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Abstract

Interaction networks, consisting of agents linked by tlwieractions, are ubiquitous accross many disciplines
of modern science. Many methods of analysis of interact&warks have been proposed, mainly concentrating on
node degree distribution or aiming to discover clustergefas that are very strongly connected between themselves.
These methods are principally based on graph-theory orimatarning.

We present a mathematically simple formalism for modeltngtext-specific information propagation in interac-
tion networks based on random walks. The context is provigesklection of sources and destinations of information
and by use of potential functions that direct the flow towahdsdestinations. We also use the concept of dissipation
to model the aging of information as it diffuses from its smur

Using examples from yeast protein-protein interactiomoeks and some of the histone acetyltransferases in-
volved in control of transcription, we demonstrate theitytibf the concepts and the mathematical constructs intro-
duced in this paper.
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1 Introduction

Interaction networks are abundant and have recently gaigedficant publicity in many diverse modern disciplines
such as electronics (Canchball, [2001), sociology (Wasserman and Faust, 1994; Newman|) 20@4epidemiology
(Barthelemyet all, [2005). In its simplest form, an interaction network cotssaf a collection of entities (or agents),
where two agents are linked if they interact in some way. Kan®le, in an acquaintance network (Amagtél,
2000), the agents represent persons and two persons aee liogether if they know each other while the Wold-
wide Web network consists of web pages with links betweerep§Brodeeet al.,, 12000). Mathematically, networks
correspond exactly to graphs (or multigraphs), with agestsertices and links as edges, which can be weighted
and/or directed depending on the exact application beindeted. The key to analysis of interaction networks is the
assumption of information transitivity: information caovll through or can be exchanged via paths of interactions.

Biology in post-genomic era also contains numerous exasrgdlenolecular networks (Galitski, 2004). Metabolic
networks have been modeled by representing metabolites@dssrand chemical reactions as links: two metabo-
lites are linked if they participate in the same reactlon @d Zeng, 2003). Genetic networks have genes as nodes
with two genes being linked if they interact through direldt@nscriptional regulation (Guelziet al,,12002). Protein-
protein interaction networks have proteins as nodes, Wwélinks representing physical interactions (bindingjsesn
proteins [(Pellegrinét all, 2004). Large scale high-throughput studies in model asgas such assaccharomyces
cerevisiagbaker's yeast) (Itet all, [2001; Uetzet all, |2000),Drosophilla melanogaste(fruit-fly) (Giot et all, [2003),
Caenorhabditis elegangoundworm) |(Liet all, [2004) and humans (Stelet all, [2005; Ruakt all, [2005), provided
extensive datasets of protein-protein interactionseskar publicly-available databases such as the Databaseenf |
acting Proteins (DIP) (Xenarias all, [2002] Salwinsket all,[2004). Unfortunately, there is very little consistency be
tween the protein-protein interaction data coming fronfiedént high-throughput experiments (Sprinzsilall, [2003)
and significant effort has been expended in devising wayistmder false positives and false negatives (Suthetad,
2006). This problem is not restricted to protein-proteteractions: microarray data also contains non-negligile
consistencies (Miklos and Maleszka, 2004) .

Numerous approaches have been proposed for analysis ofjlmal and, in particular, protein-protein interac-
tion networks|(Aittokallio and Schwikowski, 2006). Howeydue to space restrictions, we will refer to just a few.
Most algorithms aim to discover ‘functional modules’ (Heell et all, 11999), representing well connected clusters
of nodes with the same or similar function, by using clusigtiechniques from graph theory and/or machine learn-
ing (Steffenet all, [2002; Spirin and Mirny, 2003; Rives and Galitski, 2003; ¢¥ex-Lealet all, [2004;| Nabievaet al,
2005; Xionget al., [2005; Chueet all, |2006; Chen and Yuan, 2006; Hwaatal,, [2006). Very frequently, these tech-
nigues make use of additional experimental data which ispredent in the network structure itself. For example,
methods for discovery of complexes from protein-proteieriaction networks often refer to the data from dataset
from different species (Kellegt al,,[2003; Sharaet al,,[2005&,b), microarray expression studies (Stedfea., 12002;
Chen and Yuan, 2006), or human-curated functional claasifics (Nabievat al.,[2005; Chuat al.,12006).

Our approach to analyzing interaction networks is veryedéht, relying solely on the network structure. We model
diffusion of information through the network by discretex random walks moving from the nodes representing the
sources of information to their destinations. The choiceafrces and destinations provides toatext of analysis
with the nodes most affected by information flow being callgdrmation Transduction Module$Ve use two modes
of diffusion, dual to each other, which we call absorbing amdtting, with our absorbing mode directly corresponding
to deeply investigated absorbing Markov chains (KemenySmell, 1975). Random walks and corresponding Markov
chains are one of the subjects of spectral graph theory (§;1897) but we do not use eigenspace decomposition in
our work, instead relying on a basic matrix algebra appraaoiiar to that of Kemeny and Snell (1976).

The algorithmFunctional Flowby|Nabieveet al. (2005), also modeling diffusion of information from souscés
closest to our emitting model. However, to delineate a aeli®logical context, we additionally direct the flow from
sources to selected destinations using potential furetonl allow the information content to dissipate (evapdrate
from the network at each time step, thus modeling naturahgggf information.

Our models allow investigation of several types of biol@djiguestions from protein-protein interaction networks.
Many proteins perform their function in cooperation withet proteins through, often large, protein complexes. Thus



to elucidate the function of a given protein, it is useful tmlv the most likely members of complexes it may belong to
and their relations to each other. Additionally, if two pivis are known to have similar function, what, if any, are the
proteins they share in their respective complexes? To hswer such questions, we employ our absorbing diffusion
mode.

The answers to the above questions can provide the genenaldtion environment of one or more proteins. It is
also very instructive to identify specific modules medigtinteractions between distant (in network terms) proteins
Our emitting diffusion mode can be used to find possible aatds for members of such modules. Furthermore,
analysis of interaction modules obtained from considediffgrent proteins in the same biological context may lead
to discovery of fundamental units of information transdorct To achieve this we developed the concept of information
interference. More concrete definitions will be presentetthe body of the text.

This paper is organized as follows. Section 2 outlines teemp behind our models of information diffusion in
networks. For better readability, all the theorems and fs;assing mainly the basic concepts and results from the
matrix algebra are given in Appendix (the reader may wishatosalt the standard linear algebra textbooks such as
(Hoffman and Kunze, 1971) or (Bapat and Raghavan, |11997) dokdround). Section 3 introduces the methods of
analysis of results obtained using the concepts of Sectiomh#le Section 4 presents concrete examples centered
around yeast histone acetyltransferases. We finish witlugéson and conclusion in Section 5.

2 Theory

2.1 Preiminaries

We represent an interaction network as a weighted directgohd’ = (V, E, w) whereV is a finite set of vertices of
sizen, E C V x V is a set of edges and is a non-negative real-valued function &hx V that is positive on®,
giving the weight of each edge (the weight of non-existingeei$ defined to b&). Assuming an ordering of vertices
in V, we represent a real-valued function Bnas a state (column) vectgr € R™ and the connectivity of' by the
weightmatrix W whereW,; = w(i, j) (the weight of an edge fromto j). If I' is an unweighted undirected graph,
W is the adjacency matrix df where

2 ifi=jand(ii) € E,
Wi =<1 ifi#jand(i,j) € E, (1)
0 if(i,j) ¢ E.

Throughout this paper, we will not make distinction betweerertexv € V and its corresponding state given by a
particular ordering of vertices.
Let P denote ther x n transitionmatrix of I where

Wi

Py =g @

that is,P is the weight matrix of” normalized by row. The matri¥ can be used to model random walksIonfor
any pair of vertices andj, P;; gives the probability of the random walk moving from verier vertex; in one time
step, which is proportional to the weighit;;. Since the matri¥ is stochastic (all rows sum to unity), it can also be
interpreted as the transition matrix for Markov chain ongb8/. In the following sections we will model information
diffusion as a random walk ol with particular starting and terminating points.

