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ABSTRACT

Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset,

one is often interested in finding contiguous blocks that (mostly) contain ones. This is a

biclustering problem, and while many algorithms have been proposed to deal with gene

expression data, only two algorithms have been proposed that specifically deal with bi-

nary matrices. None of the gene expression biclustering algorithms can handle the large

number of zeros in sparse binary matrices. The two proposed binary algorithms failed

to produce meaningful results. In this article, we present a new algorithm that is able

to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters

with different numbers of rows and columns can be detected, varying from many rows

to few columns and few rows to many columns. It allows the user to guide the search

towards biclusters of specific dimensions. When applying our algorithm to an input matrix

derived from TRANSFAC, we find transcription factors with distinctly dissimilar bind-

ing motifs, but a clear set of common targets that are significantly enriched for GO

categories.

Key words: biclustering, binary data, transcription factor binding.

1. INTRODUCTION

IN THIS PAPER, we propose BicBin (Biclustering Binary data), a new algorithm that is able to find

a set of biclusters in sparse binary datasets. The biological motivation for developing such an algo-

rithm comes from problems in several application domains, including transcription factor binding (the

main focus of this article), insertional mutagenesis (Lund et al., 2002; Mikkers et al., 2002), and gene

expression.

Many algorithms have been proposed in recent years for biclustering gene expression data, such as Plaid

(Turner et al., 2005), EXPANDER (Shamir et al., 2005), a method based on Gibbs sampling (Dhollander

et al., 2007; Sheng et al., 2003), and several other methods that are compared in a survey (Madeira

and Oliveira, 2004). A number of the algorithms reviewed in Madeira and Oliveira (2004) were further

evaluated in Prelić et al. (2006). Unfortunately, these algorithms do not perform well on sparse, binary

1Bioinformatics and Statistics, Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The

Netherlands.
2Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer

Science, Delft University of Technology, Delft, The Netherlands.

1329



1330 VAN UITERT ET AL.

datasets. The main reason being that they all employ a distance measure designed for continuous vectors,

and these measures are ill-suited for sparse binary vectors.

1.1. Biclustering binary data

To the best of our knowledge only two algorithms exist that are especially designed for binary data:

the algorithm described in Koyutürk et al. (2004), which will be referred to as Cmnk in the remainder of

this article, and Bimax which is used as a reference in Prelić et al. (2006). Like the algorithms designed

for gene expression data, both Cmnk and Bimax failed on sparse binary datasets. In artificial experiments

where a single bicluster was embedded in a noisy background, Cmnk was not able to extract the bicluster.

Bimax is optimal in the sense that it returns all possible biclusters in a dataset. However, if one uses it on

a typical genomic dataset (with thousands of columns) it results in a list of hundreds of million unsorted

biclusters. Moreover, Bimax returns biclusters with ones only, whereas a bicluster with a small proportion

of zeros could be interesting as well, since it reflects some tolerance to, for example, measurement noise.

Hence, Cmnk and Bimax turned out to be not useful.

The algorithm that we present in this article (BicBin) finds biclusters in a noisy background, produces a

manageable ranked list of biclusters, and allows some predefined proportion of zeros in the biclusters. In

more detail, BicBin evaluates each submatrix with a cost function that takes the bicluster size into account.

It has a powerful feature, the so-called ˛-ˇ space, that allows the user to bias the search towards biclusters

of specific dimensions. More specifically, ˛ and ˇ can be set such that the dimensions of the biclusters vary

from many rows and few columns to few rows and many columns.

1.2. Transcription factor binding data: novel regulatory modules

Over the last years, a substantial amount of literature has appeared on locating transcription factor binding

sites and finding their binding motifs (Elnitski et al., 2006; Wasserman and Sandelin, 2004). Lately the

focus has changed to finding transcription factor modules responsible for gene regulation. BicBin can

therefore be employed to decipher transcriptional regulation by searching for transcription factor modules

in a purely data-driven way: grouping genes on the basis of their transcription factor motif binding pattern

and at the same time grouping transcription factors based on the target genes they putatively bind, might

reveal novel regulatory networks. To accomplish this, we applied BicBin to a dataset with transcription

factor motifs and the genes whose upstream regions they putatively bind. The transcription factor motifs can

be either the outcome of a biological assay or taken from an existing database such as JASPAR (Sandelin

et al., 2004) or TRANSFAC (Wingender et al., 2000). In this article we chose to use a preprocessed set

of motifs from the latter database, and developed a statistical approach to find the genes to which they

putatively bind. The resulting matrix with along the rows the transcription factor motifs and along the

columns the genes is clearly binary. A one represents a transcription factor motif that putatively binds the

upstream region of the gene. Hence, even though transcription factor binding data is not inherently binary,

it is natural to represent it in a binary way, since in the end a transcription factor regulates a gene or

not. We refer to Harbison et al. (2004), where a similar binary matrix is obtained for yeast. The dataset

we obtained is sparse since only 20% of the elements in the matrix are non-zero. As expected, we find

biclusters with transcription factors that have very similar motifs (the similarity is based on the Tomtom

algorithm as described in Gupta et al. [2007]). This serves as a partial validation of the approach, since

similar transcription factor motifs are clustered together. More interestingly, we also obtain biclusters with

transcription factors that have very dissimilar motifs and of which the genes are enriched for GO categories.

