, i, yi−1, yi)

)
, (1)

where fk is an arbitrary feature function over x, N is the number of observations, and K is the number of
features. The model parameters λk are learned via maximizing the conditional likelihood of the training
data.

CRFs define the clique potential as an exponential function, which results in a series of nice properties.
First, the optimization function is convex so that finding the global optimum is guaranteed (Lafferty
et al., 2001). Second, the feature definition can be arbitrary, including overlapping features and long-range
interactions. Finally, CRFs still have efficient inference algorithms, such as forward–backward or Viterbi
algorithm, as long as the graph structures are chains or trees.

Similarly to HMMs, we can define the forward-backward probability for CRFs. For a chain structure,
the “forward value” αi(y) is defined as the probability of being in state y at time i given the observation
up to i. The recursive step for computing αi(y) is

αi+1(y) =
∑
y′

αi(y
′) exp

(∑
k

λkfk(x, i + 1, y′, y)

)
.

Similarly, βi(y) is the probability of starting from state y at time i given the observation sequence after
time i. The recursive step is

βi(y
′) =

∑
y

exp

(∑
k

λkfk(x, i + 1, y′, y)

)
βi+1(y).

The forward–backward algorithm and Viterbi algorithm can be derived accordingly (Sha and Pereira, 2003).

3. SEGMENTATION CONDITIONAL RANDOM FIELDS (SCRF’S)

Protein folds are frequent arrangement pattern of several secondary structure elements: some elements
are quite conserved in sequences or prefer a specific length, while others might form hydrogen bonds with
each other, such as two β-strands in a parallel β-sheet. To model the protein fold better, it would be natural
to think of each secondary structure element as one observation, corresponding to one node in the graph,
and the edges between elements as indicating their interactions in 3-D. Then, given a protein sequence,
we can search for the best segmentation defined by the graph and determine whether the protein adopts
the fold or not.

3.1. Protein structural graph

Before covering the algorithm in detail, we first introduce a special kind of graph, which we call the
protein structural graph. Given a protein fold, a structural graph is defined as G = 〈V, E1, E2〉, where
V = U

⋃{I }, U is the set of nodes corresponding to the secondary structure elements within the fold, and
I is the node to represent the elements outside the fold. Set E1 is the set of edges between neighboring
elements in primary sequences, and E2 is the set of edges indicating the potential long-range interactions
between elements in tertiary structures. Figure 1 shows an example of the structural graph for β-α-β
motif. Notice that there is a clear distinction between edges in E1 and those in E2 in terms of probabilistic
semantics: similarly to HMMs, the E1 edges indicate state transitions between adjacent nodes. On the
other hand, the E2 edges are used to model the long-range interactions, which is unique to the structural
graph.
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FIG. 1. Graph structure of β-α-β motif. (A) 3-D structure. (B) Protein structure graph. State set = {S1, . . . , S6},
where S1 represents non-β-α-β (I-node), S2, S4 represents β-strand, S3, S6 represents coil, S5 represents α-helix.
E1 = {black edges} and E2 = {grey bold edges}.

In practice, one protein fold might correspond to several reasonable structural graphs given different
semantics for each node. There is always a tradeoff between the graph complexity, fidelity of the model,
and the real computational costs. Therefore, a good graph is the most expressive one that captures the
properties of the protein folds while retaining as much simplicity as possible. There are several ways to
simplify the graph; for example, we can combine multiple nodes with similar properties into one or remove
those E2 edges that are likely to be less predictive or less interesting to us. We give a concrete example
of β-helix fold in Section 4.

3.2. Segmentation conditional random fields

Given a structural graph G and a protein sequence x = x1x2 . . . xN , we can have a possible segmentation
of the sequence, i.e., s = (s1, s2, . . . , sM), where M is the number of segments, si = 〈pi, qi, yi〉 with a
starting position pi , an end position qi , and the state label of the segment yi . The conditional probability
of a segmentation s given the observation x can be computed as follows:

P(s|x) = 1

Z0

∏
c∈CG

exp

(∑
k

λkfk(xc, sc)

)
,

where Z0 is the normalization factor based on all possible configurations.
Since a protein fold is a regular arrangement of its secondary structure elements, the general topology

is often known a priori and we can easily define a structural graph with deterministic transitions between
adjacent nodes. Therefore, it is not necessary to consider the effect of E1 edges in the model explicitly,
resulting in a graph G′ = 〈V, E2〉. If each subgraph of G′ is a chain or a tree (an isolated node can also
be seen as a chain), then we have

P(s|x) = 1

Z0
exp

(
M∑
i=1

K∑
k=1

λkfk(x, si , sπi
)

)
, (2)

where sπi
is the predecessor (neighbor of smaller position index) of si in graph G′.

