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ABSTRACT

Accurately reconstructing the large-scale gene order in an ancestral genome is a critical
step to better understand genome evolution. In this paper, we propose a heuristic algorithm,
called DUPCAR, for reconstructing ancestral genomic orders with duplications. The method
starts from the order of genes in modern genomes and predicts predecessor and successor
relationships in the ancestor. Then a greedy algorithm is used to reconstruct the ances-
tral orders by connecting genes into contiguous regions based on predicted adjacencies.
Computer simulation was used to validate the algorithm. We also applied the method to
reconstruct the ancestral chromosome X of placental mammals and the ancestral genomes
of the ciliate Paramecium tetraurelia.

Key words: contiguous ancestral region, duplication, gene-order reconstruction, genome
rearrangement, isometric reconciliation.

1. INTRODUCTION

THE LARGE NUMBER OF GENOME SEQUENCES becoming available makes it feasible to compu-
tationally reconstruct ancient genomes of related species that have undergone large-scale genome
rearrangements. The heart of this problem is to “undo” these rearrangements and restore the ancestral
order. Previous studies mainly focused on solving the median problem, which is based either on reversal
(inversion) distance or breakpoint distance. In this problem one tries to reconstruct the common ancestor
of two descendant genomes using an additional “outgroup” genome. Unfortunately, the median problem
does not have exact and efficient algorithms (Caprara, 1999; Pe’er and Shamir, 1998). Heuristic programs
for both the breakpoint median problem and the reversal median problem have been proposed (Sankoff
and Blanchette, 1998; Moret et al., 2001; Bourque and Pevzner, 2002). However, the discrepancy between
computational predictions and results from cytogenetic experiments (Froenicke et al., 2006; Bourque et al.,
2006) suggests a need to explore further computational methods for ancestral genome reconstruction.

We recently proposed a new approach for reconstructing the ancestral order based on the adjacencies of
orthologous genomic intervals in modern species (Ma et al., 2006), which essentially avoids solving any
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rearrangement median problem. The critical procedure of the method is analogous to Fitch’s parsimony
algorithm (Fitch, 1971). Instead of inferring ancestral nucleotides, we infer the locally parsimonious
predecessor and successor relationships of the orthologous conserved segments in the ancestor, in our
case the ancestor of most placental mammals, known as the boreoeutherian ancestor. Another procedure
then connects these segments into 29 contiguous ancestral regions (CARs). Our result agrees with the
cytogenetic prediction fairly well (Rocchi et al., 2006).

However, the main drawback of the CARs method is that it does not handle duplications. Indeed,
duplications (including segmental duplications and tandem duplications) have a great impact on genome
evolution (Eichler and Sankoff, 2003). Some previous theoretic studies (Sankoff, 1999; Sankoff and
El-Mabrouk, 2000; Marron et al., 2004) have included duplications (sometimes with loss) along with
rearrangements. In this paper, we propose an efficient heuristic approach based on the CARs method to
incorporate duplication events into predictions of ancestral gene orders. Our method puts rearrangements
and duplications in a unified framework in order to have a reconstruction that captures additional large-scale
evolutionary events. We have applied it to reconstruct the ancestral chromosome X of placental mammals
and ancestral genomes of the ciliate Paramecium tetraurelia.

2. METHODS

2.1. Definitions

Before applying the reconstruction algorithm, it is always important to partition the genomic region
under consideration into intervals so that further rearrangement analysis can be carried out. There have
been a number of approaches to identify these regions, either based on gene content or sequence similarity.
Nadeau and Taylor (1984) introduced the term conserved segment to signify a genomic interval with
gene orders that are preserved, and not disrupted by evolutionary rearrangements. In the past decade,
using comparative gene mapping to find orthologous gene loci as the evolutionary markers played an
important role in testing algorithms and understanding rearrangement scenarios. Recent effort has shifted to
reconstructing mammalian ancestral genomes in increasingly high resolution, and whole-genome sequence
alignments play a key role for identifying conserved segments (sometimes also called synteny blocks)
(Pevzner and Tesler, 2003; Ma et al., 2006). From an evolutionary point of view, a conserved segment
represents homologous segments in extant species that are derived from a common ancestral interval that
was never disrupted by breakpoints caused by duplications and rearrangements.

In this paper we co-opt the word gene to mean a conserved segment used in the analysis. A chromosome
of a modern or ancestral genome consists of a list of genes, where each gene has a sign (orientation) that is
either positive (+) or negative (—). For a gene x, —x denotes the reverse complement, and vice versa. For
example, if x = GTAT, then —x = ATAC. The reverse complement of a chromosome is obtained by reversing
the list of genes and replacing each gene by its reverse complement. A genome is a set of chromosomes.

If two genes share homology, i.e., they are derived from a common ancestral gene, then they belong to
the same gene family. We use the following notation to denote genes in genomes:

Notation. Suppose there are N gene families a;, ay, ..., ay. The m-th member (according to a fixed
but arbitrary ordering) of family a; in genome g is denoted by g[a!"].

If there is only one gene from family a; in g, we can refer to it as g[a;]. If the genome is unambiguous
from the context, g[a!"] can be simplified to a!".

Definition. For a gene g[a"], if g[a’}] immediately precedes g[a}"] in the same chromosome, then we
define p(g[aj"]) = gla’}] and call g[a’}] the predecessor of g[a;"]. Equivalently, in the reverse complement
of the chromosome, p(g[—a}]) = g[—a"]. Since g[a;"] then immediately succeeds g[a’}], we define
s(gla’}]) = gla;"] and call g[a}"] the successor of gla’;]. We set p(g[a;"]) = $ if g[a]"] appears first on
a chromosome in g, and set s(g[a/’]) = $ if g[a)"] appears last on a chromosome in g. (Note that $ is
just a special symbol for which we do not define a reverse complement. Furthermore, $ is the same for all
chromosomes.)
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Example. Let g have chromosome (a —b' —c b* d e). Then p(a) = $, p(-b') = a, p(d) = b,
s(c) = b, p(—a) = b, etc.

During genome evolution, in addition to point mutations, large-scale operations can happen. These
operations include insertions, deletions, chromosomal rearrangements (inversion, translocation, fusion, and
fission), and duplications (tandem duplications and segmental duplications).

Suppose we have a genome (a' b! ¢! d!, e! f!), where the comma separates chromosomes. Examples
of the large-scale operations are as follows:

e insertion. a' b' ¢! d',e! f! = a' bl ctd',e' h fL.

® deletion. a' b ¢! d!, e f! = a' d, e f1.

e inversion. a' b' ¢! d', e! f! = a' —c! —b' d!, ! f1.

e translocation. a' b' ¢! d', e! f!' = a' b! f1, el ¢! dl.

® fusion.a' b' ¢t d',e! f! = al b M dl el £

e fission.a' b' ¢! d',e' f'' = a' b, e f1, ' dl.

e tandem duplication. a' b' ¢' d', e' f' = a' b' ¢! b? ? d', ' f!
® segmental duplication.a' b' ¢' d', e' f!' = a' b ¢! d', e' b? f!

As a consequence of the accumulation of the above operations, we have different numbers of genes and
different gene orders in present-day genomes.