2.2 Constrained diffusion

In this section we select certain vertices as sources os sihinformation and solve for the number of times a vertex
is visited. LetS denote the set of selected vertices,Tlet= V' \ S and letm = |T'|. Assuming that the first — m



states correspond to verticesShwe write the matriXP in the canonical form:

Pss Pgr
P= . 3
[ Prs Prr ] ®)

HereP 45 denotes a matrix giving probabilities of moving frofrito B whereA, B stand for eitheS or 7. The states
(vertices) belonging to the sgtare calledransient

2.21 Absorptioninsinks

Suppose now that the sétrepresents the set sinksof information: any information reaching a sink vertex is
absorbed and cannot not leave it. [t) denote anm x (n — m) matrix such thaf’;; (¢) is the probability that the
information originating at € T' is absorbed at € S in ¢ or fewer steps. Since information can only be absorbed once
in any states € .S, it follows that the information reachingavoided all other sinks. For the same readgn(t) can
be interpreted as the expected number of visits to the gtatta random walk starting atfor all times up tct.

Absorption atj after not more that steps can be achieved in two ways: either the content reaeiitk;j in the
first step, with probability?;; or it moved to some transient vertéxn the first step and was absorbedgbfyom there
in at mostt — 1 steps, with probability?;;, F; (¢ — 1). Therefore, we have foratl=1,2,.. .,

Fij(t+1)=P; + Z Py Fij (t), (4)
keT
or in the matrix form
F(t+1) = Prs + PrrF(2). (5)

We solve for the long-term or equilibrium state, whé&g + 1) = F(¢) = F. In this case, Equatiof](5) becomes
F =Prs + PrrF, (6)

or
(I—Pr7r)F =Prg, (7)

wherel denotes the identity matrix. If— Pr is invertible, letG = (I — Pr)~ . Equation[(¥) then has a unique
solution
F =GPrs. (8)

2.2.2 Diffusion from sources

Now consider the dual problem wheses a set of sources of information. Each source emits a umifofmation at
each time step and no information can enter any source: wen@sany information entering a source vanishes. Let
H(t) denote ar(n — m) x m matrix such that;;(t) is the total expected number of times the transient vettisx
visited by a random walk emitted from sourcor the time up ta.

The information emitted fronican arrive afj at timet in two different ways: either the content was emitted from
¢ attimet and reached directly, or it was emitted at an earlier time step, was ledatt some transient vertex at time
t —1 and moved from there tpat timet. The former option contributeB;; while the latter contributeH ;i (t — 1) Py;
for all k € T towardsH,;. Therefore, we have for all=1,2, .. .,

Hij(t+1) = Py + > Hi(t) Py, 9)
keT
or in the matrix form
H(t+1)=Psr + H(t)Prr. (10)



Similarly to the previous case, we are interested in thedgtetate, representing the total expected number of visits,
whereH (¢t + 1) = H(t) = H. In this case, Equatiofi (.0) becomes

H=Psr + HPrr, (11)

or
H(I - Pyr) = Pyr. (12)

If T — Prr is invertible, Equation{12) has a unique solution

H=Ps,G. (13)

2.2.3 Existenceand interpretation of solutions

It can immediately be observed that existence of solutiofi&uation[(IP) and Equationl (7) are equivalent: they both
depend on the existence of the inversé efP . Specifically, they are special cases of the discrete Lamgoation
onT" with the Dirichlet boundary condition ofi (Chung/ 1997; Chung and Y&u, 2000).

Given a square matrikI, the matrixl — M is often called theliscrete Laplace operat@mf M. LetA =1 — Py
(A is the discrete Laplace operatorBfrestricted tdl’). Equation[(¥) can then be written as

AF = Prg. (14)

Denote bye;, the k-th standard basis (column) vector of length- m where(e); = dx; (6 here is the Kronecker's
delta). Letf, = Fe;, denote thek-th column ofF and letp, = Prgex. Then, solving Equatioh (14) is equivalent to
solving the discrete Laplace equation

Afy, = pi (15)

forall k € S. The standard basis vectag provide exactly thd®irichlet boundary conditionsn the setS (the setS
can be assumed to be a boundar{ pf
Itis also easy to see that Equatifnl(12) can be written as

HA = Pgr. (16)

Hence, the solution td (16) is obtained by solving the discteaplace equation in terms of the discrete Laplace
operator of the transpose Bf.

The Green'’s functioris defined to be the inverse of the Laplacian. In our case therse ofA is exactly the
matrix G = (I — Pr7)~! and hence the existence of solutions to Equatibnls (12)[@nid €Guivalent to existence
of the Green'’s functions to the corresponding Laplacianthtnabsorbing Markov chain theoiny (Kemeny and $nell,
1976), the matrixG is known as thé&=undamental matrixof the corresponding absorbing Markov chain. The entry
G;; represents the mean number of times the random walk reaehiesy € T having started in statec T

We now present some elementary sufficient conditions fatente of the Green’s functions of the discrete Lapla-
cians of the graphs. The full proofs are given in Appeidix At the development of the discrete Green'’s functions
(for undirected graphs) in terms of the eigenvalues andnéimetions of the Laplacian, we refer the reader to the
paper by Chung and Yau (2000).

Proposition 2.1. Suppose thaf is a weighted directed graph such that for everg T there exists € S such that
there exists a directed path fropto s. Then, the matriX — P is invertible and

o0

([—Prr) ' => (Prr)k. (17)

k=0



Propositiod 211 thus guarantees existence of the Greemdgifuns if every transient vertex can be connected to a
source or sink via a directed path. If the underlying graplmnigirected, this condition can be rephrased as follows:
every connected componentidfcontains at least one vertex frosh

In the context of information diffusion, the connectivityraition implies that all information entering the trangie
set at any specific time must eventually leave it, either tsogttion intoS when S is a set sinks, or by dissipation
whensS represents the set of sources. We will further discuss theaqut of dissipation i 213.

Assuming the Green'’s function exists, the entries of thericedF andH can be interpreted in several different
ways. Fundamentally, both;; and H;; represent the total expected number of times the verisxisited by the
information originating at the vertexwhile avoiding all members of the boundary $ethe proofs are given in Ap-
pendiXB.). Itis also clear, by Equatidn{17), tlaandH are both non-negative matrices and tRat lim;_, ., F(t)
andH = lim,_,., H(¢). In addition, the rows oF all sum tol (LemmaB.3 in AppendikB]2) and thus; is the
overall probability an information originating from traeat vertexi is absorbed at the sinkwhile avoiding all other
sinks.

If we assume that a random walk deposits a fixed amount ofrimdtion content each time it visits a node, we
can interpret;; is the overall amount of information content originatingrfr the source deposited at the transient
vertexj. If T'"is an undirected graph with symmetric weight maf¥#& and S contains a single source, the value
of H,; is directly proportional to the degree of the transienteet (Appendix(B.2). Hence, in this case, the total
average number of times of visits for each transient nodeopgational to its degree. This is no longer truéif is
not symmetric.

Furthermore, we can interpré}; as the sum of probabilities of paths originating at the veste 7" and terminat-
ing at the vertey € S that avoid all other nodes in the s&tandH;; as the sum of probabilities of paths originating
at the vertex € S and terminating at the vertexe T, also avoiding all other nodes in the set Each such path
has a finite but unbounded length. However, unfikg H;; does not represent a probability because the events of the
information being located atat the timeg andt’ are not mutually exclusive (a random walk can bg at timet and
revisit it at timet’). For F;;, the absorbing events at different times are mutually estobu

2.3 Information dissipation

It was mentioned previously that the requirement that evemsient node is connected to a node in theSét
effectively equivalent to the property that all informaticontent entering the transient set leaves it at the nodgs in
In the present section we extend our model to allow the in&ion to dissipate not only at those nodes but also at the
transient nodes.