This could point to potentially novel putative regulatory interactions.

2. THE BicBin ALGORITHM

In this section, we introduce and describe BicBin. It consists of three main ingredients: the score function

to evaluate a submatrix, the search algorithm to restrict the search space of all possible submatrices and

an algorithm to extract all biclusters in an ordered way from a dataset.
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2.1. Score function

We will first derive the score function that we use to evaluate a submatrix. Let G be a binary matrix

with M rows, N columns and a proportion of ones, p. Similar to Koyutürk et al. (2004), we assume

each element in this matrix to be the outcome of a Bernoulli trial with succes probability p. Defining

Xm;n to be a random variable denoting the number of ones in a submatrix of size m � n, Xm;n follows

a Binomial distribution with parameters mn and p. Because we are interested in submatrices that are

dense with ones, we are actually interested in submatrices with small P.Xm;n � k/. Due to the sparseness

of the dataset, i.e., small p, these probabilities become very small and impossible to work with for the

submatrices we wish to evaluate, quickly reaching the limits of machine precision. Therefore, instead of

using the actual probability, we use an exponentially decaying upper bound for the probability, the Chernoff

bound. Such an upper bound is well known to be very accurate in the regime of small probabilities. We

choose the multiplicative version of the Chernoff bound, which, when applied to the Binomial distribution

(see Proposition 2.4 in Angluin and Valiant [1979], and Section 3 in Erdös and Spencer [1974]), is

defined as

P.Xm;n > k/ �
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Note that this bound is only valid for k � mnp, i.e., for k larger than the expected number of ones in

a submatrix of size m � n. Instead of finding submatrices with a small probability of occurring, we can

search for submatrices with a large value for the exponent
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Using the binomial distribution this way, the row and column sizes of the submatrix are not taken into

account separately, only the product mn is required for QC.m; n; k/. To distinguish between the number of

rows and the number of columns in the submatrix, we need to normalize QC.m; n; k/ with some functions

of m and n. At the same time, minimizing the binomial probability, or equivalently maximizing the

exponent, QC.m; n; k/, introduces a natural bias for larger biclusters. We will illustrate this phenomenon

with an example. Consider a submatrix of size 10 � 10 with k D 100 and p D 0:016.

This results in a score of QC.10; 10; 100/ D 95:30. Now consider a submatrix of size 10 � 11, con-

taining k D 101 ones. The score for this submatrix is QC.10; 11; 101/ D 95:84, i.e., QC .10; 11; 101/ >
QC.10; 10; 100/. Intuitively, we would prefer it the other way around: the most dense bicluster should

achieve the largest score. In order to take the size of the bicluster into account, we could normalize
QC.m; n; k/ with the size of the bicluster, i.e., with mn. However, then a bicluster of 1 � 1 with a single

one is assigned the same value of QC .m; n; k/ as a bicluster of size m � n with mn ones for any m

and n. This is clearly undesirable, as a bicluster of size 10 � 10 containing 99 ones will be scored lower

than a 1 � 1 bicluster containing a single one, even though the former is clearly the preferred option.

Therefore, given the fact that we have to strike a balance between a too stringent normalization (m1n1)

and no normalization (m0n0, which is simply QC .m; n; k/) we propose to normalize QC .m; n; k/ with the

factor m˛nˇ , with ˛ and ˇ in Œ0:5; 1�. This results in the following function to score a submatrix of size

m � n with k ones

C˛;ˇ D
QC .m; n; k/
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Note again that the function C˛;ˇ is only defined for k � mnp. Moreover, there is a subtle difference

for k 2 Œmnp; 2mnp� and k > 2mnp. Now we can define a bicluster to be a submatrix with maximal C˛;ˇ .

2.2. Search algorithm

Evaluating C˛;ˇ for all submatrices in order to find the maximum is clearly not feasible. We restrict the

search space as in Koyutürk et al. (2004) and employ their efficient search strategy, where the rows and

columns are iteratively searched. Before describing the algorithm we introduce some notation. We define x

to be an M -dimensional binary column-vector, where a one indicates that the row is part of the bicluster,

and a 0 indicates that it is not. Similarly we define the column-vector y 2 f0; 1gN for the columns.

Algorithm A1: Iterative algorithm to find the maximal-C˛;ˇ bicluster

(1) The algorithm is initiated by selecting a subset of either the columns or the rows. Let us assume that

we start with a random subset of the columns (the case where we start with a subset of the rows is

similar), and we set y accordingly, i.e., yi D 1 if column i is in the selected set. In principle, one

could start with any subset of the columns.

(2) Given the subset of columns, represented by y, we compute the rowsums s over the selected columns,

s D Gy.

(3) We sort the rows in decreasing order of rowsums s, and relabel them �1; : : : ; �M . Thus �1 is the row

with the largest rowsum and �M is the row with the smallest rowsum.

(4) Consider the subset of rows Rm WD f�1; : : : ; �mg. For each m D f1; : : : ; M g we have a bicluster

with columns C WD fi jyi D 1g and the subset of rows Rm. Clearly, the mth bicluster has m rows,

n D
PN

iD1 yi columns and k D
Pm

iD1 s.�i / ones. We calculate for each of these M biclusters the

value of C˛;ˇ , which is for bicluster m D 1; : : : ; M given by:

C˛;ˇ.m/ D
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(5) Determine

m� D arg max
mDf1;:::;Mg

fC˛;ˇ.m/g:

This gives a subset of rows Rm� D f�1; : : : ; �m�g.