Problem. The problem we investigate in this paper is: Given (1) a set of modern genomes G; (2) a
species tree T that describes the phylogeny of these modern genomes; and (3) a set of gene trees,
T, for each gene family q;, that defines the relationships among all the genes in the family, how can
we reconstruct the order and orientation of genes in the target ancestral genome? Here, we call each
reconstructed chromosome a contiguous ancestral region (CAR).

2.2. The species tree and the gene trees

Species tree. A species tree is a rooted binary tree describing the phylogeny among given species. Each
bifurcating ancestral node represents the genome of an ancestral species just before a speciation event,
while each leaf corresponds to the genome of a modern species. Each branch in the tree, connecting
genomes f and g, has a length (distance) D(f, g) representing the evolutionary distance between f and
g. The distance between any two nodes in the tree is the sum of the distances along the path that connects
them, i.e., the distance structure on the tree is additive. The distance D is extended in the natural way to
apply to points along a branch in the tree as well, which represent intermediate genomes in the descent of
the species represented at the end of the branch. These intermediate genomes are the result of evolutionary
operations that occur on that branch. We assume an arbitrarily long branch leading to the root of the species
tree, with intermediate genomes representing ancestral forms of the root species, e.g., forms that existed
prior to particular duplications that occurred in the descent of the root species from previous ancestors.

Gene tree. A gene tree is an unrooted binary tree, characterizing the relationships among genes in
the same gene family across different species. Each node represents a particular gene in a gene family,
from a particular genome. The branch between related genes a” and a” has a length (distance) d(a”, a™),
representing the evolutionary distance between a” and a™. Distances between arbitrary pairs of genes are
defined additively, as in the species tree. If ¢ and b are genes from different gene families, d(a, b) = oo.

Distances of genes and genomes. We assume that genes and genomes evolve in the following way:
When a duplication or speciation event occurs, any two homologous gene copies derived from this event
begin at evolutionary distance zero. Then they independently accumulate increasing evolutionary distance
as time goes by. Within any given genome, all between-gene distances increase at the same rate. However,
different genomes are allowed to evolve at different rates, i.e., no universal molecular clock is assumed.

It follows from these assumptions that there is a mapping ® from genes in gene trees to points in the
species tree that roots each gene tree and places each gene at the position where the event that it represents
(speciation or duplication) occurs. A gene from a leaf node of a gene tree is mapped to the leaf node in
the species tree representing the species from which it comes. A gene from an internal node in the gene
tree that represents a speciation event is mapped to the corresponding speciation node in the species tree.
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_ e (duplication event)

h (speciation event)

FIG. 1. The evolutionary scenario of six genes in gene family a. f and g are two present-day genomes, k and e
are two duplication events, and / is a speciation event, which is also the last common ancestor of f and g. If & is
the root of the species tree, then the root r of this gene tree would map to a point ®(r) that lies above the root of
the species tree, corresponding to e, on the branch leading to that root. However, if there were an outgroup species to
this tree, and thus a deeper root representing an ancient genome prior to the duplication event e, then ®(r) would lie
below the root of the species tree, on the branch leading from the root to 4.

A gene from an internal node in the gene tree that represents a duplication event is mapped to the point
along the branch in the species tree where that duplication occurs. Finally, for each gene tree, a new node
is determined on one of the branches of the gene tree that serves as the root of the gene tree, and this
point is also mapped to a point in the species tree. This node in the species tree is not necessarily the root
node, as the root of the gene family may trace back to a duplication that occurred before the root of the
species tree (i.e., above the root of the species tree, on the branch leading to the root), or all copies of the
gene may be missing in some sublineages of the species tree, putting the root of the gene tree below the
root of the species tree (Fig. 1).

We can use the concept of orthology and paralogy (Fitch, 2000) to distinguish the possible relationships
between two genes in the same family. If two genes diverged due to a speciation event, then they are
orthologous. If two genes diverged due to a duplication event, then they are paralogous. For instance, in
the example in Figure 1, f[a™] and g[a"] are orthologous, f[a™] and g[a®] are orthologous, but f[a™]
and g[a’] are paralogous, and g[a"] and g[a*] are paralogous.

2.3. Isometric reconciliation

We assume that the species tree and all the gene trees are given such that branch lengths in both the
species tree and the gene trees reflect the exact evolutionary distances. The species are given for each leaf
of each gene tree, but not the species for internal nodes. Any mapping ® from a gene tree B to a species
tree T that roots the gene tree is an isometric reconciliation if

(1) Every leaf of B maps to the leaf of the designated species in 7.

(2) Each internal node of B maps to a speciation node in 7 or a point on a branch in 7.

(3) The new root r of B maps to a point ®(r) on a branch in 7" such that any other node x in B maps
to ®(x) below ®(r) and D(P(x), P(r)) = d(x,r).

Internal nodes of the gene tree that map to speciation nodes in the species tree are determined to
be speciation events by an isometric reconciliation ®, and nodes that map to points along branches are
determined to be duplication events. These determinations in turn define the relationships of orthology and
paralogy for the gene family.

Theorem 1. Given a set T,,,..., T,, of unrooted gene trees with designated leaf species and a species
tree T, the isometric reconciliation of T,,, ..., Ty, with T is unique and there is an efficient procedure to
either construct it or detect that no such isometric reconciliation exists.

We describe our algorithm below and sketch the proof briefly. We leave the detailed proof in the
Appendix.
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The reconciliation algorithm we define works from the leaves of a gene tree inwards. When all the
nodes in two of the three subtrees branching off from an internal node x have been processed, then x can
be processed. Other than this, the order of processing is arbitrary. In the last step, all three subtrees of
the last remaining unprocessed node x will already have been processed, and processing x completes the
reconciliation. This reconciliation algorithm is less complicated than the traditional methods, e.g., Goodman
et al. (1979) and Guigo et al. (1996). When the species tree is unknown and one wants to reconcile an
optimal species tree to minimize the number of duplications using the given topologies of gene trees, the
problem is NP-hard (Ma et al., 2000). In our case, the true species tree is known and the distances in the
gene trees are exact.

Let x be an unmapped internal node of the gene tree B, with branches to nodes u, v and z. Suppose the
mappings ®(u) and ®(v) of the nodes u and v to the species tree T have already been determined. Then
the following procedure will map the node x to the species tree, or reject the input B as not reconcilable.
As a side effect, if necessary the procedure will root the tree B.

MapGeneTreeNode(x). Let d; = d(x,u), d» = d(x,v), A be the last common ancestor of ®(u) and
() in T (f ®(u) = @(v) then A = ®(u) = P(v)), d| = D(P(u),A) and dj = D(P(v), A).