Let & and3 be vectors of length such that for ali € V, a; > 0 andg; > 0. We form the matrixP with entries

Py = o;3; Py, (18)

and use the new matrix to compute the matriEeandH by replacing the matri® in the previous section witf so
that. o
F=GPrgs. (19)

and _ L
H=PsrG. (20)

whereG = (I — Ppp)~ 1, providedl — Py is invertible.

The entryq; gives the proportion of the signal leaving the veriekat is retained (we call the value bdf— «;
the outgoing dissipation coefficiewtf the nodei) while the entrys; gives the proportion of the signal entering the
vertexj that is retained (the value— 3, is called theéncoming dissipation coefficieof the nodej). The case where
a; = B; = 1foralli € V gives back the original matriR. Note that our definition allows entries afand3 that are
greater thar, corresponding to negative dissipation coefficients. Sudfficients lead to amplification of the signal.
However, in order for the Green’s functi& to exist, any amplification should be balanced by dissipatio



We now establish a sufficient condition for existenc&bfThe proof, as well as a discussion of its generalization,
is given in AppendixAlL.

Proposition 2.2. Leta, = max{a; : i € V} and 3, = max{p; : i € V'} and supposev.3. < 1. Then, the matrix
I — P is invertible and

oo
(I—Prr) = Z(PTT)k- (21)
k=0
Propositio 2.2 makes no assumptions on the connectiviyeofraph: the equilibrium solutions exist regardless
of the graph topology. The reason for the removal of the cotivity conditions is that a unit of information originatin
anywhere in the network has a nonzero probability of beiisgigated at each time step and therefore will disappear
in the long term, with a portion possibly reaching a sink ie #ibsorbing model. The vectors of coefficients
and g provide us with the ability to consider different rates odsipation at different vertices. We demonstrate the
utility of the extended model in examples involving protgirtein interaction networks (Sectibh 4), where we use
vertex specific dissipation to construct ‘evaporating rdtieat dissipate most of the information coming in but allow
unrestricted outward flow.
A possible further generalization of this model is for théries of the vectorsx and3 to be functions of the state
variable of the dynamical system instead of constants. hamlical system in this case would become non-linear,
allowing us to model amplification or dissipation of the infation depending on the time specific state of the system.

2.4 Potentials

Our models so far, including the dissipation modificatioesatibed above, model ‘free diffusion’ of information
through the network: the likelihood for the signal to movenfr vertex: to vertex; is proportional to the relative
weight of the edgéi, j) among all edges emanating franfdissipation only affects the total amount transmitted). |
order to direct the flow of information towards or away fronteséed nodes, we adjust the weights of edges of our
network grapH" usingpotentials real-valued monotone functions defined on the nodes thgrdkon the distances
from selected points.

Let p denote the path-metric on the weighted directed connectgehd = (V, E, w), where for alli,j € V,
p(i, j) denotes the sum of the reciprocals of the weights of the efidgesng the shortest directed path franto j.
SupposeR is a subset of ' such that for eack € R there exists a monotone potential functtn: R — R. For each
vertexj € V define thetotal potentialat j, denotedd(j) by

O3j) =Y Okl(p(j, k). (22)

kER
Let " denote the new weighted directed grdphE, @) where
Wij = Wi exp (—0(j). (23)

The form of Equatior(23) ensures that the signal prefeatintiiffuses from each vertex towards the vertices adjacen
to it that have lower potential relative to other adjacenmntiges.

A vertexi € V is called adestinationif © has a minimum at. There can be multiple destinations in a network.
The natural candidates for destinations are the membehg aEtS since all information entering them does not leave
them. Some transient states, with the weights of their dntgedges adjusted to partially accumulate the signal, are
also good candidates for destinations.

Let K be a subset of and let0 < v < 1. From the already modified grajh we form the grapt” represented
by the weight matriW'’ where

Wi ifi ¢ K,
Wi = 9 1Wis if i € K andi # j, (24)
Wij + (1 =) Zk;ﬁi Wik if j € K andi = j.

6



The effect of this modification is to turn each verteg K, called apseudosinkinto a partial sink: some proportion
of the weights of edges emanating out @ transferred to the edge pointing back tdhe parametey, representing
the proportion of information allowed to leave each pseirdowhile the remainder is accumulated, is called the
pseudosink leakage coefficiefihe valuey = 1 implies no change in edge weights.

The valuey = 0 is a special case because no directed path exists betweethoggeks and source nodes in the
resulting grapi” and Propositioh 211 does not apply. In this case, there argobasibilities leading to the existence
of the Green'’s function: either set the outgoing dissipatioefficient of the pseudosinks to something less tham
treat the pseudosinks as parts of the boundar§ sas a ‘non-emitting source’ definedinB.2 below.

Note that, while dissipation is applied to the transitiontmxaP, potentials and pseudosinks are applied to the
weight matrixW prior to normalization. Since applications of potentiaisl @seudosinks do not commute, potentials
are applied before pseudosinks, although pseudosinksecpatbntial centers (members of the Bgt

3 Theoretical Methods for Analysis

In the previous section we introduced the basic concepaseito our models of diffusion of information through
networks as well as some modifications to the underlyinglyeam the transition matrix that lead to biologically
realistic models. After all modifications are applied, weaih the matriced andH, the Green’s functions arising
whereS represents sinks and sources, respectively. Here we ttine faractical interpretation of these results, which
depend on the boundary conditions imposed on the vertic&s in

3.1 Absorbing model

In the case wher& represents sinks of information (tl®sorbing mod@) the entries of the matri¥ have a clear
probabilistic interpretationl:“ij is the probability that information starting at transieattex: reaches the sinkwhile
avoiding all other sinks, taking into account the dissipatas well as the new weights induced by the potentials.
Generally, each sink exerts a ‘region of influence’, including the transient gsiwith IargeEj. Depending on the
distributions of sinks within the network, some transieotia may have fij small for all j: information emerging
from these points is more likely to dissipate than to reaghcdnhe sinks.

If S C Sis a selection of sink nodes, th@jes/ F;; gives the total probability of information reaching the set
S’ from the vertex;, avoiding all other nodes if. In this context, we call the nodes BT explicit sinks(since we
investigate the probabilities of reaching them) and theaieing nodes inS implicit sinks the points that serve as
sinks of information but are not considered. Furthermdréha sinks are treated as general boundary points, with
boundary values not restricted@@nd1, the entries of" can be interpreted as temperatules (Zhetral, [2007).

3.2 Emitting model

WhereS represents sources (tamitting modél the entries off can be interpreted as visiting times or as information
contentsflij is the total information content emitted from the sourdeposited at the transient vertgxinformation
is dissipated at all sources and the valueflgj is dependent on transient dissipation coefficiamtand 3 and the
potentials. For biological applications, we will considiee case where at least one pseudosink is present in addition
to one or several sources, with the potential directing the fbwards the pseudosinks. The distribution of entries of
the i-th row of H will then describe thénformation transduction modul@TM) involved in transfer of information
from i to the pseudosinks, with the nodes with largest entriesgomiost significant.

Let £ denote the vector of lengtl$| such that for alk € S, §; > 0. We call¢; thesource strengtlof the source
1, representing the amount of information emitted froat each time step. In this context, we ca#t S anemitting
sourceif & > 0 and anon-emitting sourcd & = 0. Non-emitting sources are essentially information ‘blackes’,
dissipating any information coming in and not emitting any.



3.2.1 Total content

For anyi € S, lete; denote the standateth row basis vector of length — m, where(e;); = 6;;. Forz > 0 define
the vectorg, by

¢, = &ieH, (25)

that is, ¢, denotes the-th row of H multiplied by¢;. Its entries give the amount of information content origjimag
from the source of strengthé; deposited at transient vertices. The valug¢f||, is then the total amount of content
originating at sourcé deposited at the transient states. In our examples in tleniiolg sections we choose the source
strength< so that]|¢, ||, is the same for all € S (we call the resulting vectors; normalized content vectors). The
joint information contentector, denoted, is defined by

T=Y ¢, (26)
€S

The vectorr implicitly depends on the matrill and the source strength vectorwe haver = ¢H.