(6) Construct the binary column-vector x such that xj D 1 if j is part of Rm� , and xj D 0 otherwise.

(7) Go to Step 2 and do the same for the columns with s D GT x. Stop if C˛;ˇ.m�/ does not increase.

The rows for which x is equal to 1 and the columns for which y is equal to 1 are a bicluster with

value C˛;ˇ, which is equal to the last obtained maximum C˛;ˇ.m�/.

(8) Since each run (Steps 1 to 7) ends up in a locally maximal value of C˛;ˇ, repeat Steps 1 to 7 a number

of times I , every time generating a new random initialization of the rows or the columns. Return the

bicluster with the maximal C˛;ˇ over all I runs.

Note that the maximal-C˛;ˇ bicluster is not always the submatrix for which the score function has a

global maximum, because we cannot evaluate all possible submatrices. However, the search algorithm is

designed such that given x a global optimum is reached for y and vice versa, see (Koyutürk et al., 2004)

for more details. We would like to point out here that the A1 algorithm, because of our score function,

does very well in finding the biclusters in artificial experiments, as opposed to Cmnk.
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2.3. Finding all biclusters

The maximal-C˛;ˇ bicluster is maximally dense with ones, but the number of ones can in principle vary

from mnp to mn. Moreover, for each input matrix G and given values of .˛; ˇ/ the number of ones in

the maximal-C˛;ˇ bicluster will be different. The user would probably prefer to indicate in advance the

proportion of ones that should be in a submatrix before it is called a bicluster, even though the submatrix

has maximum C˛;ˇ . In order to find biclusters that the user would consider dense enough, we introduce

a parameter p1 and define a p1-bicluster as a bicluster that has a proportion of ones that is larger than or

equal to p1. Suppose the A1 algorithm outputs a maximal-C˛;ˇ bicluster which has a proportion of zeros

that is below p1. Because it is the maximal-C˛;ˇ bicluster it contains all the interesting information. To

further enrich this bicluster for ones, i.e., to find a more dense bicluster that meets the p1 constraint, we

run the A1 algorithm again on the maximal-C˛;ˇ bicluster. More formally, this results in the following

algorithm, A2, that returns the maximal-C˛;ˇ p1-bicluster with a proportion of ones larger than or equal

to p1.

Algorithm A2: Algorithm to find the maximal-C˛;ˇ p1-bicluster

(1) Run A1 on G to obtain a maximal-C˛;ˇ bicluster B .

(2) Calculate pB , the proportion of ones in B .

(3) Stop if pB � p1, B is then the maximal-C˛;ˇ p1-bicluster. If pB < p1 run A1 on B and denote the

obtained new maximal-C˛;ˇ bicluster by B . Go to Step 2.

In order to find all the biclusters in the dataset, we have to run the A2 algorithm to find the maximal-C˛;ˇ

p1-bicluster a number of times. This results in the main algorithm BicBin, which finds all biclusters in a

dataset for a given .˛; ˇ/ combination, and for a given value of p1.

Algorithm BicBin: Algorithm to find all maximal-C˛;ˇ p1-biclusters

(1) Run A2 on G to find the maximal-C˛;ˇ p1-bicluster.

(2) Put the bicluster in a list of biclusters. Set its elements in G to 0.

(3) Check whether G still contains non-zero elements. If not, stop, else go to Step 1.

We decided to set all the elements of a bicluster that has been found to zero. We prefer this over setting

the elements of the bicluster to one with probability p, since this will certainly lead to biclusters that

contain ones that were artificially introduced.

2.4. ˛-ˇ-space

What values of ˛ and ˇ should be chosen in order to obtain the “true” biclusters in a real dataset?

The formula for C˛;ˇ reveals how the parameters should be interpreted. When ˛ equals ˇ, rows and

columns are weighed equally in C˛;ˇ . This means that when we have to choose between adding a row or

a column—both being of equal size with an equal number of ones—to an existing bicluster, it does not

matter for the value of C˛;ˇ which of the two we add. The situation is different when ˛ is larger than ˇ.

Then the columns are weighed more heavily than the rows, so the value of C˛;ˇ increases more when

adding a column than a row, provided they contain both an equal number of ones. Of course, when it is

the other way around and ˇ is larger than ˛ then C˛;ˇ increases most rapidly by adding rows, rather than

columns. So, depending on the dimensions (number of rows and columns) of the putative bicluster, one
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may decide that rows are preferred over columns or the other way around, and choose values for .˛; ˇ/

accordingly.