(1) If di + d» < d| + d;, reject and exit.
(2) Lete =di +dy—d|—dj (=0).
(3) If di = d{ + €/2 (and d, = d; + €/2) then map x to a point ®(x) at distance /2 above A in the
species tree T .
(4) Else if € = 0 then map x to a point ®(x) at distance d; from ®(u) and d, from P(v) on the path
connecting ®(u) and ®(v) in T'.
(5) Else (i.e., if € > 0 and d, # d| + €/2) if the gene tree B is already rooted then reject and exit
(6) Else
(a) Place the root r of B at distance d| + €/2 from u and d; + €/2 from v on the path that connects
u and v in B, and map r to a point ®(r) at distance €/2 above A.
(b) If d| < d{+€/2 then map x to the point ®(x) at distance d; above ®(u), else (i.e. if d» < dj+€/2)
map x to the point ®(x) at distance d, above P(v).
(7) If z has already been mapped to the node ®(z) in T, then
(a) If the tree is already rooted, reject and exit unless ®(z) lies below ®(x) in T or vice-versa and
D(®(x), P(z)) = d(x, 2).
(b) Else
i. Let d = d(x,z), A be the last common ancestor of ®(x) and ®(z) in T, d{ = D(®(x), ),
d; = D(®(z),A), and e =d — d| —dj.
ii. If € <0, reject and exit.
iii. Else if € = 0 and ®(x) = A, reject and exit.
iv. Else place the root r of B at distance d{ + €/2 from x and d} + €/2 from z on the path that
connects x and z in B, and map r to a point ®(r) at distance €/2 above A.

We construct the reconciled tree T for a set of gene trees as follows (Fig. 2). We initialize T to be the
same as species tree 7. Eventually in T, additional points will be labeled along branches based on the
mapping from nodes in the gene trees.

ReconcileTrees(7, T4, , i=1,2,....N)-
Input: species tree T, gene trees T4, Tay, ..., Tay
Output: reconciled tree T
. T<T
2: for all gene trees T,, such that 1 <i < N do
3: M < 0 (the set of maximally internal mapped nodes)
for all leaf nodes k in T,, do
®(k) < g, where g is the genome to which k belongs.
add k to M and set #; = {k} (mapped subtree for k € M).
end for

Nk
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FIG. 2. (A) A species tree T with distances labeled to each branch. (B) Gene tree T,. (C) Gene tree Tp.
(D) Reconciled tree T after T, being merged. (E) Reconciled tree T after both T, and T; being merged. (F) Simplified
version of T, where I, J, K, and H show four duplication events, K is an ancient duplication happened before G.
(G) Augmented gene tree T . (H) Augmented gene tree T}

8:  while M has more than two tree nodes do

9: if u,v € M and u, v and z are connected to an unmapped node x in T,, then
10: MapGeneTreeNode(x)

11: remove u, v and (if necessary) z from M

12: if M is empty then

13: set M to the set consisting of just the root node r and set t, = B

14: else

15: add x to M and set ¢, =1, Ut, U{x}

16: end if

17: end if

18: end while
19: end for
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We now sketch the proof of Theorem 1 as follows. Detailed proof can be found in the Appendix.

Proof. We will show that the algorithm ReconcileTrees produces an isometric reconciliation or detects
if no such reconciliation is possible. First, we claim that at every step in the process, each of the maximally
internal mapped nodes m € M in the current gene tree B = T, is associated with a subtree #,, of mapped
nodes of B that has the following properties

(1) If t,, does not contain the root r then ®(m) lies above ®(y) for all y # m € t,, and d(m,y) =
D(®(m), P(y)), else ®(r) lies above O(y) for all y # r € t,, and d(r, y) = D(P(r), D(y))
(2) All leaves of #,, are mapped to the genome of the species to which they belong

and that ® is the unique mapping with these properties. This is trivially true after the initial step, in which
each of the leaves of B is mapped. We verify that if this is true before a pass through the sequence of
operations in the while loop, then it is still true after that sequence of operations, if the input is not rejected.
Therefore it is true when the processing of B is complete, if the input is not rejected. However, at this
point the set M consists of just the root node r and all nodes of B are included in #,. Thus, every node x in
B will be uniquely mapped to a point ®(x) in T that lies below ®(r) such that d(x,r) = D(P(x), O(r)).
Hence, B will be uniquely isometrically reconciled with T. It follows that if the algorithm ReconcileTrees
terminates without rejecting its input, it produces a unique isometric reconciliation of all its input gene
trees with its input species tree.

We also show that if the procedure MapGeneTreeNode rejects its input then the tree B is not isometrically
reconcilable, it follows that if ReconcileTrees rejects its input then its input is not isometrically reconcilable.
Thus, ReconcileTrees is correct. We finally prove that the time complexity of ReconcileTrees can be
bounded in O(nm), where n is the number of tree nodes in species tree 7 and m is the total number of
tree nodes in all gene trees. This completes the proof. |

Once we have the reconciled tree T and the rooted gene tree T,,, we could easily embed T,, into T
according to the mapping ® for each node. However, for some nodes g in T, we may not have any node
x in the original T,, such that ®(x) = g. This is because in a single gene family T,, we usually do not
have explicit branching nodes for all the combined speciations and duplications that occur for the gene
families in the final T. Therefore, in order to facilitate the gene-order inference in the following sections,
we augment T,, in the following way.

AugmentGeneTree(T, T,;). For each branch (u,v) in T, let f = ®(u) and & = ®(v) in T. For
every node g on the path from f to & in T excluding f and &, we add a node x on branch (u, v) such
that d(u, x) = D(f, g) (and d(x,v) = D(g, h)). Set ®(x) = g. We call the resulting T,, an augmented
gene tree, denoted as T .

Note that the genes added along the branches of each gene tree represent intermediate forms that are
inferred to have existed but do not appear in the original gene tree for that family. Also, the root of an
augmented gene tree T;"l_ does not always have to map to the root of T.

Example. In Figure 2, we originally have a species tree and unrooted gene trees for gene family a
and b. We also have the distance information, as shown in Figure 2A-C. We first reconcile T, and add
duplication nodes H and I to T (Fig. 2D). After T, is merged, duplication nodes J and K are added
(Fig. 2E). Note that based on the distance information, we would know that K corresponds to an ancient
duplication before G. Figure 2F shows a simplified version of T without embedded genes. Figure 2G,H
are the rooted augmented gene trees for both gene families.

Direct ancestor and direct descendant. In an augmented gene tree T} , for every branch (u, v), where
u is the parent of v in the tree, let g = ®(v) and h = ®(u) (based on the result of reconciliation, (g, k)
must be an edge in T, where h preceded g):

(1) We call u the direct ancestor of v, denoted as A,(g[v]) = u.
(2) We call v a direct descendant of u. The direct descendant may not be unique since u could be
duplicated at &, and therefore we denote this as v € Dy (h(u)).
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If a node v in T, has no ancestor, then A,(g[v]) = @. Conversely, if a node u has no descendant in g,
then D, (h[u]) = Q)

Example. In the augmented atom trees from Figure 2G,H, Ag(B[a']) = E[a'], Dc(J[b]) = {C[b'],
C[b’]}, Di(G[p?]) = 0.

2.4. Reconstructing ancestral adjacencies

After obtaining a reconciled tree T and augmented gene trees T,, for all gene families, our goal is
to determine lists of gene orders that closely approximate the genome structure of the target ancestral
genome, . We achieve this in two phases:

(1) For each gene x in o, we determine a set of predecessors for x that gives the minimum number of
predecessor changes for x based on parsimony. We also determine such a set of successors for x. Then
we transform the predecessor and successor relationships in ¢« into potential ancestral adjacencies for
each gene in «.

(2) Based on the predicted ancestral adjacencies, we connect the genes into CARs.