We estimate the parameters λk by maximizing the conditional log likelihood of the training data:

L� =
M∑
i=1

K∑
k=1

λkfk(x, si , sπi
)− log Z0 +

K∑
k=1

λ2
k

2σ 2
,

where the last term is a Gaussian prior over the parameters as a smoothing term to deal with any sparsity
problem in the training data. To perform the optimization, we need to seek the zero of the first derivative, i.e.,

∂L�

∂λk

=
M∑
i=1

(fk(x, si , sπi
)− EP(S|x)[fk(x, Si, Sπi

)])+ λk

σ 2
, (3)
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where EP(S|x)[fk(x, Si, Sπi
)] is the expectation of feature fk(x, Si, Sπi

) over all possible segmentations
of x. The convexity property guarantees that the root of Equation (3) corresponds to the optimal solution.
However, since there is no closed-form solution, it is not straightforward to find the optimal solution.
Recent work on iterative searching algorithms for CRFs suggests that L-BFGS converges much faster than
other commonly used methods, such as iterative scaling or conjugate gradient (Sha and Pereira, 2003),
which is also confirmed in our experiments for SCRFs.

Similarly to CRFs, we still have an efficient inference algorithm as long as each subgraph of G′ is
a chain and the nodes connected by E2 edges have fixed length of residues. We redefine the forward
probability α〈l,yl〉(r, yr ) as the conditional probability that a segment of state yr ends at position r given
the observation xl+1 . . . xr and a segment of state yl ends at position l. The recursive step can be written as

α〈l,yl〉(r, yr ) =
∑

p, p′, q ′
α〈l,yl〉(q ′, y′)α〈q ′,y′〉(p − 1,

←−
yr ) exp

(∑
k

λkfk(x, s, sπ )

)
,

where sπ is the predecessor of s in graph G′; i.e., s = 〈p, r, yr 〉 and sπ = 〈p′, q ′, y′〉, “→” is the operator to
get the next state and “←” the previous state (the value is known since the state transition is deterministic).

The range over the summation is
∑r−	2+1

p=r−	1+1

∑p−1
q ′=l+	′1−1

∑q ′−	′1+1
p′=l

, where 	1 = max length(yr), 	2 =
min length(yr). Then, the normalizer Z0 = α〈0,ystart〉(N, yend). Figure 2 shows a toy example of how to
calculate the forward probability in detail.

Similarly, we can define the backward probability β〈r,yr 〉(l, yl) as the probability of xl+1 . . . xr given a
segment of state yl ends at l and a segment of state yr ends at r . Then we have

β〈r,yr 〉(l, yl) =
∑

q ′, p, q

β〈r,yr 〉(p − 1,
←−
y )β〈p−1,

←−
y 〉(q

′,
−→
yl ) exp

(∑
k

λkfk(x, s, sπ )

)
,

where s = 〈p, q, y〉, sπ = 〈l + 1, q ′,
−→
yl 〉. Given the backward and forward algorithm, we can compute

the expectation of each feature fk in (3) accordingly.
For a test sequence, we search for the segmentation that maximizes the conditional likelihood P(s|x).

Similarly to CRFs, we define

δ〈l,yl〉(r, yr ) = max
p, p′, q ′

δ〈l,yl〉(q ′, y′)δ〈q ′,y′〉(p − 1,
←−
yr ) exp

(∑
k

λkfk(x, s, sπ )

)
.

FIG. 2. An example of forward algorithm for the graph defined in Fig. 1B. The x/y-axis: index of starting/end residue
position; light grey circle: target value; dark grey circle: intermediate value. (Left) calculation for α〈0,S0〉(r, S3) for
segment S3 with no direct forward neighbor; (right) calculation for α〈0,S0〉(r, S4) for segment S4 with direct forward
neighbor S2.
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The best segmentation can be traced back from δ〈0,ystart〉(N, yend), where N is the number of residues
in the sequence.