This is illustrated by an artificial example (see Fig. 1) where the notion of the “true” bicluster is

ambiguous, just as in real-life datasets. The artificial binary matrix contains 100 rows and 100 columns,

with p equal to 0:17. One could argue that Figure 1A contains one big bicluster, as indicated by the

gray square. At the same time, one could argue that one of the biclusters, represented by the gray

rectangles, in Figure 1B, 1C, or 1D is the “true” bicluster. For instance, choosing ˛ D 0:5 and ˇ D

0:5, we can calculate the value of the score function C0:5;0:5 for all four possible biclusters that are

shown (in gray) in Figure 1A, 1B, 1C, and 1D: C0:5;0:5 D 13:39 (Fig. 1A), C0:5;0:5 D 15:84 (Fig. 1B),

C0:5;0:5 D 16:05 (Fig. 1C) and C0:5;0:5 D 16:01 (Fig. 1D). So for ˛ D 0:5 and ˇ D 0:5 the bicluster in

Figure 1C is the maximal-C˛;ˇ bicluster. When ˛ is chosen larger than ˇ, such as for instance when

.˛; ˇ/ D .0:8; 0:6/, then the bicluster in Figure 1B is maximal-C˛;ˇ, and when ˇ is larger than ˛,

for instance .˛; ˇ/ D .0:6; 0:8/, BicBin would pick the bicluster in Figure 1D as maximal-C˛;ˇ . Note

that in all these examples p1 is set to 1 for simplicity. This example clearly demonstrates how the ˛-

ˇ-space can be employed to explore the dataset and retrieve biclusters of varying dimensionalities—a

feature that is particularly useful in real-world datasets, where the precise definition of a bicluster is often

ambiguous.

For a quick first search for unusually dense biclusters in a dataset, we propose to use ˛ D 0:5 and

ˇ D 0:5. Applying this procedure to the dataset in Figure 1, we find three biclusters (Fig. 1C): the first

is the gray bicluster, the second is the white bicluster to the left and the third is the white bicluster on

top of the gray bicluster. Using BicBin with ˛ D 0:5 and ˇ D 0:5 on our artificial experiments, we

find most of the true artificial biclusters, except for some extreme cases. For a more thorough search

through the dataset, and depending on the user preferences with regard to the ratio of the number

of rows relative to the number of columns in the retrieved biclusters, BicBin can be run for several

combinations of parameter values. Obviously, this results in several lists of biclusters, one for each .˛; ˇ/

combination.

FIG. 1. Illustration of ˛-ˇ-space. The four possible biclusters are depicted in gray in each of the panels A, B, C,

and D. Below the panels, the values of C˛;ˇ for the bicluster in gray are given for the different choices of .˛; ˇ/.
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3. COMPARING BicBin TO Cmnk AND Bimax

In this section, we compare BicBin to the currently available approaches for biclustering binary data.

First we perform a comparison of BicBin with Cmnk, the algorithm proposed in Koyutürk et al. (2004),

on a series of artificial datasets containing single biclusters of varying size embedded within larger data

matrices which also vary in size. Then we compare BicBin with Bimax using the artificial dataset proposed

in Prelić et al. (2006).

3.1. Comparison to Cmnk

We create binary matrices G of size M � N with an artificial bicluster as follows. First we set each

element in G to one with probability p, and to zero with probability 1�p. This represents the “background

noise.” Then we insert a bicluster of size m � n, containing mn ones into G. We considered the values

M D 10, 100, 1000, and N D 50, 500, 5000. We chose p to range from 0.001 to 0.5, in order to evaluate

the performance of the algorithms with low and high levels of background noise. For the artificial biclusters

we took size m � n, where m (n) was varied from 2 to M (N ) in 50 (10) equal sized steps.

A natural performance measure for these experiments is the false positive rate (FPrate), which is defined

as the number of false positives (FP) divided by the sum of the number of true positives (TP) and the

number of false positives, i.e, FPrate D FP/(TP+FP). The false positives are the elements in the bicluster

found by the algorithm that are not part of the true bicluster. The true positives are the true elements in

the bicluster found by the algorithm. The number of predicted postives, which is TP C FP, is the total

number of elements in the bicluster returned by the algorithm. The FPrate measures the relative amount

of background noise that is returned by the algorithm as belonging to the true bicluster. The FPrate ranges

from 0, when the algorithm only returns true bicluster elements and hardly any background noise, to 1,

when the algorithm performs worst and only returns background noise.

To account for locally maximal biclusters when comparing BicBin with Cmnk, we proceeded as follows.

For every combination of m, n, M , N , and p, we construct 5 instances of a binary matrix of size M � N

with background noise p, containing an artificial bicluster of size m�n. For each of the 5 binary matrices,

we run both BicBin and Cmnk 50 times, and retain the result with the highest value of the cost functions:

C.m; n; k/ for Cmnk and C˛;ˇ for BicBin, respectively. For BicBin we choose ˛ D 0:5 and ˇ D 0:5, and

p1 D 1, and for Cmnk we choose P � D 10�9, since that gave the best overall performance for Cmnk. For

both algorithms we chose I D 50 and a random initialization of the columns.

It is important to note that both algorithms performed equally well with respect to the false negative

rate, which is defined as the fraction of false negatives (true bicluster elements missed by the algorithm)

to the predicted negatives (the elements that are not part of the bicluster returned by the algorithm). This

means that both algorithms are capable of detecting the bicluster. However, BicBin returns only the true

bicluster and Cmnk returns a large number of false positives in addition to the bicluster. For this reason it

is only necessary to consider the FPrate when comparing the two algorithms.

We averaged the five best FPrates to obtain one FPrate per m, n, M , N , p-combination. The results for

p D 0:001 and p D 0:5 are given in Figures 2–5 for both BicBin and Cmnk. Each of the figures displays

the results achieved on the nine data matrices associated with the different combinations of M and N .