3.2.2 Participationratio

Letx € R" be any vector and recall that for afly< p < oo, the{,-norm ofx, denoted|x|| ,, is given by|x[|, =
>k |xk|”)1/p. Define theparticipation ratioof x, denotedr(x) by

2 2
7T(X) — ||XH§ _ (Zk |(Ek2|) . (27)
[BS[ 2k T
Participation ratio is well known under a slightly diffetetefinition in the physics literature (Thouless, 1974).iveg

the number of components gfwhose magnitude is ‘significant’. Clearly,is independent of the scale »f we have
forany\ > 0, 7(Ax) = n(x). We illustrate the usage by examples.

2

Example 3.1. Letx = [1,1,1,1,1]. Then,n(x) = % = 5. All components are equally significant and this is
reflected in the participation ratio.

Example 3.2. Now considex = [1,1,0,0,0]. We havesr(x) = % = 2. Only the first two components are non-zero
and are of equal magnitude.

Example 3.3. Finally, letx = [1, 1, 1, 3, 7=]. We obtainr(x) ~ 2.8181. Here all five components are non-zero but

their magnitudes differ significantly. The participatiatio here implies that the first two components and to a large
extent the third are significant while the remaining two areemsmaller.

In our biological examples, we us€T) to choose the number of the transient vertices with largeat mass to
display as a ‘significant’ subgraph, together with all sesrand pseudosinks.

3.2.3 Interference

Given the vector of source strengtisthe entry ofr; can be interpreted as providing the total amount of infoiomat
deposited at the vertek It is also possible to investigate the interaction of thymals from different sources using the
concept of destructive interference.

For any vectorx € R”, let 1 denote arinterference functiosuch that) < p(x) < [|x||;. When applied to a
vector containing information content from different sces, interference function is interpreted as removing sofime
the information present due to the interaction of the variaformation types and returning the remaining informatio
content. Interference functions can take various formsddjmg on the nature of the types of information in each
application.



Example 3.4. Supposex consists of two components representing information typasare assumed to completely
cancel out each other. In this case, the interference fumtaikes the formu(x) = |z1 — x2|.

Example 3.5. Whenx has more than two components, there are may possible wagséralize the above example.
We distinguish two general modes of interference: exckiaivd partial. Exclusive interference mode represents the
case where simultaneous presence of all types of inform&tinecessary for destructive interference. For examiple, i
each information type carries the same weight, the intenfez function is:

px) = (zx —v), (28)

k

whererv = Inkin Tk.

Example 3.6. We call the partial interference the case where presendétgpas of information is not necessary. It
can be modeled in many ways depending on the desired intafipre For example, if there are three sources, we can

use complex numbers to seso that
3

Z z Lk
b 3
k=1

where. denotes the imaginary unit. In this case, some contentisdlosn any two types of signal are present but all
three must be present for complete annihilation.

p(x) = (29)

)

Given the interference functign, define thanterference strength functiop : R — R U {co} by

oy — {Ilitos () it Il >0, 0
0 if [|x||, = 0.

By the definition ofu
Since0 < pu(x) < |x||,, it follows that takes non-negative values (includirgx). The value ofy is infinite
if u(x) = 0 (perfect interference) and finite otherwise. Forrank n matrix X define the vectos (X) of lengthn
having the components
0i(X) = ¢(Xe;) (31)

(recall thate; is the standard column basis vector and heXeg represents theth column ofX). We will call o the
interference strength vector

For our applications, the entries of the matixabove are interpreted as information contents over sonmghgra
X; is the the content of typeat the vertexj. For each nodg, the/;-norm in Equation[(30) can be interpreted in
this context as the total information contengjatnd the value of: applied to thej-th column ofX as the information
content remaining after interference. Hence, interfezestcength of each node measures how much information
content was lost by interference, adjusted by the node joformation content. _

The matrixH is therefore a natural input t¢ and o, however other derived matrices can be used sucH as
adjusted for source strength by multiplying each row by deesponding source strength Furthermore, rows of
X can come from differerl matrices, using different potentials or dissipation cefits, as long as the underlying
vertex set is the same. The general purpose of interferdéraregsh is to measure the amount of interaction or overlap
between different ITMs.

4 Biological Examples

The theory and methods outlined in previous sections carpplea to any interaction network. This section will
present some examples using biological networks, moréfgly, yeast protein-protein interaction networks. &n



the interaction data obtained using many high-throughmthids is generally inconsistent (Sprinzlal., (2003), we
use the core yeast dataset from DIP, version ScereCR20266dsisting of 2554 proteins and 5952 interactions for
all our examples. The core dataset, obtained using the mietifdeanest all (2002), contains only the most reliable
interactions from the DIP dataset of all yeast protein-grointeractions.

Our examples are restricted to investigation of informmati@nsduction modules related to yeast histone acetyl-
transferases (HATS). Histones are nuclear proteins tkeahajor components of eukaryotic chromatin (Wolffe, 1992):
eukaryotic DNA is organized as a repeating array of nucle@soconsisting of 146 bp of DNA wound around a his-
tone octamer consisting of two of each of histone protein& H2al, Hta2 in yeast), H2B (Htb1, Htb2 in yeast), H3
(Hht1, Hht2 in yeast) and H4 (Hhf1, Hhf2 in yeast). It has besgreatedly demonstrated that transcription is strongly
influenced by the chromatin structure and DNA-histone axtBons in particular. The regions of DNA that interact
with histones are generally unavailable for transcripiad transcriptional activation and deactivation are cotete
with chromatin alterations (Wolife, 2001).

Histone acetyltransferases are enzymes that acetyldtméss leading to weakening of the nucleosome struc-
ture and making the DNA involved accessible to transcripfactors [(Struhl, 1998; Workman and Kingston, 1998).
Saccharomyces cerevisiaentains several HATs from two major classes with a variétgiological functions and
substrate specificities (Sterner and Berger, 2000). TheijmoHatl, Genb, Elp3, Spt10 and Hpa2 belong to the GNAT
superfamily (Neuwald and Landsman, 1997), while Esal, @ag2Sas3 belong to the MYST family (Borratal,,
1996; Smithet al.,[1998). The proteins TAF1 (TATA-binding protein assoaifafactor), a subunit of the TFIID com-
plex, and Nutl (Med>5), a subunit of the mediator complex @8id and Young, 2005), have also been associated with
histone acetyltransferase activity (Mizzetall,|1996; Lorchet all,[2000).

Unfortunately, the core dataset does not contain the netelata for all known HATs. The HATs Hpa2 and Spt10
are not present in the core while HAT1 has interactions oriflg Wat2 and its substrate Hhf2. We chose to primarily
concentrate on HATs Gen5, Esal and Elp3 because they areesedirched and the interaction data is abundant. They
are all involved in transcriptional activation, unlike 3awhich promotes silencing (Osadgall, [2001).

Gcen5is the best characterized of all HATs, preferentiatBtglating histone H3 (Sternglanz and Schindelin, 1999).
It forms the catalytic subunit of the ADA and SAGA transcrgpial activation complexes (Graet all, [1997). In
addition to Genb, the SAGA complex also contains the pretdiral, TAF5, TAF6, TAF9, TAF10, TAF12, Hfil
(Adal), Ada2, Nggl (Ada3), Spt3, Spt7, Spt8 and Spt20 (Ad@bBhmers and Tora, 2005). The ADA complex
contains a subset of proteins from the SAGA complex, namely5GHfil, Ada2, Nggl and Spt20, plus the adaptor
protein Ahcl|(Eberhartest all,|1999). The TAF proteins in SAGA also belong to the TFIID cdexpwhich overall
consists of 15 subunits including a TATA-binding proteirdd® TAFs [(Sanders and Weil, 2000).