In general, the computational cost of SCRFs for the forward–backward probability and Viterbi algorithm
will be polynomial to the length of the sequence N . However, in most real applications of protein fold
prediction, the number of possible residues in each node is much smaller than N or fixed, which might
reduce the final complexity to be approximately O(N).

3.3. SCRFs for general graphs

For a general protein structural graph G = 〈V, E1, E2〉, the conditional probability of a sequence x
given a segmentation s is defined as

P(s|x) = 1

Z0

∏
c∈CG

exp

(
K∑

k=1

λkfk(xc, sc)

)
.

If there are no long-range interactions involved within the fold, i.e., E2 = ∅, SCRFs degrade into semi-
Markov CRF models, which are linear CRFs that allow observations of variable length (Sarawagi and
Cohen, 2004); on the other hand, if the state transitions between neighboring segments are deterministic,
we do not need to consider the effect of E1 edges in the graph, i.e., E1 = ∅, which is the case that we
described in detail in previous section. If neither E1 nor E2 is empty, the problem can be generalized as
a structural learning problem for graphical models, and more thorough investigation is warranted.

For many protein folds or supersecondary structures, it is easy to construct a protein structural graph
without loops and then exact inference algorithms can be applied; otherwise, approximation methods, for
example, mean field approximation or loopy belief propagation, have to be applied (see Jordan [1998] for
a good review).

4. APPLICATION TO RIGHT-HANDED PARALLEL β-HELIX PREDICTION

The right-handed parallel β-helix fold is an elongated helix-like structure with a series of progressive
stranded coilings (called rungs), each of which is composed of three parallel β-strands to form a triangular
prism shape (Yoder et al., 1993). The typical 3-D structure of a β-helix is shown in Fig. 3A–B (Cowen
et al., 2002). As we can see, each basic structural unit, i.e., a rung, has three β-strands of various lengths,
ranging from three to five residues. The strands are connected to each other by loops with distinctive
features. One of the loops is a unique two-residue turn which forms an angle of approximately 120�
between two parallel β-strands (called the T-2 turn). The other two loops vary in size and conformation,
which might contain coils, helixes, or even β-sheets. There currently exist 14 protein sequences with a
three-stranded right-hand β-helix whose crystallized structures have been deposited in the Protein Data
Bank (PDB) (See Table 1).

FIG. 3. Three-D structures and side-chain patterns of β-helices; (A) side view, (B) top view of one rung, (C) seg-
mentation of 3-D structures, (D) protein structural graph. E1 = {dash lines}, and E2 = {solid lines} (Figs. (A) and (B)
are adapted from Cowen et al. [2002]).
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Table 1. Scores and Rank for the Known Right-Handed β-Helices by HMMER, BetaWrap, and SCRFsa

BetaWrapa SCRFs
PDB Struct-based HMMs Seq-based HMMs

SCOP family ID bit scoreb rank bit scoreb rank Score Rank ρ-Score Rank

P.69 pertactin 1dab −73.6 3 −163.4 75 −17.84 1 10.17 1
Chondroitinase B 1dbg −64.6 5 − 171.0 55 −19.55 1 13.15 1
Glutamate synthase 1ea0 −85.7 65 −109.1 72 −24.87 N/A 6.21 1
Pectin methylesterase 1qjv −72.8 11 −123.3 146 −20.74 1 6.12 1
P22 tailspike 1tyu −78.8 30 −154.7 15 −20.46 1 6.71 1
Iota-carrageenase 1ktw −81.9 17 − 173.3 121 −23.4 N/A 8.07 1
Pectate lyase 1air −37.1 2 −133.6 35 −16.02 1 16.64 1

1bn8 180.3 1 −133.7 37 −18.42 3 13.28 2
1ee6 −170.8 852 −219.4 880 −16.44 2 10.84 3

Pectin lyase 1idj −78.1 14 −178.1 257 −17.99 2 15.01 2
1qcx −83.5 28 −181.2 263 −17.09 1 16.43 1

Galacturonase 1bhe −91.5 18 −183.4 108 −18.80 1 20.11 3
1czf −98.4 43 −188.1 130 −19.32 2 40.37 1
1rmg −78.3 3 −212.2 270 −20.12 3 23.93 2

aThe scores and rank from BetaWrap are taken from Bradley et al. (2001a) except 1ktw and 1ea0.
bThe bit scores in HMMER are not directly comparable.