We discuss (1) in this section, leaving (2) to the next section. Our approach for (1) is inspired by Fitch’s
method (Fitch, 1971), which was originally used to infer minimum character changes in a specified tree
topology. For that problem, one is given a phylogenetic tree and a letter for every position in each leaf of
the tree (corresponding to the contents of orthologous sequence sites). The problem is to infer the ancestral
letters (corresponding to internal nodes of the tree), so as to minimize the number of substitutions, i.e.,
differences between the letters at each end of an edge in the tree.

Here, we deal with sequences of genes having orientations, rather than characters of nucleotides or amino
acids, and instead of keeping track of letters at a particular sequence position, we track the genes for both
of the immediately adjacent positions. For example, in Figure 3, the leaves indicate that s(A[a]) = A[b],
s(Bla]) = Blc], s(C[a]) = CI[b], and s(D[a]) = D[c']. Which gene preceding G[a] would give a
minimum number of predecessor changes to explain the data in leaves?

Predecessor set and successor set. For any genome g, we associate with each gene g[x] (including
its reverse complement —g[x]) two sets of signed genes, denoted P(g[x]) and S(g[x]) (P(—g[x]) and
S(—g[x]) for reverse complements), giving potential predecessors and successors of g[x]. If g is a modern
genome, P(g[x]) = {p(g[x])} and S(g[x]) = {s(g[x])} for each g[x]. If x is not in g, then both sets are
empty.

We also allow the direct ancestor and direct descendant operations to be applied to a set of genes, i.e.,
An(P(g[x])) = {An(y) | ¥y € P(g[x])}, and the result is also a set. Dy (P(g[x])) is defined analogously.

The inference procedure for the predecessor and successor of each ancestral gene (and its reverse
complement) in the augmented gene tree consists of two stages. The first stage works in a bottom-up
fashion. The general idea is as follows. For each node x in the augmented gene tree, let g be the genome
containing x and let ¥ and v be its two children in the tree. We compute its predecessor set according to

A:ab,cd Alc]
/E<EB acbd gt}l]
C:c'dc?ab Cl?
\O\D<S|D b d gﬁ
Gla] /EM< g E‘j Gb] /[b]< 2 % G[d) 2 gﬂ
2P BT BT

FIG. 3. This figure shows a reconciled tree for four leaf genomes as well as the augmented gene trees for genes a,
b, ¢, and d. Duplication event H only duplicates c. The comma separates two chromosomes in genomes 4 and C.
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the following rule: If x is a leaf, then P (x) consists of the unique predecessor. Otherwise, P(x) is equal to
the intersection or union of Ag(P(u)) and Agz(P(v)), depending on whether A, (P (1)) and A, (P (v)) are
disjoint or not. Here we need to apply the direct ancestor A operation for each gene in a predecessor set,
because each gene tree may have a different evolutionary history at the point of g. Similarly, we infer the
successor set. The recursive procedure is described in GetPredSuccBottomUp(x). Note that it is possible
that x only has one child. We define P(nil) = @, S(nil) = @, and A;(¥) = 9, then the calculations from
line 5 to 14 still hold when x only has one child in the augmented gene tree.

In the second phase, we propagate the information down the tree so that P(x) and S(x) for every
gene x in the target ancestor o can incorporate outgroup information. It works in a top-down fashion. For
each node x in the augmented gene tree, let w be x’s parent in the tree. We propagate P(w) down the
tree to adjust the original P(x). We also need the direct descendant operation D here. S(x) is adjusted
analogously. The whole procedure is summarized as AdjustPredSuccTopDown(w, x) in recursive form.

GetPredSuccBottomUp(x).
1: if x is non-leaf node then

2:  GetPredSuccBottomUp(u)

3:  GetPredSuccBottomUp(v)

4: g < d(x)

5: if || Ag(P(u)) N Ag(P(v)) ||# O then
6: P(x) &= A (P(n)) NAL(P(v))

7. else

8: P(x) = A (P(n)) UAL(P(v))

9: end if

10: if || A (S(w)) N A (S(v)) ||# O then
11: S(x) < A (Sm)) NALH(S())

12:  else

13: S(x) < Ag(Sm)) UAL(S())

14:  end if

15: end if

AdjustPredSuccTopDown(w, x).
1: if w is non-leaf node then

2 if w is not the root then

3 h < d(w), g & D(x)

4| Ay(P(x) N P(Ay(x)) |# O then

5: P(x) < P(x) N Dg(Ar(P(x)) N P(An(x)))
6: end if

7 A AlS(x) N S(AL(x)) [|# 0 then

8 S(x) <= S(x) N Dg(Ar(S(x)) N S(Ax(x)))
9

: end if
10: AdjustPredSuccTopDown(x, u)
11: AdjustPredSuccTopDown(x, v)
12: end if
13: end if

The time complexity for both procedures is O(mn), where m is the number of nodes in the augmented
gene tree and n is the total number of leaves in the augmented gene tree, because the tree traversal takes
O(m) and there are at most n members in each set, either P or S.

Theorem 2. For any augmented gene tree, GetPredSuccBottomUp and AdjustPredSuccTopDown will
give a set of genes for each node in the tree that are most parsimonious in terms of successor changes
in the entire augmented gene tree. Similarly, it will also give a set of genes for each node that are most
parsimonious in terms of predecessor changes.
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Proof. We first prove that GetPredSuccBottomUp gives a set of genes to node x that are most
parsimonious in terms of successor changes to the descendants of x. Let k(x) denote the minimum
number of successor changes in the subtree rooted at x. We prove the above claim by induction. Let u
and v be the two children of x. Basis: if tree height 1 = 1, then u and v are leaves in the gene tree. If u
and v are the same, then no successor change is needed; k(x) = 0. Otherwise, only 1 change is needed
based on the bottom-up inference; k(x) = 1. Induction: we assume the above claim is correct when the
subtree height is A, then prove it for height & + 1. If the intersection of successor sets for u and v is not
empty, then we can have k(x) = k(u) + k(v) by assigning any gene in the intersection to x. Otherwise,
the optimal k(x) is k(u) + k(v) + 1, by assigning any gene in the union of successor set from u and v.

We then prove that AdjustPredSuccTopDown gives a set of genes that will have the most parsimonious
successor changes from x’s ancestors to x without changing the parsimony scores k for each node. Let
Jj(x) denote the minimum number of successor changes from the root of the augmented gene tree to x. Let
w be the parent node of x. Basis: when path length 2 = 1 from the root to x, i.e. w is the root, if w and
x share the same successors, then no successor change is needed if we assign both w and x a successor
they share; j(x) = 0. Otherwise, only 1 change is needed from any gene of the successor set of w to
any gene of the successor set of x; j(x) = 1. Induction: we assume the above claim is correct when the
path length from root is /4, then prove it for length & + 1. If the intersection of successor sets for w and
x is not empty, then we can have j(x) = j(w) by assigning any gene in the intersection to x. Otherwise,
the optimal j(x) is j(w) + 1. Note that the adjustment performed by the AdjustPredSuccTopDown does
not change the parsimony score k(x), i.e. the final genes in the successor set for x still gives the most
parsimonious successor changes in its subtree. This completes the proof. We can prove in the same way
that the claim is also true for predecessor changes. |

Example. In Figure 3, after running the above algorithm, we will have S(Gla]) = {G[b], G[c]}. We
also will have P(G|c]) = $, etc.