Esal is the catalytic subunit of the NuA4 histone acety#farase complex essential for growth in yeast (Sraital.,
1998; Allardet al., [1999) that catalyses acetlyaltion of the histone H4. Itheen established that the NuA4 complex,
containing, in addition to Esal, the proteins Tral, Epll ¥ngafl, Eaf2, Eaf3, Eaf5, Eaf6, Actl, Arp4 and Yaf9,
is recruited by a variety of transcriptional complexes agadcriptional coactivator and is involved in DNA repair
(Doyon and Cote, 2004).

Elp3 is a part of the six component elongator complex , whichdsociated with RNA polymerase 1l during
transcript elongation (Wittschiebex all, 11999). The elongator complex also includes the proteii3s(Kkipl), Elp2—

4, Ikil (Elp5) and Elp6l(Krogan and Greenblatt, 2001).

This section contains four examples of the application efroadels, depicted in Figuré$[1-5. Subsedtioh 4.2 de-
scribes possible complexes associated with the HATs Gl Bnd Elp3, taken individually and in competition, that
can be inferred from the protein-protein interaction nekwasing the absorbing model. Subsecfiod 4.3 investigates
possible physical interaction interfaces between the MAIDS protein Mcm1l(Shore and Sharrdcks, 1995) and the
HATs Esal and Gcenb. In this case, the emitting model is engplag discover the pathways through which Mcm1
can recruit the above HATs and whether they are recruitedititr the same interface. Before presenting our results
we describe the model parameters and computational tasbsigsed.
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4.1 Parametersand computation
4.1.1 Dissipation

For all our examples, we set; = 1 for every node in our interaction network so that the outgoing flow from any
node is not dissipated. Modeling the incoming dissipati@ndoefficientss; can take two values: one for ‘ordinary’
and one forevaporatingvertices. In our examples that use the absorbing madél, (4;2% set t00.70 for ordinary
nodes and).01 for evaporating nodes while the examples using the emittindel [4.B) se0.87 for ordinary nodes
and0.01 for evaporating nodes. The evaporating nodes consistegtagieleton proteins Actl, Myol, Myo2, Myo3,
Myo4, Myo5, Smyl, Smy2, Slal, Arc40, Arp2, Rvs167, Tpml, PprAipl and Las17 and histones (Htal, Hta2,
Htb1, Htb2, Hht1, Hhf2, Htz1, Hhol).

The coefficients for the ordinary nodes were chosen usindaif@ving reasoning. For the emitting model we
considered the dissipation rate that would allow the randatk emitted from the source to reach an ‘average’ node
along the shortest path to it with the probability slightg$ thar0.5, say0.49. We found that the average length of
the shortest path between two points in the yeast core dads23 and hence our coefficient@s49(1/5-23) = (.872,
which is rounded t®.87. A different coefficient was needed for the absorbing exaspkcause we were interested
in only the immediate complexes containing our selected $iAhe coefficients; = 0.87 would lead to most of
the members of the RNA polymerase Il holoenzyme to be retdeas members of the resulting ITM. We chose to
consider the shortest paths of lengttiather than of the average lengt23. Using the same calculation as above, we
obtain0.49(*/2) = 0.7.

The reason for having evaporating nodes with larger disisipaate is that both the cytoskeleton proteins and
the histones form extended structures in the cell and théeusicrespectively. In our physical interaction network,
we assume that information can flow from one protein to andtireugh an intermediate node if all three nodes are
brought close together in space and time. Information idikely to flow through proteins that are parts of extended
structures because proteins with completely differentolgical function may bind them at different locations and
at different times. Therefore, allowing significant infaation flow through such nodes would yield biologically
implausible results.

However, depending on the exact context of the investipasach nodes may have an important role to play
and removing them completely from the interaction netwankassigning them to the boundary setvould not be
appropriate. Hence, we set a very high incoming dissipatiteat evaporating nodes while allowing the information
to originate from them. In terms of our models, this approaelans that the evaporating nodes will have very small
visiting times in the emitting models and hence will not benpmnents of any ITM. On the other hand, depending on
the exact network topology, they may be part of ITMs obtaibgdhe emitting model. Note that other proteins that
bind their interacting partners in a non space and time fipaanner can be chosen as additional evaporating nodes;
we chose histones and cytoskeleton proteins due to theictdiglevance to our selected examples.

4.1.2 Potentials

All our examples use attracting potentials centered at @aelndosink or sink. The potential function, heuristic in
nature, is the same in every example has the the form

a1z if 0 <z <b,
0 = 32
k(@) {a1x+a2(x—b)2 if x>0, (32)

wherea; = 0.8181, as = 0.05, b = 2 andk is any pseudosink or a sink. The potential function showrvabe
long-range, affecting the whole graph, with a linear portior short ranges < x < 2 and quadratic for distances
larger thar2. We do not expect to see qualitative changes in the resutts form of the potential function is modified
as long as it has the effect of attracting information towahe destination.

The sources (in the case of emitting models) and evaporptimgs were excluded from the graph prior to calcu-
lating distances (their distances from the centers wertosat arbitrary large number) in order to exclude the paths
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passing through them from consideration. The reason fdudig the paths passing through sources was that, by
construction, the information never enters a source frorarsstent vertex, while the evaporating points were exalude
because most of the signal entering them is dissipated.

4.1.3 Numerical implementation

The code for computation of the results was implementedénRython programming language, using the NumPy
and SciPy packages (Joretsal,, [20011). In particular, the computation of the matri#¢eand G (Equations[(19—
[20)) was performed by the embedded FORTRAN code from the UNIKP(Davis,|2004) solver of sparse systems
of linear equations, using the Automatically Tuned Linedgebra Software (ATLAS) (Whaley and Petitet, 2005)
implementation of Basic Linear Algebra Subprograms (BLAR)e graphical representations of the subgraphs of
interest were produced by tineatoprogram from the Graphviz graph visualization suite (Gansmd North, 2000).

4.2 HAT complexes. absorbing examples

Figure[1 shows the three subgraphs of the yeast core intaragaph consisting of the top scoring nodes according to
the absorbing model with Esal, Gen5 and Elp3 as single gie&pectively. The information orginating at the proteins
shown has more thah07 probability of being absorbed by the sink (under the inflgeatthe potential centered at
the sink) as opposed to being dissipated. Hence, the suigsiqow the proteins that are likely to be in the same
complex with the HATs chosen as sinks.

Figure[d1(a), with Esal as the sink, shows all the proteins fiiee NuA4 complex that are available in the core
dataset as highly significant. Some of the proteins from ADA SAGA complexes can also be seen because Tral
belongs to these complexes as well as to NuA4. The four typestmnes forming the histone octamer can also be
seen interacting with Arp4. The proteins Vps51-54 on thietrig Figure1(a) belong to the Vps Fifty-three thethering
(VFT) complex, involved in vesicle assembly (Reggierall, 2003). The proteins Tlgl and Ypt6 are interacting
partners of the VFT complex (Reggiai al,, [2003). The relation between VFT and NuA4 is not established
these two complexes are localized in different cellular pantments: NuA4 in the nucleus and VFT in golgi-vacuole
transport vesicles. The relationship observed in Fiflieg dg€sults exclusively from the Yng2-Vps51 interaction,
which was orginally observed in a yeast-two-hybrid screghidet al. (2000, 2001). Based on the above information,
it appears that VFT and NuA4 complexes do not intemactivo. Note that the histones as well as actin, although
selected as evaporating points, can be seen in the figurasets outgoing flow from evaporating nodes is allowed.

In a similar fashion, Figurigl 1(b), with Gen5 as the sink, shalie members of SAGA, ADA and TFIID transcrip-
tional activator complexes as well as many other trangorigactors, mostly members of subcomplexes of the RNA
polymerase Il holoenzyme. Also worth mentioning is Cti6,iethbridges the Cyc8-Tupl corepressor and the SAGA
coactivator to overcome repression of the GAL1 gene (PagtamsiChronakist all, [2002). The Cyc8 protein is also
shown while Tupl is not, most likely because it is involvediany other interactions away from Genb, bringing down
its relative significance. Figuté 1(c), with Elp3 as the sidlearly outlines the elongator complex, as well as some
members of the core RNA polymerase Il complex (Rbp2-5, RBp¢.10, Rpo26) (Myer and Young, 1998).