The β-helix structures are significant in that they include pectate lyases, which are secreted by bacterial
pathogens during the infection of plants; the phage P22 tail-spike adhesion, which binds the O-antigen of
Salmonella typhimurium; and the P.69 pertactin toxin from Bordetella pertussis, the cause of whooping
cough. Therefore, it would be very interesting if we can accurately predict other unknown β-helix structure
proteins, which may also have significant functions.

Traditional methods for protein family classification, such as threading, PSI-BLAST, and HMMs, fail
to solve the β-helix recognition problem across different families (Cowen et al., 2002). Recently, a com-
putational method called BetaWrap, has been proposed to predict the β-helix specifically (Bradley et al.,
2001b, 2001a; Cowen et al., 2002). The algorithm “wraps” the unknown sequences in all plausible ways
and check the scores to see whether any wrap makes sense. The cross-validation results in the protein data
bank (PDB) seem quite promising. However, the BetaWrap algorithm hand-codes some biological heuristic
rules, which makes it prone to over-fit the known β-helix proteins and also hard to apply for other fold
prediction tasks. We are, however, indebted to the BetaWrap efforts for identifying meaningful features,
as discussed in Section 4.3.

4.1. Protein structural graph for β-helix

From previous literature on β-helix structures, there are two facts important for accurate prediction: 1) the
β-strands of each rung have patterns of pleating and hydrogen bonding that are well conserved across the
superfamily and 2) the interaction of the strand side-chains in the buried core are critical determinants of
the fold (Yoder and Jurnak, 1995; Kreisberg et al., 2000). Therefore we define the protein structural graph
of β-helix as in Fig. 3D.

There are five states in the graph altogether, i.e., s-B23, s-T3, s-B1, s-T1, and s-I. The state s-B23 is
a union of B2, T2, and B3 because these three segments are all highly conserved in pleating patterns
and a combination of conserved evidence is generally much easier to detect. We fix the length of S-B23
and S-B1 as 8 and 3 respectively for two reasons: first, these are the numbers of residues shared by all
known β-helices; second, it helps limit the search space and reduce the computational costs. The states
s-T3 and s-T1 are used to connect s-B23 and s-B1. It is known that the β-helix structures will break if
the insertion is too long. Therefore, we set the length of s-T3 and s-T1 in a range from 1 to 80. State
s-I is the non-β-helix state, which refers to all those regions outside the β-helix structures in the protein.
The edge denoted by the solid line between s-B23 is used to model the long-range interaction between
adjacent β-strand pairs. For a protein without any β-helix structures, we define the protein structural graph
as a single node of state s-I.
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4.2. SCRFs for β-helix fold prediction

In Section 3.2, we made two assumptions in the SCRFs model: a) the state transition is deterministic
and b) each subgraph of G′ = 〈V, E2〉 is a chain or a tree. For the β-helix, we cannot directly define a
structural graph with deterministic state transitions, since the number of rungs in a protein is unknown
beforehand. In Fig. 3, it seems that the previous state of s-B23 can be either s-I or s-T1. However, notice
that s-I can appear only at the beginning or the end of a sequence; therefore, s-I can be the previous state of
s-B23 iff the previous segment starts at the first residue in the sequence. Similarly, s-I can be the next state
of s-B23 iff the next segment ends at the last residue. Therefore, the state transition is deterministic given
the constraint we have for s-I. As for assumption b), it is straightforward to see that graph G′ consists
of a chain and a set of isolated nodes. Therefore, the algorithm discussed in Section 3.2 can be applied
directly.

To determine whether a protein sequence has the β-helix fold, we define the score ρ as the log ratio of the
probability of the best segmentation to the probability of the whole sequence as one segment in a null state
s-I, i.e., ρ = log maxs P (s|x)

P (〈1,N,s−I 〉|x)
. The higher the score ρ, the more likely that the sequence has a β-helix fold.

We did not consider the long-range interactions between B1 strands explicitly since the effect is relatively
weak given only three residues in s-B1 segments. However, we use the B1 interactions as a filter in the
Viterbi algorithm: specifically, δt (y) will be the highest value whose corresponding segmentation also has
the alignment scores for B1 higher than a threshold set using cross-validation.