In the above example, it is interesting to note that even though G[c] € S(G[al), G[a] ¢ P(G]c]).

Ancestral adjacency graph. As shown in the previous example, we know that x € S(y) does not
guarantee that x € P(y), and vice versa. However, in order to get the ancestral adjacency, we need
to retain consistent predecessor and successor relationships in the target ancestor. We achieve this by
constructing an ancestral adjacency graph.

We first construct a directed edge set E; such that: E; = {(y,x) | y € P(x)}, for x and its reverse
complement —x in the target ancestor. Here (y, x) denotes an arc directed from y, a predecessor of x, to
x. We also construct directed edge set E, such that: E; = {(x,y) | y € S(x)}. Here (x, y) denotes an arc
directed from x to y, a successor of x.

We then construct a digraph G = (V, E), where:

VG)={x,—x|x€a,x#$}
E(G) ={E| N Ey}

Node set V(G) includes all the genes and their reverse complements, i.e., nodes exist in gene pairs as x
and —x in the target ancestor «. Therefore, |V| = 2N, where N indicates the total number of genes in
the target ancestor. The intersection of E| and E, will eliminate all the edges where one of the endpoints
is $ because there are no predecessor and successor sets for $. Since there is no $ in G, the implication
for the following process of finding CARs is that when a gene can be followed most parsimoniously by
either certain other genes or $, we will favor the non-$ to reduce the number of CARs. (Similarly for
predecessors.)

Now, we have the ancestral adjacency graph G indicating consistent predecessor and successor relation-
ships that are supported by T, all T} , and the leaf genomes.

2.5. From ancestral adjacency to ancestral gene order

The edges of the ancestral adjacency graph G indicate consistent predecessor and successor relationships.
However, they do not necessarily indicate a unique adjacency relationship for a particular gene. Three
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FIG. 4. Three potential ambiguous cases in the ancestral adjacency graph G.

potential ambiguous cases can occur in G, as depicted for node i in Figure 4. In (A), i has several
incoming edges; in (B), i has several outgoing edges; in (C), i forms a cycle with j, where each node j
satisfies indegree(j) = outdegree(j) = 1. (If a more complex cycle exists, then some node falls in either
case (A) or case (B)).

Problem. In our directed cyclic graph G(V, E), each edge (i, j) has a weight w;;. If no weights are
given, we set every w;; to 1. Our objective is to find a set of vertex-disjoint directed paths that covers all
the nodes in G and at the same time maximizes the sum of weights in the resulting paths. We call this the
maximum weighted path cover problem (MWPCP). We also allow degenerate paths consisting of a node
without edges. We call each resulting path a CAR.

If none of the ambiguous cases (Fig. 4) are present, then G itself forms the set of paths that covers
all the nodes. In this case, the CARs can be directly defined from this graph as discussed below. When
ambiguity exists, we need to resolve it and choose appropriate directed edges to form CARs.

The case where all w;; are 1 is equivalent to the minimum path cover problem (MPCP), i.e., finding
the minimum number of vertex-disjoint paths covering all the nodes in the digraph. In that case, the result
from MPCP is also the result for MWPCP in a unit-edge-weight graph, because the minimum number
of paths implies the maximum number of edges. The MPCP is NP-hard (Boesch and Gimpel, 1977).
When antiparallel edges are not allowed, i.e., directed edges (i, j) and (j,i) do not co-exist, there are
approximation algorithms for MWPCP that have been studied (Moran et al., 1990).

We use a greedy approach to achieve an approximate solution when antiparallel edges are allowed, given
in the algorithm of FindCARs below. We first sort the edges by weight. Then the greedy approach always
tries to add the heaviest edge to the resulting path set.

FindCARs(G).
Input: ancestral adjacency graph G
Output: contiguous ancestral regions in G
1: sort edges by weight in descending order.

2: create a new graph C, V(C) < V(G) and E(C) < ¢

3: for all edge (i, j) € E(G) do

4 h()<iand q(i) i

s h(j) < j and g(j) < j

6: end for

7: for all available (i, j) € E(G), in order of edge weight do

8:  if outdegree(i) = 0 and indegree(j) = 0 and k(i) # h(j) then
9: add edge (i, j) and (—j,—i) to E(C)

10: update outdegree(i) and indegree(j) in C

11: update outdegree(—;) and indegree(—i) in C

12: h(q(j)) < 1), q(q(D)) <= q(j). q(q(j)) <= q()

13: h(q(=i)) < h(=)). q(q(=i)) <= q(=)). q(q(=))) <= q(=i)
14:  end if

15: end for
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Note that 7 and ¢ in the above algorithm are two auxiliary variables that are used to avoid creating
cycles. h(i) indicates the path that node i is in and ¢ (i) is the other endpoint of the path. The requirement
on line 8 (h(i) # h(j)) guarantees that there will be no cycle in the result path cover. The remaining paths
in C correspond to the desired CARs.

When adding edges into an existing path, particular care is needed to avoid putting j and —; in the
same CAR. We also add both (i, j) and its symmetric version, (—j, —i). For each path found by this
approach, a symmetric path in the opposite orientation is also found, since we have nodes for both i and
—i. The two paths correspond to the same CAR, and eventually we choose one of them.

Letting G have n edges, the time complexity of FindCARs is O(nlogn) because the sorting takes
O(nlogn), the initialization from lines 3-6 takes O(n), and lines 7-15 take O(n).

Theorem 3. FindCARs is a factor-3 approximation algorithm for MWPCP.

Proof. Line 8 in FindCARs guarantees that the result cover is a path cover of G. Let M* be the
optimal path cover for MWPCP and let FindCARs generate M. We consider each arc (b,c) in M*. If
(b, c) is not in M, there are three possible cases:

(1) Based on the greedy approach, there is at least one of (b,e) or (f,c) that is in M (Fig. 5A) such
that wp. < max(wp., w ). But since M™* is optimal, we have wpe > Wpe + Wre > max(Wpe, W se).
Therefore, this case happens only when wj, = max(wpe, w f) and min(wp., w s.) = 0. In other words,
this does not change the total weight between M* and M.

(2) There are (e, b) and (c, f) in M and there is a path from ¢ to b going through e and f in M with
additional two possible edges (a, b) and (¢, d) in M™* but not in M (Fig. 5B). Note that e and f could
be the same node. The worst case for this situation is that edges (e, b) and (c, f) can be replaced by
edges (a,b), (b, c), (c,d) to have a better cover. In this case, based on the greedy approach, we have
Wap + Wpe + Wed < Wep + Wep + Min(Wep, Wer) = 2min(Wep, Wer) + max(Wep, Wer). Since M* is
optimal, we also have wqp + Wpe + Wea = Wep + Wep = Min(Wep, Wer) + Max(Wep, Wer), otherwise
we would get the contradictory result such that we could have a cover better than M* by removing
(a,b), (b,c), and (c,d) in M* and adding the path from ¢ to b going through e and f. Therefore,
Wep + Wer = %(wab + Wpe + wcd)-

(3) As shown in Figure 5C, this case is similar to (2), but there is only (¢, b) in M, i.e., there is a pair
of antiparallel edges. For the worst case, similar to the deduction in (2), we can bound the difference
such that wep > $(Wap + Whe + Wea).