Figure[2 shows the top scoring nodes according to the alvepnbodel with Esal, Gen5 and Elp3 as simultaneous
sinks with attracting potentials. In this case, the infotioraoriginating at the depicted nodes has more thah total
probability of being absorbed by any of the sinks as opposéeing dissipated.

Fewer nodes can be seen in this figure as compared to Fijurealismethe three attracting potentials are now
involved that may cancel each other out. It can be seen tleaéltngator complex centered around Elp3 is not
connected to the subgraph around Esal and Gen5. Althoughtak NuA4, SAGA, ADA and elongator complexes
belong to the RNA polymerase Il holoenzyme, they do so aerdfit times. The NuA4, ADA and SAGA complexes
have a role in initiation of transcription while the elongatomplex is involved in transcript elongation (Martinez,
2002). The green (mixture of cyan and yellow) color of Traindicative of the fact that it is a subunit of both
Esal-containing NuA4 complex and the Gen5-containing SAGHIplex.
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Figure 1: ITMs obtained by running the absorbing model wisaHa), Gen5(b) and Elp3(c) as a sink. The shades of
grey at the nodes represent the probability of the inforomadiriginating at the corresponding protein being absorbed

at the sink, the darker nodes indicating higher probability
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Figure 2: ITM obtained by running the absorbing model witlREsGcn5 and Elp3 as simultaneous sinks. The
strength of each of cyan, yellow and magenta color compaofehe node shows the square root of the probability of
absorption at Esal, Gen5 and Elp3, respectively.

4.3 Transcription factor interaction interfaces; emitting examples

Mcml is a yeast transcription factor essential for cell iligh It controls many cellular functions including cell
cycle transition/(Althoefeet all,[199%5), mating (Meaét al.,|[2002) and arginine metabolism (Messenguy and Dubois,
1993), through interactions with different cofactors. dstheen determined that Mcm1 acts both as an activator and a
repressor of transcription (Brulet al., 11992 Messenguy and Dubdis, 1993) and here we explore gsipeways it
can interact with the NuA4 and SAGA HAT complexes.

Figure[3(a) shows the subgraph consisting of3heroteins with the largest deposited information content ob
tained by running our emitting model with Mcm1 as a source Bsal as a pseudosink. The number of proteins to
display @0 plus the source and the pseudosink) was chosen becausetibipaton ratio for the information content
vector (excluding the source and the pseudosink)20a3s3.

The ITM shown in Figuré]3(a) gives the likely pathways of phgbinteraction from Mcm1 to Esal, accord-
ing to the yeast core interaction dataset. It can be immelgiabserved that Esal is reached solely through Tral,
which is known to be the general interaction domain of botAMand SAGA HAT complexes (Allardt all, |1999;
Grantet all, 11998). Directly associated with Mcm1 are the proteins Ag8g82, belonging to the ArgR complex
involved in regulation of arginine metabolism (Dubois andddenguy, 1991). The majority of the ITM is domi-
nated by the members of the SRB mediator subcomplex of the pdymerase Il holoenzyme (Srb2, Srb4, Srb7)
(Biddick and Young, 2005) and the TFIID, SAGA and ADA commexAlso prominent are transcriptional activators
Gal4 and Gcen4 (Hinnebusch, 2005; Trawdrall, 12006).

The subgraph image suggests two possible interaction pgthvthe main (based on the intensities of deposited
information) through Srb4 and members of SAGA/ADA complex ahe alternative through Ume6—TAF10-Spt7.
Ume6 is a DNA binding protein that acts as a transcriptioegressor by recruiting histone deacetylases, which
have the catalytic activity opposite to the HATs (Kasgiall, [2003). While simultaneous existence of activating and
repressing pathways is biologically plausible, we do ndéicgrate both pathways to be in action at the same time. On
the other hand, interaction of Mcm1 with the NuA4 through afyhe above pathwayis vivo is doubtful because
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Figure 3: ITMs resulting from the emitting model with Mcmlasource and Esal as a pseudosink using the original
yeast core dataset (a) and the modified dataset additianallyding the edges Tral-Gal4 and Tral-Gcn4 (b). The
proteins containing the largest amounts of depositedmmébion are shown, with the information content indicated by
shading (darkest nodes contain the most information).

both pathways lead through the interacting partners of irdthe SAGA complex that are not associated with it in
the NuA4 complexi(Doyon and Cote, 2004; Timmers and/ Tora5p0Qote that the direct physical interaction of the
ArgR/Mcm1 complex and the SAGA complex was hypothesized lpgirt al. (2002) in relation to regulation of
arginine metabolism.

Nevertheless, it is likely that the yeast core dataset do¢sontain all the interactions of Tral and that the
interactions not in the dataset may provide us with the iideiexplanation. Browet all (2001) have indicated that
HAT complexes are recruited through Tral by Gal4 and Gen#stridptional activators. To investigate if adding the
implied edges would significantly change the resulting ITeladded the Gend—Tral and Gal4—Tral links to the core
dataset and rerun the emitting model with all other pararaetechanged. The resulting ITM, with participation ratio
of 21.66, is shown in Figurgl3(b). We observe few changes: the pre®$m3, Srb5, Srb6 and Gall1, belonging to the
mediator complex, replaced Cti6 and Srb7, thus placing raonghasis to the mediator complex.

In this example, our emitting model appears to be quite rofoushanges in the pseudosink leakage parameter
Using the original core dataset, in addition to the origimal with~ = 0.3, we ran our model withh = 0,y = 0.5 and
~ = 1, obtaining participation ratios df9.43, 20.34 and20.75 and very little change in constitution of the ITMs. For
example, wher = 1, the new ITM contains the NuA4 proteins Arp4 and Yng2 in thecpl of Cti6 and Srb7. Hence,
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Figure 4: ITM resulting from the emitting model with Esal aBdn5 as sources and Mcml as a pseudosink: (a)
information content, (b) interference strength.

larger pseudosink leakage coefficient allows exploratiothhe nodes surrounding the pseudosinks without affecting
the remainder of the ITM in a major way. Such exploration isnaesirable for protein-protein interaction networks
because it reveals more of the complexes around pseudpiokgyiving some of the characteristics of the absorbing
model to the emitting model. Note that many of the interagpartners of the sources are found in the ITM solely due
to proximity of the source.

To explore the extend the HATs Esal and Gcen5 share theirattten interface with Mcm1 we set Esal and
Gcnb as sources and Mcm1 as a pseudosink destination. Egshews the ITM based on the total information
content (participation ratia4.62, 28 nodes shown), with the nodes shaded according to tat&eband interference
strength. The proteins shown as nodes in Fiflire 4 have apeaone of the previous figures, mostly forming parts
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of NuA4, SAGA/ADA, TFIID and mediator complexes. The noda#wvthe largest total content are Tral, Ada2, Nggl
and Srb4 and the latter three are also the nodes with by fédauthest interference strength. This fact does not surprise
us because although Tral is a member of both NuA4 and SAGA lesxer information flowing from Gen5 to Mcm1
largely avoids it.

The paths used by the information emitted from Esal and Gepérately can best be seen in a color figure (Figure
[B(a)) where the information content from Esal and Genb isvates cyan and yellow, respectively. The nodes colored
strongly cyan contain mostly information from Esal whilegh colored yellow contain mostly the information from
Gcenb. The nodes colored green contain information from Botirces. In this way it can be observed that members
of NuA4 contain the information solely from Esal, some SAGAtpins contain the information solely from Genb5,
while Ada2, Nggl1 and Srb4 contain a significant amount ofrimi@tion from both sources.