Within each matrix, the value at position .m; n/ represents the FPrate for a bicluster of size m � n in a

big matrix of size M � N . From the figures it follows immediately that Cmnk performs poorly, since the

FPrate is very high for most of the m, n, M , N , p-combinations, while BicBin does a very good job of

finding the bicluster for almost all parameter settings. It is only for p D 0:5 and very small biclusters (top

left corners in Fig. 5) where BicBin does not achieve a low FPrate. Clearly the noise level has a far greater

impact on the perfomance of Cmnk. For example, for p D 0:001 (Fig. 2) the FPrate for N D 10, M D 50,

500, 5000 is reasonably good, while the FPrate for the corresponding matrices for p D 0:5 (Fig. 4) is

dramatically larger.

What is also apparent is that the size of the bicluster relative to the data matrix it is contained in, strongly

influences the FPrate of Cmnk. For example, in the top-left corners of all the panels in Figure 4, the results

are shown for relatively small biclusters contained in a large data matrix. At all these positions the FPrate

approaches 1. This indicates that Cmnk is not capable of finding relatively small biclusters in large data

matrices. To conclude, Cmnk, as proposed in Koyutürk et al. (2004) clearly fails to detect biclusters, and
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FIG. 2. False positive rates for Cmnk when p D 0:001.

therefore we do not proceed with this algorithm on the artificial dataset in the next subsection, nor on the

transcription factor binding data.

3.2. Comparison to Bimax

Bimax finds all possible biclusters for a given minimal number of rows and columns. Unfortunately Bimax

only returns biclusters that have all elements equal to one. This is clearly a very restrictive constraint, as we

are often interested in “maximally dense” biclusters, for which the vast majority of elements are set to one.

This allows for the possibility to cope with noise (some elements being zeros while they should have been

one). Especially when the binary matrix is obtained by thresholding, such as for gene expression data, it is

important that an algorithm can find biclusters with some zeros. For the transcription factor binding data it

FIG. 3. False positive rates for BicBin when p D 0:001.
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FIG. 4. False positive rates for Cmnk when p D 0:5.

is important to allow for some zeros in the biclusters, since the binary matrix for transcription factor motifs

is obtained by thresholding probabilities. We illustrate how Bimax works when some elements change from

one to zero, using the artificial example that is proposed in Prelić et al. (2006). We first construct the binary

matrix E (see the Appendix for details), and apply both Bimax and BicBin. The output of Bimax is a list

of 28 unprioritized biclusters. The output of BicBin is a ranked list of biclusters (Fig. 11 in Appendix),

where the ranks are based on the value of C˛;ˇ. We note that matrix E is very ambiguous, as it contains, in

principle, ten equally large overlapping biclusters. While each of these could be the top scoring bicluster

for BicBin, depending on the columns or rows that are selected in Step 1 of algorithm A1, four are output at

the top of the list. Then we randomly change ten of the ones in E into zeros, and obtain binary matrix E 0

(Fig. 10B in Appendix). The output of BicBin applied to E 0 is the list of ranked biclusters as visualized

FIG. 5. False positive rates for BicBin when p D 0:5.
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FIG. 6. (A) Resulting biclusters when BicBin is applied to E 0. (B) The 34th bicluster found by Bimax (bottom right,

dark) in E 0.

in Figure 6A. It again returns four of the ten possible top scoring biclusters, even though two of these

contain a few zeros. However, as a result of the minor modification to E , the output of Bimax changes

dramatically. It now outputs an unprioritized list of 73 biclusters (compared to 28 for E). As an example

we show in Figure 6B the bicluster that is output as 34th on the list. This should ideally have been one

of the ten big biclusters, but Bimax left out two rows and one column because of the additional zeros. To

conclude, Bimax is clearly very sensitive to noise being added to the binary input matrix, since it requires

every bicluster to be completely pure, i.e., free of zeros. This is undesirable, since genomic data matrices

typically contain various kinds of noise, and a bicluster should not be divided in subclusters if it contains

a few zeros. In addition, Bimax does not provide a prioritization of the obtained biclusters, which makes

it extremely difficult to browse the data, or perform some post-processing steps.

4. TRANSCRIPTION FACTOR BINDING DATA

In this section, we illustrate the performance of BicBin on genomic datasets, by applying BicBin to

a dataset of putative transcription factor binding sites (TFBS). We have chosen to use the TRANSFAC

database (Wingender et al., 2000). TRANSFAC is the database on eukaryotic transcription factors, their

genomic binding sites and DNA-binding profiles, i.e., motifs. Our objective is to find a bicluster consisting

of a group of transcription factors that all putatively bind to the same group of genes. Such a bicluster

could reveal potentially novel regulatory complexes.

4.1. Biclustering TFBS with BicBin

As described in the Appendix, we transform the data from TRANSFAC into a binary matrix. In this

procedure we corrected for false positives and used the UCSCs most conserved regions to obtain only the

high confidence putative relationships. We noticed that the database is quite redundant in the sense that

the sequences of some of the motifs are so alike that their binding profiles are almost identical. Hence,

applying BicBin to a matrix with transcription factor motifs along the rows and target genes along the

columns, the most prevalent biclusters will contain groups of motifs that are very similar. These biclusters

are clearly uninteresting since they could have been found by one-way hierarchical clustering of the

sequences. Therefore, we decided to merge similar motifs together in a so-called motif group, and create

a binary matrix with transcription factor motif groups along the rows and genes along the columns, where

an element is one if the transcription factor associated with the motif group putatively binds the upstream

region of the gene. This results in a matrix of 337 motif groups and 10,801 genes with at least one hit.
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FIG. 7. Average number of motif groups (A) and genes (B) in the first 100 biclusters for combinations of ˛ and ˇ.