Therefore, in the worse case, every edge (c,b) in M produced by FindCARs can be replaced by three
edges (a,b), (b,c), and (c,d) in M* to get a better cover. Hence, Z(,’j)eM w;j > %Z(i,j)EM* w;;. N

Finally, we describe a simple approach to determine the edge weights w;;. For a directed edge (7, j),
if outdegree(i) = 1 and indegree(j) = 1, we set w;; = 1. Otherwise, the corresponding weight w;; =
wq (i, j) (o is target ancestor) is determined recursively.

@ ® ©-©@

(©)

FIG. 5. Three possible cases when the arc (b,c) is in the optimal solution but not in the CARs produced by
FindCARs.
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Before computing we(i, j), we modify the reconciled tree T by rerooting it if « is not the root of T.
We denote the rerooted binary tree as T’. Then we apply the following rule:

D(O{, t) . wgﬂ(lv.]) + D(“a(ﬂ) * wt(lv.])
D(ar,7) + D(«, ¢)

we (i, j) =

where i = a and j = a, D(e, 7) and D(a, ¢) are the branch lengths from « to the first left and first
right non-duplication node in T'; w. (7, j) and w, (i, j) are the edge weights on t and ¢, respectively. On
a leaf genome f of T, if there is an adjacency (s, ) present in f such that s belongs to gene family a,
and ¢ belongs to gene family a,, we set wy(i, j) = 1, otherwise wy (i, j) = 0. Note that if an edge (i, j)
is involved in ambiguous case (a) or (b), then w;; < 1. The underlying assumption of the above equation
is that rearrangement is more likely to happen on longer branches.

2.6. The summary of the DUPCAR algorithm

In outline, the whole DUPCAR algorithm can be described as follows, where « is the target ancestor.

DUPCAR(G, T, o, Tg; ,1<i<N)-
Input: modern genomes G, species tree T, target ancestor «, gene trees T,
Output: contiguous ancestral regions in o
1: ReconcileTrees(7, T,,)
2: initialize P(x) and S(x) for each gene x in G.
3: for all gene families a; do
4. GetPredSuccBottomUp(T;.)
5: AdjustPredSuccTopDown(T; )
6: end for
7: build the ancestral adjacency graph G for «.
8: FindCARs(G)

3. RESULTS

3.1. Simulations

We used extensive simulations to validate our analysis. The simulator starts with a hypothetical “ancestor”
genome, which evolves into the extant species through speciation and operations including inversion,
translocation, fusion, fission, insertion, deletion, and duplication. When an operation is applied, breakpoints
are chosen uniformly at random from the set of used or unused breakpoints on that chromosome, according
to the breakpoint reuse ratio.

We tuned the weights of these operations in order to generate simulated data that closely resemble placen-
tal mammalian genomes. We simulated datasets using the phylogenetic tree: ( (((human, chimp) ,rhesus),
(mouse,rat)) ,dog). The ancestor genome was assigned 2,000 genes. After evolution is performed, we
collapse genes where order and orientation are conserved across all species. For instance, if genes a, b, and
¢ appear in every genome with order (a b c), then we treat these three genes as one. This strategy allows
us to evaluate only the varied adjacencies, since the unbroken adjacencies will be found by essentially any
procedure.

The simulator’s parameters or weights of the large-scale operations were adjusted to guarantee that the
extant species had approximately 1000 genes after collapsing. Moreover, we arranged that approximately
10% of the genes are in multi-gene families.

We generated synthetic data in two categories: (1) data without insertion and deletion of genes and
(2) data with insertion and deletion of genes, where the insertion and deletion ratio is 1:2. For each
category, we simulated data by varying the breakpoint reuse ratio (0%, 10%, 20%, 30%, 40%, and 50%),
with 100 datasets per parameter set. The breakpoint reuse ratio is defined as the percentage of all ancestral
adjacencies that were changed more than once during the simulated evolution.
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We ran our DUPCAR reconstruction program for inferring CARs on each dataset (average running time
of 1.5 min) and compared the predicted adjacencies with the real (simulated) ones. We calculate the error
rate, S, of adjacencies:

_[RUP|—|RN P

S = 100%
RUP| 7

where R is the set of adjacencies in the real genome, P is the adjacencies in the predicted genome, and
| X| denotes the size of the set X. S represents the percentage of adjacencies where the real genome and
the predicted genome disagree.
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FIG. 6. The error rate, S (defined in the main text), for the reconstruction of each ancestral genome when we vary
the breakpoint reuse ratio. The light gray bars represent data without insertion and deletion of genes, while darker
bars represent data with indels. 95% confident intervals for the error rate of every parameter set are also shown. (H-D,
human-dog ancestor; H-M, human-mouse ancestor; H-Q, human-rhesus ancestor; H-C, human-chimp ancestor; M-R,
mouse-rat ancestor.)
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We compared every ancestral genome, including the human-dog ancestor, which has no outgroup
information. The results are summarized in Figure 6. For every ancestor, the error rate increases when the
breakpoint reuse ratio increases. Also, the error rate for category (1) (without indels) is always less than
for category (2) (with indels). In the first picture in Figure 6, when we do not allow breakpoint reuse (i.e.
each ancestral adjacency has been broken at most once), S is 0 for category (1) for each ancestor except
the human-dog ancestor, indicating 100% accuracy. We could not attain 100% accuracy for the human-dog
ancestor without an outgroup to resolve ambiguities.

The insertions and deletions hurt the accuracy, mostly because we only infer the presence or absence of
a gene in an ancestral genome directly from the gene trees that are inferred based on what we observe from
the leaves. For example, if gene family x is present in both primates and rodents but absent in dog, we will
simply root the gene tree under the human-dog ancestor, and will never reconstruct x in the human-dog
ancestor. However, it is possible that gene x was deleted on the dog lineage.

3.2. Application to mammalian chromosome X reconstruction

We compared genomic sequence of the X chromosomes of four species (human, mouse, rat, and dog),
partitioning the chromosome into 201 conserved segments that haven’t been disrupted by rearrangements
or duplications using blastz pairwise alignments and self-alignments (Schwartz et al., 2003), covering
over 85% of the human genome. The species tree is (((hg18, (mm8,rn4)) ,canFam4), where leaf names
indicate the assemblies we used. For each family, multiple alignments are created and a distance matrix
is calculated using the Jukes-Cantor model. A gene tree, or more precisely a conserved segment tree, is
inferred using a modified version of the Neighbor-Joining algorithm, which utilizes the genomic context
of the genes in addition to evolutionary distances in the tree-building process. Duplications and losses
are identified in the gene trees via reconciliation with the species tree. All of the duplication events are
combined into a single reconciled tree, and augmented gene trees are generated accordingly.

We applied our new algorithm to the chromosome X data and successfully reconstructed the bore-
oeutherian chromosome X into two CARs. The two CARs are separated because of two duplications that
happened in the same region, confusing the adjacency-inference procedure. Other than that, the result is
quite consistent with previous reconstructions, in the sense that human chromosome X has experienced no
large-scale rearrangements since the boreoeutherian ancestor, except a few in-place inversions. In the results
of Murphy et al. (2005), which were computed with MGR, there was no rearrangement between human
chromosome X and the boreoeutherian chromosome X. In Ma et al. (2006), there were four predicted
inversions in human. With our current data and the new algorithm, we found five human inversions. Our
two reconstructions agree on the three inversions shown in Table 1.