Using additional links based on Brovet al. (Figure[%(b)) produces effects similar to Figlite 3(b): tbenmon
interface through the mediator complex is emphasized a¢tpense of the paths through the SAGA complex. For
example, note the difference in color of Spt7, Gen4 and Gallveen Figurél5(a) and Figuré 5(b). The common
interface through the mediator complex appears biololyicabre plausible than directly through members of the
SAGA complex but we are as yet unable to find direct evidentledriterature confirming either possibility.

5 Discussion and conclusion

The proposed information diffusion models appear to ca@xome of the essential features of the yeast protein-protei
interaction network in our examples. Our absorbing moddiopmed well in identifying complexes related to sinks
while the emitting model with pseudosinks is able to illuatiéthe possible interaction interfaces between sources
and pseudosinks. Application of the concept of destrudtiterference in this context provides a way to assess the
degree of overlap of different ITMs.

The salient feature of our models is a novel use of attragimentials and dissipation. While the entries of the
Green'’s function can be interpreted in graph-theoretimseas sums of weights of paths from a source to a transient
vertex (for the emitting model) or from a transient vertexatsink (for the absorbing model), the potentials, together
with the choice of boundary, provide a unique context fooinfation diffusion in the network. The weights of
the edges and hence the nature of the underlying graphs angeth every time a different potential is applied, thus
bringing forward different aspects of the network. The ptitd function used for our examples was heuristic in nature
and we hope that our work would generate interest in devedptieoretical foundations for directed information
propagation through networks.

Dissipation coefficients provide a natural and extremelilfle way of controlling the spread of information con-
tent through the network. While Girvan and Newman (2002ppeed a similar formulation for penalizing longer
paths connecting two nodes in a network, they did so in théesoof hierarchical clustering and using a single dissi-
pation rate. Node specific dissipation rates are importacabse they allow construction of ‘evaporating nodes’ and
possible integration of additional information to our mbddaving the dissipation rates dependent on the environmen
of the node may lead to a more sophisticated model of infaonatansduction.

When modelling physical cellular protein networks, the migmitation of our approach is that the the publicly
available representations of protein-protein interactietworks contain a limited amount of information. Eacleint
action is shown as either occurring or not occurring, withrefierence to the dynamics, time-scale, or specificity of
binding. Furthermore, the spatial location of the inteatt on the protein molecules is not available, so that ihoan
be determined if a protein known to belong to two separateptexas, such as Tral in our examples, can belong
to both at the same time and therefore transmit informatetwéen them. Therefore, our model of protein cellular
networks is only metaphorical at this stage. However, offusibn paradigm can be adapted to account for addi-
tional information about proteins, such as their conceiong, cellular compartment localizations, post-tratisfeal
modifications or rate constants for binding interactiorssitdbecomes available. One way to do that is to associate
each protein to a vector instead of a scalar value and tomsin evolution operator that reflects the nature of the
additional information. In such circusmstances, the dyinamf information flow could be as revealing as the steady
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Figure 5: Information content of members of the ITM arisingnfi the emitting model with Esal and Genb as sources
and Mcm1 as a pseudosink: (a) using the yeast core datayasiflg the modified dataset additionally including the
edges Tral-Gal4 and Tral-Gcn4. The strength of the cyanellmivycolor component of the node corresponds to
the information content originating from Esal and Gen5peesively.

state we use at this stage.

The quality of the interaction dataset also has a strongenfla to the outcomes of our models. Addition or
deletion of edges may make the results more realistic, asiiremitting examples, but also may completely alter
the ITM produced, if a particular edge provides a shortcutarals the destination. Hence, in order to obtain the
results useful in field of application, it is imperative tceusgatasets of interactions that precisely reflect the nétwor
being investigated. In the case of yeast protein-protéaractions, Collingt all (2007) were recently able to derive a
significantly more reliable collection of interactionsirparily based on two large-scale studies of protein conmgsex
by tandem affinity purification of complexes followed by maggctroscopic identification of individual proteins
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(Gavinet all, 2006 Krogaret al., [2006). It is interesting that the same transcriptional plexes encountered in our
examples are prominent in the unified physical interactorap presented hy Collinet al. (2007).

The problem of ‘shortcuts’ through the network was also oleg by Stefferet all (2002), who completely elim-
inated certain nodes in their effort to model signal trasidm pathways using the yeast protein-protein interastio
Our evaporating nodes, with a very large incoming dissipatate, have a similar role with an added advantage that
they can be visible as parts of complexes observed usingogariaing model. The list of evaporating nodes used by
us is not exhaustive and it would be necessary to add furtasses of proteins to it for large-scale investigations of
the yeast protein interactome using our methods.

In this paper, we introduced a flexible mathematical franréfor analysis of interaction networks and indicated
its utility by examples. We believe that the ability to selagarticular context for information propagation by gegti
various model parameters will be extremely useful for asisirey questions involving interaction networks in biology
and many other disciplines.
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A Existence of Green’'s Functions

In this appendix we provide the elementary proofs of theltesibout existence of the Green'’s functions stated in the
main text. As beforel’ = (V, E, w) denotes a weighted directed graph withvertices, with the weight matriXv
and transition matri¥. We also havd” Cc V andS =V \ T.

Recall that for every matrid1, the induced ., norm of M, written | M|| __, is defined by

Mx
™M = sup 1T (39
xekn [l
where||x|| . = max; |z;|. One can easily show that
M|, = m?XZ | Mi;] . (34)
j

Also recall that the spectral radius of a square matfixs defined to be the largest absolute value of its eigenvalues
It is well known that that for every eigenvalueof M and anyk = 1,2, . . .,

A< [ (35)
LemmaA.l. LetM be a square matrix with the spectral radius strictly lessthaThen,
(i) M*F — 0ask — oo,
(if) The matrixI — M is invertible andI — M)~ = "7 M*.

Proof. By the Jordan matrix decomposition, we can witt = VAV ! for some matrixV, whereA is a block-
diagonal matrix of the form

B, 0 --- 0

0 B, --- 0
A= . . . . )

0 0 --- By

with each of the sub-blockB;, 1 < j < N, is of the formB; = A\;I + C; where

o1 0 --- 0
oo 1 --- 0
Ci= :
0 0 O 1
0 0 O 0

and)y, ... \y are eigenvalues &¥1. Hence M* = VAFV-1! and

BY 0 -~ 0
Ak 0 B ... 0
0 0 --- B%

For each eigenvaluk; and each blocB;, we can write

k
B = (\j1+Cy) Z( )Aj‘ch?.



It can easily be shown that for eaghC; is a nilpotent matrix, that is, iC; is anm x m matrix, thenC™ = 0.

Therefore, fork > m — 1,
m—1
k
k _ \k—m+1 m—p—1
Bj = (Z (p> AE C?) -

p=0
Observe that the above expression in parenthesis givepper(triangular) matrix whose entries ane— 1-th degree
polynomials ink and hence, that the whole expressionB§ris dominated by\;?*m“. Since, by the spectral radius

assumption|);| < 1 for eachy, it follows that for eacty, B§ — 0 ask — oo and hence\* — 0 ask — o by the
block structure. This proves the first statement.

For the second statement suppose thatM is singular. Therd — M has0 as an eigenvalue and henke= 1
is an eigenvalue aM, contradicting our assumption about the spectral radidelofTherefore] — M is invertible.
Furthermore, it can easily be obtained using the block diagstructure ofA and the ratio test that the sumj,- MF
converges, Hence,

(H—M)iMk:iM’“—iM“l =H+iMk—iMk=H.
k=0 k=0 k=0 k=1 k=1

O

Since the matriXP is stochastic, we havéP| . = 1 and hence the spectral radius®fis bounded byi. Since
P71 is a submatrix of?, we have||Prr|| < 1 and its spectral radius is also boundedlbyfo prove Proposition
2.7 (denoted Propositidn A.5 below) we will show that thectp radius ofP - is strictly smaller than if there is
some vertex inS that can be reached from any transient node via a directéd Bafore presenting the main proof,
we require several lemmas.