The white dots indicate the values of ˛ and ˇ that we have chosen for further analysis.

In order to investigate what kind of biclusters are hidden in our binary matrix, we first apply BicBin to

get the top 100 biclusters for all combinations of ˛ and ˇ. Note that for all the experiments in this section

we have chosen I D 600, where we iteratively use a random initiation of x and y (see the A1 algorithm).

We have found that the global maximum in most of the applications was reached after I D 300 with

alternating random initiations of x and y. An attractive feature of BicBin is the fact that the user can

choose a value for p1, since 1 � p1 predefines the largest proportion of zeros allowed in a bicluster. The

results presented here are for p1 equal to 0.9, because we want to allow some zeros, but not too many.

Figure 7A shows the average number of motif groups per bicluster, and Figure 7B shows the average

number of genes per bicluster for these combinations. Figure 7A, for ˛ > ˇ (lower triangular part of the

matrix), most of the biclusters contain only a single motif group, whereas for ˛ < ˇ (upper triangular part)

the number of motif groups increases. The opposite effect is present for the average number of genes in a

bicluster, as is shown in Figure 7B. When ˛ > ˇ a large number of genes is found in a bicluster, whereas

for ˛ < ˇ the number of genes decreases.

We have chosen the ˛ and ˇ combinations as indicated with the white dots in Figure 7. For these values

of ˛ and ˇ, we obtain biclusters with a reasonable number of transcription factor motif groups as well as

genes, i.e., not too few transcription factor motif groups and not too many genes. We also applied Bimax

to this matrix, which resulted in an unsorted list of over 200 million biclusters, which is obviously an

undesirable result.

4.2. Evaluation of the results

STRING interactions. A first validation is based on known protein-protein interactions such as those

listed in the STRING database (von Mering et al., 2007). These interactions are derived from four sources:

genomic context, high-throughput experiments, (conserved) coexpression and previous knowledge. We

expect to find biclusters that contain transcription factors of which some are known to interact, as well

as novel interactions. The latter reveal potentially novel regulatory modules. In Figure 8, we show the

STRING result for the first bicluster that we obtained with ˛ D 0:5 and ˇ D 0:6 (more STRING results

can be found on our website: http://bioinformatics.nki.nl/software.php). We took the genes that code for

the transcription factors in the first bicluster and searched for existing associations between them or their

proteins, using the STRING database. We note that most of these genes, coding for the transcription

factors in the first bicluster, are indeed present in the STRING database. We observe that roughly half

of the transcription factors are known to interact and for a relatively large fraction multiple independent

sources of evidence exist for the interactions; for a description of the sources of evidence, see Figure 8.

This suggests that for the connected transcription factors that we group together in a bicluster, convincing

evidence exists that they are, in fact, functionally related. Based on our output we might also hypothesize

that some of the unconnected transcription factors could putatively interact with the other transcription
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FIG. 8. STRING output for the first bicluster (˛ D 0:5, ˇ D 0:6). Transcription factors are represented by

nodes, and a variety of associations between the nodes are represented by the edges. The following associations

between nodes are shown in the graph: (1) “neighborhood” indicating frequent occurrence of genes in the same

genomic neighborhood; (2) “co-occurrence” of linked orthologous groups across species; (3) “gene fusion” indicating

whether fusion occurred; (4) “co-expression” representing evidence of mRNA co-expression of the associated genes;

(5) “experiments” representing experimental evidence for an interaction; (6) “databases” representing evidence from

pathway databases for association; and (7) “text mining” representing co-publication information. Please refer to von

Mering et al. (2007) and http://bioinformatics.nki.nl/software.php for more information on this.

factors in the bicluster, and might be involved in similar regulatory processes as those that are known

to interact.

GO enrichment. We expect the genes that are bound by the same transcription factors to be in-

volved in similar processes. Hence, a second validation of the biclusters that we obtained with BicBin

is provided by the number of biclusters whose genes are enriched for GO categories. Following Prelić

et al. (2006), we calculate for each bicluster whether the genes contained in the bicluster have a higher

degree of overlap with any of the GO categories than could have been expected by chance. We use

the hypergeometric distribution and apply Benjamini and Hochberg multiple testing correction to correct
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FIG. 9. Density plots of the number of GO enriched (dotted line) and highly dissimilar biclusters. We also plot the

number of biclusters that are both GO enriched and highly dissimilar. We marked on the horizontal axis the biclusters

that have a proportion of ones smaller than 1. Each panel represents an .˛; ˇ/ combination, and the legend in A holds

for all panels.

for both the number of biclusters and GO categories tested. In Figure 9, we provide an overview of

the obtained biclusters using BicBin with .˛; ˇ/ D .0:5; 0:6/ (Fig. 9A), .˛; ˇ/ D .0:6; 0:7/ (Fig. 9B),

.˛; ˇ/ D .0:7; 0:8/ (Fig. 9C), and .˛; ˇ/ D .0:5; 0:7/ (Fig. 9D) (settings corresponding to the white dots in

Fig. 7). We plotted (dotted line) the densities of GO enriched biclusters, and we see that GO enrichment

is more concentrated towards the first biclusters extracted by BicBin. Among the first 500 biclusters for

.˛; ˇ/ D .0:5; 0:6/, 498 were GO enriched, and for .˛; ˇ/ D .0:6; 0:7/ we obtained a similar result

with 484 GO enriched biclusters. Figure 9C shows a slight shift in enrichment towards clusters extracted

later on. In Figure 9D, we also see a peak at the end, which is due to the fact that BicBin continues

extracting biclusters until the matrix is completely empty. We checked the last biclusters, and most of

them consisted of just one motif group and the genes they bind—a trivial bicluster which one expects to

be GO enriched.