3.3. Application to a ciliate genome

It has been shown that the genome of the unicellular eukaryote Paramecium tetraurelia, a ciliate with
roughly 40,000 genes, resulted from at least three whole-genome duplication (WGD) events, with additional

TABLE 1. COMPARISON BETWEEN THE RECONSTRUCTED boreoeutherian CHRX
USING DUPCAR AND DATA FROM MA ET AL. (2006)

No. of
Coverage duplication
No. of segs of hgl8 events Human rearrangements
Ma et al. (2006) 90 91% 0 chrX:16164900-16249687

chrX:73544925-73628542
chrX:126526019-126592597
chrX:139946312-140388068
DUPCAR 201 87% 26 chrX:16166900-16235111
chrX:73547455-73672237
chrX:108284817-108330640
chrX:109709282-109765848
chrX:139961357-140378962
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TABLE 2. THE NUMBER OF CARS RECONSTRUCTED IN THREE TARGET ANCESTRAL GENOMES

anc genes with Gene
Target Genes we paralog from families Predicted anc blocks in
ancestor included Aury et al. (2006) we used CARs Aury et al. (2006)
Old WGD 2,981 1,530 559 125 (75) 43
Intermediary WGD 11,620 7,996 3,118 266 (126) 81
Recent WGD 25,708 24,052 9,951 442 (180) 131

In the column of predicted CARs, the number of CARs with more than two genes is given in parentheses.

rearrangement operations (Aury et al., 2006). Those authors reconstructed the genome architectures of four
ancestral genomes, corresponding to the most recent WGD, the intermediary WGD, the old WGD, and
the ancient WGD. They used Best Reciprocal Hits to construct a paralogon, which is a pair of paralogous
blocks that could be recognized as derived from a common ancestral region. Then paralogons were merged
into single ancestral blocks, and the process iterated until reaching the ancient WGD. However, they did
not intend to determine the gene orders in each ancestral block; when a paralogon was constructed, the
detailed order and orientation of genes inside the block were ignored.

The 39,642 genes form 22,635 gene families (including 11,740 single-gene families), spread over 676
scaffolds in the current genome assembly. We tested our algorithm by reconstructing all WGDs except the
ancient WGD. We used the gene order in modern Paramecium tetraurelia and the gene trees from Aury
et al. (2006). The reconciled tree is special in this case, which contains one leaf genome (the modern one),
as well as ancestral nodes representing duplication events. We built the augmented gene trees accordingly.

Many genes do not have a paralog in the paralogons for a particular ancestral genome. If we were to
include all the gene families in the reconstruction, the input data would be very noisy and the resulting
CARs would be too fragmented, due to the fact that we only have one leaf genome. Therefore, when
reconstructing CARs in a certain target genome, we did some preprocessing to retain only genes that
have paralogs derived from ancient duplications. Additional genes were added if their paralogs (from this
duplication) were retained in the leaf genome.

For all three genomes, the number of CARs reconstructed by us is greater than the number of ancestral
blocks reported in Aury et al. (2006) using the paralogon method (Table 2). There are two reasons for
this: (1) Aury et al. (2006) ignored gene orders, whereas we take order and orientation into account when
inferring CARs. (2) We used more genes in the reconstruction than just the ancestral genes with paralogs,
which were essentially used as anchors when building paralogons.

In general, our prediction is a refinement of the result of Aury et al. (2006). In Figure 7, we show
the mapping from our CARs (126 CARs containing more than two genes) for the intermediary WGD to
the ancestral blocks constructed using the paralogon method. Most of them follow the pattern that several
CARs correspond to one ancestral block of Aury et al. (2006), indicating an agreement in regional mapping
if we ignore the gene orders. The mappings of reconstructions for the old WGD and the recent WGD have
similar results (data not shown). Since Aury et al. did not reconstruct the ancestral gene adjacencies, we
could not compare our prediction with theirs in detail.

Recent approaches to the genome halving problem (Seoighe and Wolfe, 1998; El-Mabrouk and Sankoff,
2003; Alekseyev and Pevzner, 2007; Zheng et al., 2006) might be particularly useful and interesting if
applied to this ciliate genome. As more ciliate genomes become available, we plan to further investigate
the changes of gene orders between different WGDs, using outgroup information from the new genomes
to identify additional adjacencies, which will help determine which methods of reconstructing ancestral
architecture are best, and may shed more light on Paramecium evolution.

4. DISCUSSION

In this paper, we extend the method in Ma et al. (2006) and propose an algorithm, called DUPCAR, to
reconstruct ancestral gene orders with duplications. Most previous gene-order reconstruction methods have
relied on a particular distance metric with restricted set of operations, for example, reversal distance without
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(e

FIG.7. This figure shows the mapping the CARs of the intermediary WGD predicted using DUPCAR to the ancestral
blocks from Aury et al. (2006). Numbers in circles correspond to the ancestral block ID predicted by Aury et al..
Numbers in gray rectangles are the CAR ID.

indels and duplications (Bourque and Pevzner, 2002), breakpoint distance without indels and duplications
(Moret et al., 2001), reversal distance with duplications but without indels and translocations (El-Mabrouk,
2002). Our approach avoids to use reversal distance or breakpoint distance and relies on simple parsimony,
making it easier to extend to handle different operations.

Because the critical procedure in DUPCAR is based on parsimony, the method retains a relatively small
number of possibilities that are equally parsimonious in the ancestor. For the purpose of obtaining fewer
CARs, a more reliable probabilistic rearrangement and duplication model might be more appropriate to
reconstruct ancestral adjacencies.

We have a simplifying assumption in this paper that all the distances in the gene trees are perfect, which
makes it easy to reconcile gene trees to the species tree. In reality, we usually have approximate distances.
In our chromosome X experiment, since our resolution was relatively low, the gene trees were built with
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strong evidence of genomic distance and context. However, it remains a challenge for high-resolution
reconstructions. Therefore, a more robust gene tree reconstruction and reconciliation method is needed
(Chen et al., 2000; Bansal et al., 2007; Rasmussen and Kellis, 2007). This is a key area for further work.

Our future work will also focus on incorporating the ability to reconstruct evolutionary history with
large-scale operations, instead of just figuring out the gene orders. Although solving the median problem is
algorithmically challenging, it is completely feasible to provide a plausible history of rearrangements and
duplications on each branch in the phylogeny when both the descendant genome and the ancestor genome
have been predicted.

Our simulation of large-scale mammalian genome evolution looks promising. However, our reconstruc-
tion of the mammalian chromosome X is in relatively low resolution. In highly rearranged and duplicated
regions, especially tandem-duplication-rich regions, special algorithms to figure out recent duplications
first would be useful (Zhang et al., 2008).

A number of challenges remain before the genome structure of mammalian ancestors can be accurately
predicted in terms of rearrangements and duplications, among which the most difficult would be partitioning
the genomes in finer resolution and accurately dating the duplication events with noisy data.