4.3. Feature extraction

SCRFs provide an expressive framework to handle long-range interactions for protein fold prediction.
However, the choice of feature function fk plays a key role in accurate predictions. We define two types
of features for β-helix prediction, i.e., node features and internode features.

Node features cover the properties of an individual segment, including:

a. Regular expression template: Based on the side-chain alternating patterns in the B23 region, BetaWrap
generates a regular expression template to detect a union of B2-T2-B3 strands, i.e., �X�XX�X�X,
where � matches any of the hydrophobic residues {A, F, I, L, M, V, W, Y}, � matches any amino
acids except ionisable residues {D, E, R, K}, and X matches any amino acid (Bradley et al., 2001b).
Following this pattern, we define the feature function fRST (x, si) equal to 1 if the segment si matches
the template, and 0 otherwise.

b. Probabilistic HMM profiles: The regular expression template above is straightforward and easy to
implement. However, sometimes it is hard to make a clear distinction between a true motif and a false
alarm. Therefore, we built a probabilistic motif profile using HMMER (Durbin et al., 1998) for the
s-B23 and s-B1 segments, respectively. We define the feature functions fHMM1(x, si) and fHMM2(x, si)

as the alignment scores of si against the s-B23 and s-B1 profiles.
c. Secondary structure prediction scores: Secondary structures reveal significant information on how a

protein folds in three dimensions. The state-of-art prediction method can achieve an average accuracy of
76–78% on soluble proteins. We can get fairly good prediction on alpha-helix and coils, which can help
us locate the s-T1 and s-T3 segments. Therefore, we define the feature functions fssH(x, si), fssE(x, si),
and fssC(x, si) as the average of the predicted scores by PSIPRED over all residues in segment si , for
helix, sheet, and coil, respectively (Jones, 1999).

d. Segment length: It is interesting to notice that the β-helix structure has strong preferences for insertions
within certain length ranges (see Fig. 4). To consider this preference in the model, we did parametric
density estimation. We explore several common distribution functions, including Poisson distributions,
negative-binomial distributions, and asymmetric exponential distributions, which consist of two reverse-
polarity exponential functions meeting at one point. We use the latter one since it provides a better
estimator than the other two (see Fig. 4). Then we define the feature functions fL1(x, si) and fL3(x, si) as
the estimated density of length (si) under the distribution of length (s-T1) and length (s-T3) respectively.

Internode features capture long-range interactions between adjacent β-strand pairs, including:

a. Side chain alignment scores: BetaWrap calculates the alignment scores of residue pairs depending on
whether the side chains are buried or exposed. In this method, the conditional probability that a residue
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FIG. 4. Histograms for the length of s-T1 (left) and s-T3 (right).

of type X will align with residue Y, given their orientation relative to the core (buried or exposed), is
estimated from a β-structure database developed from the whole PDB (Bradley et al., 2001b). Following
a similar idea, we define the feature function fSAS(x, si , sπi

) as the weighted sum of the side chain
alignment scores for si given sπi

if both are s-B23 segments, where a weight of 1 is given to inward
pairs and 0.5 to the outward pairs.

b. Parallel β-sheet alignment scores: In addition to the side chain position, another aspect to study
is the different preferences of each amino acid to form parallel and anti-parallel β-sheets. Steward
and Thornton (2002) derived the “pairwise information values” (V) for a residue of type X given the
residue Y on the pairing parallel (or anti-parallel) strand and the offsets of Y from the paired residue Y′
of X. The alignment score for two segments x = X1 . . . Xm and y = Y1 . . . Ym is defined as

score(x, y) =
∑

i

∑
j

(V (Xi |Yj , i − j)+ V (Yi |Xj , i − j)).

Unlike the side chain alignment scores, this score also takes into account the effect of neighboring
residues on the paired strand. We define the feature function fPAS(x, si , sπi

) = score(s, sπi
) if the states

of si and sπi
are both s-B23 and 0 otherwise.

c. Distance between adjacent s-B23 segments: There are also different preferences for the distance
between adjacent s-B23 segments. It is difficult to estimate this distribution since the range is too
large. Therefore, we simply define the feature function as the normalized length; i.e., fDIS(x, si, sπi

) =
dis(S,S′)−µ

σ
, where µ is the mean and σ 2 is the variance.