Sequence (dis)similarity. A third validation involves the sequence similarity of the motifs. Even though

the most similar motifs have been merged in motif groups, we still expect the transcription factor motif

groups in a bicluster to have fairly similar sequences, which serves as a straight-forward validation of

our algorithm. Even more interesting, we investigate whether we obtain biclusters containing dissimilar

transcription factor motif groups. The latter might reveal novel biological insights in transcriptional

networks. We use the Tomtom algorithm (Gupta et al., 2007) to calculate the dissimilarity between two

motifs, and compute the pairwise motif group dissimilarities using the Hausdorff distance. We define a

bicluster to be highly dissimilar if it contains at least two motif groups whose Hausdorff distance exceeds

the 95% quantile of all the pairwise motif scores between individual motifs. More details can be found in

the appendix. In Figure 9, we plotted the densities of the highly dissimilar biclusters (dark gray line). In

all panels we see that most of the highly dissimilar biclusters are extracted first. The light gray line depicts

the density of the biclusters that are both GO enriched and highly dissimilar. It clearly shows that BicBin

finds these most interesting biclusters first, indicating that BicBin is very effective in finding GO enriched

and highly dissimilar biclusters. In addition, we marked with ticks on the horizontal axis the biclusters

that have a proportion of ones smaller than one. Interestingly, peaks in the density of highly dissimilar

GO enriched biclusters coincide with the ticks, indicating that the most interesting biclusters are not fully

dense with ones. We remark that these biclusters cannot be found by Bimax. Based on these results, we

conclude that BicBin is an effective biclustering algorithm.
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TABLE 1. SUMMARY STATISTICS OF THE BICLUSTERS PER ˛ AND ˇ COMBINATION

˛ ˇ

No. of

biclusters

No. of # GO

enriched

No. of GO enriched

in first 500

biclusters GO enriched and highly dissimilar biclusters

0.5 0.6 2508 2188 498 1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 15, 17, 20, 21, 22,

26, 28, 29, 31, 32, 39, 49, 51, 53, 56, 60,

64, 70, 76, 77, 78, 83, 91, 100, 101, 116,

121, 128, 184, 191, 203, 475, 651, 1133

0.6 0.7 3797 2890 484 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 19, 20,

22, 24, 2526, 27, 33, 37, 40, 41, 52, 56, 66,

67, 68, 81, 86, 89, 91, 98, 133, 134, 151,

164, 169, 176, 180, 185, 188, 214, 224, 320,

688, 894, 925, 1337

0.5 0.7 6428 2020 131 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17,

18, 19, 21, 22, 24, 29, 30, 32, 34, 38, 40,

45, 46, 53, 54, 57, 67, 86, 87, 105, 126, 149,

150, 156, 157, 167, 184, 219, 230, 253, 262,

409, 449, 484, bf 500, 517, 531, 572, 632,

762, 852, 1056, 1182, 1294, 1620

0.7 0.8 8114 1204 359 1, 2, 3, 5, 7, 9, 10, 15, 20, 22, 26, 29, 30, 31,

38, 39, 42, 49, 51, 73, 85, 99, 107, 115, 118,

136, 138, 141, 142, 190, 210, 221, 248, 259,

292, 293, 332, 337, 356, 399, 412, 437, 497,

559, 618, 657, 799, 823, 841, 906, 976,

1037, 1063, 1091, 1245, 1296, 1327, 1377,

1480, 1741, 1789, 1839, 1994, 2083, 2297,

2843, 2968, 3181, 3287, 3575, 3957, 4308,

4494, 4530, 4667, 4848, 4868, 5693, 6690

The bicluster numbers in boldface indicate that the proportion of ones for these biclusters was smaller than 1 (and > 0:9). The

non-boldface bicluster numbers indicate a proportion of ones p1 D 1.

Overview of the results. In Table 1, we provide a detailed overview of the output obtained by BicBin.

The last column indicates the biclusters whose genes are enriched for at least one GO category, and

contain at least two motif groups that are highly dissimilar. This shows again that BicBin finds the most

interesting biclusters first, which is a very desirable property of our biclustering algorithm. We remark that

the biclusters whose numbers appear in boldface in the sixth column are not fully dense with ones, but

contain some zeros. Hence, we conclude that BicBin is very effective in finding GO enriched and highly

dissimilar biclusters.

5. DISCUSSION

We presented an algorithm, BicBin, that is able to find biclusters in large-scale sparse binary datasets.