LemmaA.2. LetB andC ben x n matrices with non-negative entries such thBt| _ < 1 and||C|_,, < 1 and let
D = CB. Suppose there exists< p < n suchthad) < >, B,; < 1. Then, for every < i < n such thaiC;, > 0,

ZDij < 1.
j
Proof. Let K = {k : Cj;, > 0}. Thenp € K and
Z D;; = Z Z Cir By
j ik
= Z Cix Z By

keK J

< Z Cz‘kHBHOO-FCipZBpj
ke K\{p} J

< Z Cir + Cip
ke K\{p}

<1.

O

LemmaA.3. LetT" be a weighted directed graph with weight mafi. Leti andj be distinct nodes df connected
by a directed path fromto j of lengthn > 1. ThenW;: > 0.
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Proof. We use induction. If andj are connected with a path of lengththen there exists an edge j) € E and
hencel;; > 0. Assume thatV;? > 0 if i and;j are connected by a directed path froto j of lengthm. Suppose
¢ andj are connected by a path of length+ 1. Then there exists a vertéxsuch that andk are connected by a
directed path fromi to & of lengthm and there exists a directed edde j). Hence, by our assumptidi’};’ > 0 and
Wi > 0. Therefore,
Wit = " Wi Wiy > WiiWe, > 0.
k'eV
O

LemmaA.4. LetM = Pyp, leti € T and suppose there exists S such that there exists a directed path frono
s of lengthm. Then for alln > m,
> M <1 (36)

keT

Proof. Leti € T and lets € S be a vertex such that there exists a directed path frtons of lengthm. Let J be the
set of vertices irf” directly adjacent to a vertex ifi. Then, by our assumption, for everg T there existg € J such
that there exists a directed path frérto j of lengthm — 1. Since the matri®?r can be treated as the weight matrix
for the subgraph of restricted to vertices iff, it follows by Lemmd A3 thaMi’;?‘l > 0.

Since every point in/ is adjacent to a point iy, it also follows that) }, . M;; < 1. Clearly,|[M] < 1
and hencd/M™~*|| < 1. Applying LemmdA.2 to the matricesI andM™ ! we obtain that for every € T,
Doper Miy < 1.

Lett > m and assum@_, . M/, < 1. We have

X:Mf]:r1 = Z Z M}y My, = Z M, ZMk’k < Z M, <1

keT keT k'eT k'eT keT k'eT
and our result follows by induction. O

Proposition A.5. Suppose that for evegy € T' there exists € S such that there exists a directed path frero s.
Then, the matriX — P is invertible and

o0

([—Prr) ' => (Prr)*. (37)
k=0

Proof. Let M = Ppr. Observe that our assumption implies that for evieey T' there existss € S such that there
exists a directed path frointo s of length at mostV. By Lemm& A.4, we have for everye T, >, - MY < 1.
Hence,[|[M”|| < 1and therefore the spectral radiusidf = P is strictly smaller tharl. Our result follows by
LemmdA.l. O

A.1 Information dissipation

Proposition A.6. Leta and3 be vectors of lengttV such that for alli € V', a; > 0 and3; > 0. Define thelV x N
matrix P with entries }

Pij = i B Py,
Leta, = max{wa; : i € V} and . = max{p; : ¢ € V} and supposev.3. < 1. Then, the matriX — Prris
invertible and

o0

([=Prr) ' =) (Prr). (38)
k=0
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Proof. LetM = Pr7 and leti € T'. Then,
> M=) iBiPj <oB.d Py<l
jer jer jer

Hence,|M|__ < 1 and thus the spectral radius By is strictly smaller thari. Our result then follows by Lemma
| o

_ More generally, it is possible to interpret dissipationlie tight of Propositio A5 by constructing a new graph
I with the vertex seV = V U {v}, wherev denotes an additional vertex. The weight matriX'oflenotedw, has
entries

O‘iﬂjpij fieV andj eV,
Wiy =1 - ey aifiPu ifieVandj=u, (39)
0 if i =w.

Clearly, a random walk ofi" is equivalent to a random walk dn with dissipation: the dissipated information is
directed towards the additional vertexand then disappears. If we placén the boundary sef, by Propositiof A5,
the necessary condition for existence of the Green'’s fangti — f’TT)_l is that from every transient nodehere
exists a directed path to either a node S or a nodej € T'such tha), _,, ;8 Pjr, < 1 (such nodg is adjacent

to v in the graph. Propositio A.b then just represents the special caseenhary transient vertex is adjacentto
inT.

B Interpretations of the matricesF and H

B.1 F and H as matrices of expected visiting times

We will show that bothF;; and H;; can be interpreted as the expected number of times a randtaoriginating at
the vertex visits the vertexj, while avoiding all vertices in the boundary setNote that in the case of the matix
we havel € T andj € S while for the matrixH, i € S andj € T. We will useE to denote the expectation operator.

LemmaB.1. Suppose the boundary setepresents sinks and It;; be a random variable denoting the total number
of times a random walk starting ate T is absorbed af € S. Then,

E(Zi;) = Fyj. (40)

Proof. LetY;,(¢) be the random variable taking the valuéf the random walk originating at € T is absorbed at
j € S attimet, with probability}", .- P! Py;, and taking the value otherwise. We havéZ;; = >7° | Vi;(¢) and
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E(Yi(#) =2 per Pl ' Pyj. Thus,
E(Zi;) =E (i Yij (ﬂ)
=1

E(Yi; (1))

)

t=1
oo

_ E t—1p

- sz Pk.]

t=1keT

= Z Zpitkpkj

keT t=0

= Z G Prj

keT
= F;. O

Lemma B.2. Suppose the boundary sgtrepresents sources and I&t; be a random variable denoting the total
number of times a random walk startingia¢ S visits the node € T'. Then,

Proof. In the same fashion as above,¥g}(t) be the random variable taking the valliéthe random walk originating
ati € Sisatj € T at timet, with probability >, . PikP,zjfl, and taking the valué otherwise. We have/;; =

Se2y Vi (t) andE(Y; (1) = Yoper PPyt Thus,
E(Zi;) =E <i Yij(ﬂ)
=Y E(Vi(1)
t=1

=2 Pup

t=1 keT

=D PuPy

keT t=0

= ZBkaj

keT
= H,;. O

B.2 Invariantsof F and H

Let 1 € R™ denote the vector whose entries areldl Since all rows of? sum to unity, it follows thalP1 = 1
and hencd is a right eigenvector oP for the eigenvalue. = 1. Defined as a vector of length having entries
d; = Zj Wi;. If I is unweighted graphi; gives the degree of the nodeAssumingW is symmetric,

S Pydi =Y Wiy => Wi =d,
k k k

and thereforel is a left eigenvector aP corresponding to the eigenvalde= 1. This leads to the following result.
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Lemma B.3. Suppose that the matrix- P is invertible. Letu andv be the left and right eigenvector of the matrix

P corresponding to the eigenvalue= 1, respectively. Write1 = [us ur] andv = [ :S ] Then,
T
ur = ugH, (42)
and
v = FVS. (43)

Proof. Using the canonical form of the matrBX (Equation[(B)) and the fact thatandv are left and right eigenvectors
of P respectively, we obtain
ur = usPsr +urPrr, (44)

and
vV = PT5VS + PTTVT- (45)

Rearranging Equations (44) and(45) leads to

ur(l —Prr) = usPsr, (46)
and

(H — PTT)VT = PT5VS. (47)
Our result then follows as the consequence of invertibdfty — Prr. O

Sincel is a right eigenvector dP, it follows from (43) that for alk, Zjes F;; = 1. Furthemore, recall that if
is an undirected grapiWV is symmetric andl is a left eigenvector aP for A = 1. Assuming the matriH exists, we
obtain from Lemm&B]I3 that, if contains a single point, the matif is a row vector, which is a multiple af.
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