Notice that most features defined above are quite general, not limited to predicting β-helices. For
example, an important aspect to discriminate a specific protein fold from others is to build HMM pro-
files or identify regular expression templates for conserved regions if they exist; the secondary structure
assignments are essential in locating the elements within a protein fold; if some segments have strong pref-
erences for a certain length range, then the length is also informative. For internode features, the β-sheet
alignment scores are useful for folds in the β-family while hydrophobicity is important for alpha or the
alpha-beta class.

5. EXPERIMENTS

In our experiments, we followed the setup described by Bradley et al. (2001b). A PDB-minus dataset
was constructed from the PDB protein sequences (July 2004 version) (Berman et al., 2000) with less than
25% similarity to each other and no less than 40 residues in length. Then the β-helix proteins are removed
from the dataset, resulting in 2,094 sequences in total. The proteins in the PDB-minus dataset will serve
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as negative examples in the cross-family validation and later for discovery of new β-helix proteins. Since
negative data dominate the training set, we subsample 15 negative sequences that are most similar to the
positive examples in sequence identity so that SCRFs can learn a better decision boundary than randomly
sampling.

5.1. Cross-family validation

A leave-family-out cross-validation was performed on the nine β-helix families of closely related proteins
in the SCOP database (Murzin et al., 1995). For each cross, proteins in one β-helix family are placed
in the test set while the remainder are placed in the training set as positive examples. Similarly, the
PDB-minus was also randomly partitioned into nine subsets, one of which is placed in the test set while
the rest serve as the negative training examples. We compare our results with BetaWrap, the state-of-art
algorithm for predicting β-helices, and HMMER, a general motif detection algorithm based on a simple
graphical model, i.e., HMMs. The input to HMMER is a multiple sequence alignment. The best multiple
alignments are typically generated using 3-D structural information, although this is not strictly a “by
sequence alone” method. Therefore, we generated two kinds of alignments for comparison: one is multiple
structural alignments using CE-MC (Guda et al., 2004), the other is purely sequence-based alignments by
CLUSTALW (Thompson et al., 1994).

Table 1 shows the output scores by different methods and the relative rank of the β-helix proteins in
the cross-family validation. From the results, we can see that the SCRFs model can successfully score
all known β-helices higher than non-β-helices in the PDB. On the other hand, there are two proteins
(i.e., 1ktw and 1ea0) in our validation sets that were crystallized recently and thus are not included in
the BetaWrap system. We tested these two sequences on BetaWrap and got a score of −23.4 for 1ktw
and −24.87 for 1ea0. These values are significantly lower than the scores of all other β-helices and even
some of the non-β-helix proteins, which indicates that our method outperforms the BetaWrap algorithm.
As expected, HMMER did worst even using the structural alignments.

Figure 5 plots the score histogram for known β-helix sequences against the PDB-minus dataset. Com-
pared with the histograms in a similar experiment using BetaWrap (Bradley et al., 2001b), our log ratio
score ρ indicates a clear separation of β-helix proteins versus non-β-helix proteins. Only 18 out of 2,094
proteins have a score higher than zero. Among these 18 proteins, 13 proteins belong to the beta class and 5
proteins belong to the alpha-beta class in the CATH Database (Orengo et al., 1997). In Table 2 we cluster
the proteins into three different groups according to the segmentation results and include some examples
of the predicted segmentation in each group.

FIG. 5. Histograms of protein scores of known β-helix proteins against PDB-minus dataset. Dark grey bar: PDB-
minus dataset; light grey bar: known β-helix proteins. Out of 2094 protein sequences in PDB-minus, 2076 have a log
ratio score ρ of 0, which means that the best segmentation is a single segment in non-β-helix state.
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Table 2. Groups of Segmentation Results for the Known Right-Handed β-Helix

Group Perfect match Good match OK match

Missing rungs 0 1–2 3 or more

PDB ID 1czf 1air, 1bhe, 1bn8, 1dbg, 1ee6 (right), 1idj, 1dab (left), 1ea0, 1tyu (right)
1ktw (left), 1qcx, 1qjv, 1rmg