5. APPENDIX

5.1. The proof of Theorem 1

Given a set T,,,..., T,y of unrooted gene trees with designated leaf species and a species tree T,
the isometric reconciliation of T,,, ..., T,y with T is unique and there is an efficient procedure to either
construct it or detect that no such isometric reconciliation exists.

Proof. We will show that the algorithm ReconcileTrees produces an isometric reconciliation or detects
if no such reconciliation is possible.
(A) We prove that if the algorithm accepts the tree then the tree is reconcilable and the reconciliation is
unique.

First, we prove that at every step in the process, each of the maximally internal mapped nodes m € M
in the current gene tree B = T, is associated with a subtree 7,, (constructed in ReconcileTrees) of mapped
nodes of B that has the following properties:

(1) If ¢,, does not contain the root r then ®(m) lies above ®(y) for all y # m € t,, and d(m,y) =
D(®(m), ®(y)). Else, if t,, contains the root r then ®(r) lies above ®(y) for all y # r € ¢, and
d(r,y) = D(®@(r), ®(»)).

(2) All leaves of #,, are mapped to the genome of the species to which they belong

and that ® is the unique mapping with these properties.

We prove this by structural induction. It is clear that the above claim is true after the initial step, in
which each of the leaves of B is mapped. Let m be an unmapped internal node of the gene tree, with
branches to nodes u, v, and z. Suppose the mappings of u and v to the species tree have already been
determined and we have subtrees ¢, and ¢, that satisfy the above claim.

We first consider the case that both ¢, and ¢, do not contain root r. If the tree has not been rooted
after mapping m, then ®(m) will be mapped to a point in 7 that is above ®(u) and ®(v). Based on the
induction, ®(m) lies above ®(y) forall y €1, and y € ¢t,. Hence, ®(m) lies above ®(y) for all y € ,.
Since we have

D(®(m), ®(u)) = d(m.u) and D(®(m), D(v)) = d(m, v),
therefore, for all y € #,,, we have
D(®(m), ®(y)) = D(®(m), ®(u)) + D(P(u), D(y)) = d(m,u) +d(u,y) =d(m,y)
Similarly, for all y € #,, we have

D(®(m), ®(y)) = D(®(m), ®(v)) + D(®(v), ®(y)) = d(m.,v) +d(v,y) = d(m, y)
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When the gene tree can be rooted after mapping m using u and v, without loss of generality, suppose
r is on the path from m to v. Then ®(r) will be mapped to a point in 7 that is above ®(m) and P(v).
Based on the induction, ®(r) lies above ®(y) for all y € ¢,. Forall y € 1,

D(®(r), ®(y)) = D(®(r), P(u)) + D(®u), ®(y)) = d(r,m) +d(m,u) +d(u,y) = d(r,y)
For for all y € t,,
D(®(r), ®(y)) = D(@(r), P(v)) + D(®(v), (y)) = d(m,v) —d(m,r) +d(v,y) = d(r,y)

We then consider the case that one of 7, and ¢, contains root r. Without loss of generality, suppose t,
contains the root r. After the mapping of m, ®(m) will be mapped to a point on the path from ®(v) to
®(u) such that ®(m) lies under ®(v) and ®(u) lies under ®(m). Based on the induction, ®(r) lies above
®(m) and O(y) forall y € 1, and y € t,. Hence, ®(r) lies above ®(y) for all y € t,. Again, based on
MapGeneTreeNode, we have

D(®(m), ®(u)) = d(m.u) and D(®(m), ®(v)) = d(m.v)
Therefore,
D(®(r), ®(m)) = D(®(r). ®(v)) + D(®(v). D(m)) = d(r.v) + d(v.m) = d(r.m)
Also, for all y in the original 7,
D(®(r). ®(y)) = D(®(r). D(v)) + D(®(v). D(m)) + D(D(m). D(w)) + D(D(w), B(y))
=d(r,v) +dw,m)+dm,u) +du,y) =d(r,y)

Finally we consider the case where ®(z) has also been determined before we map m. There are two
possible situations where (i) either #,, or ¢z, contain the root and (ii) both #,, and ¢, do not contain the root
at this point. We can use the similar logic above to show that ®(r) lies above ®(y) for all y € ¢, and
y €t;, and that for all y in #, and all y in ¢,

D(®(r), ©(y)) = d(r. y).

Since the above properties (1) and (2) hold at every step in the process, they also hold when the
processing of B is complete, if the input is not rejected. However, at this point the set M consists of
just the root node r and all nodes of B are included in #.. Thus, every node x in B will be uniquely
mapped to a point ®(x) in T that lies below ®(r) such that d(x,r) = D(P(x), P(r)). Hence, B will
be uniquely isometrically reconciled with 7. It follows that if the algorithm ReconcileTrees terminates
without rejecting its input, it produces an isometric reconciliation of all its input gene trees with its input
species tree.

(B) We prove that if the algorithm rejects the gene tree then the gene tree is not reconcilable.

We now verify that if the above procedure rejects B, then B is not reconcilable. In the algorithm
MapGeneTreeNode, we use node u and v in the gene tree B to map the unmapped node m. From the
above proof, we know that subtrees #, and #, have been uniquely mapped to the 7.

In step (5) and step (7)(a) in MapGeneTreeNode, if one tries to root the gene tree B again when B
is already rooted when mapping m, then B is certainly not reconcilable because all the nodes that have
already been mapped to T are uniquely mapped based on the proof in (A).

We then consider the case in step (1) in MapGeneTreeNode. Because a successful reconciliation maps
the nodes of the gene tree to the nodes and edges of the species tree, there will be no shorter path between
two mapped nodes in the gene tree than the distance between the two original nodes in the species tree.
d{ and d, are the distances from ®(u) and ®(v) to their last common ancestor A in 7. Hence d| + d;
will be the distance from ®(u) to ®(v) in T. Also, d; + d; is the distance of the shortest path from u to
v in the gene tree. Therefore, we must have d, + d, > d| + d;. In step (1), if d\ + d» < d| + dj, then
there is no possible way to map u and v to 7' that can achieve D(®(u), ®(v)) = d(u, v). Therefore B is
not reconcilable. Step (b)(ii) is proved similarly.
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For step (b)(iii), i.e. ¢ = 0 and ®(m) = A, since 1, t,, and ¢, all have been uniquely reconciled based
on part (A), the only way to map ®(m) is to map to A such that there is a three way split of the root of
the reconciled gene tree with three descendant subtrees, t,, t,, and 7,. Hence, B is not reconcilable.

Therefore, in ReconcileTrees, if the procedure MapGeneTreeNode rejects its input then the tree B is
not isometrically reconcilable. It follows that if ReconcileTrees rejects its input then it is not isometrically
reconcilable. Combined with part (A), this establishes that the ReconcileTrees algorithm is correct.

(C) We prove that the algorithm runs in polynomial time.

For each node in a gene tree, the running time of MapGeneTreeNode depends on the procedure of
finding the last common ancestor between two points on branches in 7. The crude (non-amortized) bound
on the running time for this procedure is O(n), where n is the total number of tree nodes in species tree
T. Therefore, the overall computational complexity of ReconcileTrees can be bounded in O(nm), where
m represents the total number of tree nodes in all gene trees. |
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