While many approaches have been proposed to bicluster gene expression data, only two methods exist

to bicluster binary matrices. The first is Bimax (Prelić et al., 2006), which produces an unmanageable,

unprioritized list of biclusters, and cannot detect biclusters that have some elements equal to zero. BicBin

is a major improvement over Bimax since it produces a manageable, prioritized list of biclusters as output,

and is capable of finding biclusters that are not fully dense with ones. The second is Cmnk, the algorithm

proposed in Koyutürk et al. (2004), which returns biclusters that contain a large number of predicted

elements, where most of these predicted elements are not part of the true bicluster. BicBin clearly improves

on this algorithm, since it is able to detect biclusters, even in a noisy background with a much lower false

positive rate. We extensively demonstrated this on a series of artificial experiments. More importantly, we

show that we can find biclusters in a TFBS dataset such as TRANSFAC, in a purely data-driven way.

We correct for sequence similarities of the motifs and employ motif merging to ensure that these biclusters
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could not have been found by simple one-way hierarchical clustering of the sequences. The genes of the

biclusters that BicBin detects are enriched for GO categories, and contain both known and novel interacting

transcription factors.

6. APPENDIX

6.1. Additional information on the Bimax comparison

We obtain the binary matrix E by setting the values n D 100, m D 100, and t D 10, and choosing

a maximal overlap of d D 8, as proposed in Prelić et al. (2006). This results in the binary matrix E

(Fig. 10A). Then we randomly change ten of the ones into zeros. The resulting matrix, E 0 (E with ten

additional zeros), is presented in Figure 10B. The results for BicBin applied to the original matrix E are

given in Figure 11. Note that we used ˛ D 0:5 and ˇ D 0:5 because the biggest overlapping biclusters are

all square.

6.2. Transforming TRANSFAC into a binary matrix

The TRANSFAC Professional database (release 10.3) contains 815 motifs of transcription factors, of

which we selected the 585 vertebrate motifs. With the TFBS Perl module (Lenhard and Wasserman, 2002),

we scanned the upstream regions of all genes on an Operon 35K mouse array against all these vertebrate

motifs. We used the Ensembl gene ids (NCBI build m36) for the oligos, and retrieved the sequences of

the basepairs �1 to �1000 in the upstream region of the genes with BioMart (release 41). We chose

a scanning accuracy of 75%, meaning that a motif needs to correspond to a sequence for at least 75%

in order for the upstream region of a gene to be a putative binding site. Both the sense and anti-sense

strand of the sequences in the upstream regions of the genes were considered. This procedure yields for

every motif–gene pair a so-called matching number, that indicates how often the transcription factor motif

matches a sequence in the upstream region of a gene. A transcription factor is said to have a putative

relation with a gene if the corresponding matching number is at least 1.

Because these putative relations are likely to contain false positives, we took the following two measures

to only retain the high confidence putative relationships.

1. Under the null hypothesis that the motif is found by chance in the upstream region of the gene, the

matching number follows a binomial distribution with parameters n D 2.1000�`/, with ` the length of

a motif, and p D 2�IC, with IC the information content of the motif (D’haeseleer, 2006) for a concise

FIG. 10. (A) Artificial matrix E from Prelić et al. (2006). (B) Artificial matrix E 0, which is E with ten ones

randomly changed into ten zeros.
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FIG. 11. Resulting biclusters when BicBin is applied to the original matrix E . The biclusters are ranked according

to their C˛;ˇ , with the shading indicating the ranks.

overview. We used a threshold of 0.05 to decide whether the motif has a significant binding affinity

with the gene, and if so, this motif–gene pair gets a 1 in the binary matrix.

2. The remaining putative relations between transcription factors and genes were checked for conservation

across species (17 species), because functional binding sites are more likely to be conserved. We used

the UCSC genome browser (release mm8, NCBI build m36) to obtain the most conserved regions. If the

hit region of a motif–gene pair was found outside a most conserved region, the motif–gene element in

the binary matrix was set to 0.

Our last concern is the redundancy of the motifs. The sequences of some of the motifs are so alike

that their binding profiles are almost identical. Hence, the most prevalent biclusters will contain groups of

motifs that are very similar. These biclusters are clearly uninteresting since they could have been found by

one-way hierarchical clustering of the sequences. Therefore we decided to merge similar motifs together

in a so-called motif group in the following way. First we used the Tomtom algorithm (Gupta et al., 2007)

to calculate the similarity between motifs (we used the default setting Euclidian distance). The similarity is

expressed in terms of so-called E-values which range from 0 to 585. With complete-linkage hierarchical

clustering on the E-values (using Euclidean distance and a cutoff of 0.01), we create 337 nonredundant

motif groups. Since each of the motifs has its own unique binding profile, we decided to merge the genes

of the motifs that are in the same motif group. This way we keep the genes that make a motif unique,

even though not all motifs in the motif group have a binding affinity to all genes. Now we have a binary

matrix with 337 rows, representing the motif groups, and 10,801 columns, representing the genes, where

an element is 1 if at least one of the motifs in the motif group has a significant binding affinity to the

gene.

6.3. Motif group dissimilarity

The Tomtom E-values are Bonferroni multiple testing corrected p-values, without restricting the p-

values to 1, so the Tomtom E-values range from 0 to 585 (we have 585 transcription factor motifs). To

calculate the dissimilarity between two motif groups, we use the Hausdorff distance. We define a bicluster

to be highly dissimilar if it contains at least two motif groups whose Hausdorff distance exceeds the 95%

quantile of all the pairwise motif scores between individual motifs, which is 584.98.
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