5.2. Discovery of potential β-helix proteins

New potential β-helix proteins were identified from the UniProt reference databases (UniRef) (a com-
bination of Swiss-Prot Release 44.2 of 30 July 2004 and TrEMBL 27.2 of 30 July 2004) (Leinonen et al.,
2004). We choose the UniRef50 (50% identity) with 490,713 sequences as the exploration set. Ninety-three
sequences were identified by the SCRFs model with scores above a cutoff of 5, all of which are identified
as potential beta-helices. The sequences come from organisms in all domains of life. Of 44 eukaryotic se-
quences, 25 are from plants. The remaining eukaryotic sequences come from mammals, fungi, nematodes,
and pathogens from the genus Plasmodium: four sequences were viral, including three from bacterio-
phages; nine sequences are archeal, seven of which are from methanogens of the genus Methanosarcina.
Of the 93 high-scoring sequences, 48 are likely homologous (BLAST E-value < 0.001) with proteins
currently known to contain parallel beta-helix domains. For the rest, most sequences are not homologous
to any of the sequences in the PDB. The protein sequences with maximal log ratio scores is shown in
Table 3, among which the polygalacturonases have already been shown to form parallel beta-helices, the
CASH family of protein domains are also believed to be parallel beta-helices, and auto-transporter pro-
teins may carry parallel beta-helices as a “passenger domain "; that is, the transporter domain exports
the parallel beta-helix portion of the molecule to the outer cell surface. The full list can be accessed at
www.cs.cmu.edu/∼yanliu/SCRF.html.

Table 3. Examples of Proteins Predicted to Form β-Helix in UniProt

UniProt ID Description Score

Q8YK40 Auto-transporter/adhesin related 119.7
Q8PRX0 Cell surface glycoprotein/NosD domain 93.8
Q8WTU9 Ribonuclease 81.3
Q8DK34 Contains CASH domain, may bind carbohydrate 81.1
Q8RD81 Fibrocystin homolog, surface adhesion protein 55.1
O26812 S-layer protein/endopolygalacturonase domain 54.2
Q6LZ14 Hypothetical S-layer 43.8
P35338 Exopolygalacturonase precursor 42.2
Q6ZGA1 Putative polygalacturonase 41.6
Q9K1Z6 Putative outer membrane protein 40.8
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Our method also identifies gp14 of Shigella bacteriophage Sf6 as having a parallel beta-helix domain,
giving it a score of 15.63. This protein was not included in the UniRef50 dataset because it was incorrectly
grouped with the P22 tail-spike protein (1tyu), which was used in the training dataset. These two proteins
share homologous capsid binding domains at their N-termini, which are not parallel beta-helices, while
their C-terminal domains do not have any sequence identity. An Sf6 gp14 crystal structure has recently been
solved and shown to be a trimer of parallel β-helices (R. Seckler, personal communication). Therefore,
SCRFs not only can identify homologous sequences to the known proteins, but also succeed in discovering
proteins with significantly less sequence similarity.

6. DISCUSSION AND CONCLUSION

In Bradley et al. (2001b), BetaWrap was compared with other alternative methods, such as PSI-BLAST
and Threader. We repeated their experiments and got similar results confirming that these methods fail
to detect β-helix proteins accurately. Now it would be interesting to seek answers to the following ques-
tions: Why is β-helix prediction difficult for these commonly used methods? Why can the SCRFs model
perform better?

It seems that the β-helix motif is hard to predict because there are long-range interactions in the β-helix
fold. In addition, the structural properties unique to the β-helix are not reflected clearly in the sequences. For
example, the conserved templates for the s-B23 segment also appear many times in non-β-helix proteins;
the side chain alignment propensities in β-sheets are also shared by β-sheets in other structures, such as the
β-sandwich. Therefore the commonly used methods based on sequence similarity, such as PSI-BLAST and
HMMER, cannot perform well in this kind of task. However, a combination of both sequence and structure
characteristics might help to identify more β-helices, which is one of the major reasons why BetaWrap and
SCRFs work well. The difference between these two methods is BetaWrap searches the combination space
by defining a series of heuristic rules while SCRFs search automatically by maximizing the conditional
likelihood of the training data under a unified graphical model, which guarantees the solution to be global
optimally. Therefore, the SCRFs model is more general and robust, even though it uses similar features as
the BetaWrap method.

There are several directions to improve the SCRFs model, which are interesting both computationally and
empirically. One is to extend the SCRFs model for predicting other protein folds, such as the leucine-rich
repeats (LLR) or triple β-spirals. A second direction is to extend the current work for modeling protein
dynamics, i.e., constructing more powerful graphical models to capture the dynamic constraints in the 3-D
protein structures. The latter, however, will be a major undertaking.
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