
Logic Integer Programming
Models for Signaling Networks

Utz-Uwe Haus∗ Kathrin Niermann∗ Klaus Truemper]

Robert Weismantel∗

Abstract

We propose a static and a dynamic approach to model biological signaling networks, and
show how each can be used to answer relevant biological questions. For this we use the two
different mathematical tools of Propositional Logic and Integer Programming. The power of
discrete mathematics for handling qualitative as well as quantitative data has so far not been
exploited in Molecular Biology, which is mostly driven by experimental research, relying on
first-order or statistical models. The arising logic statements and integer programs are analyzed
and can be solved with standard software. For a restricted class of problems the logic models
reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic
model enables enumeration of possible time resolutions in poly-logarithmic time. Computa-
tional experiments are included.

Key Words: biological signaling networks, modeling, integer programming, satisfiability,
monotone boolean functions

1 Introduction
Cellular decisions are determined by highly complex molecular interactions. In some biological
systems like Saccharomyces or E. coli, detailed measurements of the interacting molecules, includ-
ing reaction kinetics, have successfully been performed, allowing the construction of quantitative
models (Feist et al., 2007). In many other systems such extensive measurements are not available,
because of practical experimental restrictions or ethical constraints. However, in these cases, there
is often still a sizable amount of qualitative information available, but a lack of suitable predictive
modeling tools.

We focus here on interactions in form of signal transduction processes. For such a process we
assume that a set of molecules that are important for the biological unit is known. The biological
unit reacts to external signals or environmental challenges like stimulation or infection. Typically,

∗Institut für Mathematische Optimierung, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz
2, D-39106 Magdeburg, Germany, phone: +49 391 6718646, fax: +49 391 6711171, e-mail:
{haus,niermann,weismantel}@imo.math.uni-magdeburg.de

]Department of Computer Science, University of Texas at Dallas, Richardson, Texas 75080, USA, phone: +1 972
883-2712, email:truemper@utdallas.edu

1

ar
X

iv
:0

80
8.

38
70

v1
  [

q-
bi

o.
Q

M
] 

 2
8 

A
ug

 2
00

8



the molecules may be subdivided into input components (e.g. receptors), intermediate components
and output components (e.g. transcription factors): When an external signal arrives, this signal is
processed through the entire unit by first influencing a subset of the input components. Activation
state or presence/absence information is propagated through intermediate nodes towards some of
the output molecules. Based on the assumption that we know the “local” mechanism of activa-
tion, it is our goal to predict the global behavior of the system, identifying the underlying network
structure. For our purposes ‘activation’ can mean any interaction that can be explained biologi-
cally: A protein may be considered activated after phosphorylation, Ca++ flux may be detected, or
a component may change its location within the biological unit. Similarly, ‘biological unit’ need
not be restricted to a single cell or compartment, but any collection of components that are to be
considered.

Subsequently we propose a logic and an integer programming model to analyze the static be-
havior of signaling networks. With both approaches one is able to verify the biological modeling,
find potential failure modes and determine suitable intervention strategies. But some phenomena
in biological units like time delays and (negative) feedback loops can not be modeled in this static
fashion. Thus we focus on the dynamics of signaling networks in the second part. We extend the
previous models so that activations can be modeled as occurring at different time points or with
different signaling speed. In this section we present a generic framework for computations with
the dynamic model which can use solvers specific to each of the modeling techniques, logic and
integer programming, as oracles. This ability requires a basic understanding of the transformation
from satisfiability systems to integer programming models and vice versa. Therefore we discuss
both sides in the static as well as in the dynamic context hand in hand. The last section provides
computational tests showing the appropriateness of our techniques.

2



2 Modeling Logical Interactions
The simplest model of signaling processes is to collect local data in the form of logical formulas,
that can be written down in propositional logic (Saez-Rodriguez et al., 2007): Introduce logical
variables for each component under consideration, and write down implication formulas for exper-
imentally proven knowledge statements like “MEK activates ERK” as

MEK→ ERK

and “In the absence of (activated) pten and ship1 we find that pi3k generates (active) pip3” as

¬pten ∧ ¬ship1 ∧ pi3k→ pip3.

Let the formulas be denoted as S i with i ∈ {1, . . . , s}. We can then identify the formula S =∧s
i=1 S i with the model of the biological unit considered: All logical statements S i should be valid

at the same time to model the global behavior of the unit. We will, as usual, use A → B as
abbreviation of (¬A) ∨ B, and A ↔ B instead of (A → B) ∧ (B → A). For the reader unfamiliar
with the formalism of propositional logic we refer to (Büning and Lettmann, 1999).

We will henceforth assume that all implications in the set S i are given in OR-form
∨

j∈LA
i

A j →∨
j∈LB

i
B j for literals A j, B j. Here, LA

i is the set of literals appearing on the left in formula i. We will
also require that the set S has been extended with reverse implications by first aggregating formulas
with the same right-hand-side, and then adding the reverse implication. Thus, for each set of
literals R =

{
B j| j ∈ LB

i for some i ∈ {1, . . . , s}
}

appearing on the right-hand-side of the implications

indexed by I =
{
i|S i =

(∨
j∈LA

i
A j →

∨
r∈R r

)}
, we also find the implication

∨
i∈I

∨
j∈LA

i
A j ←

∨
r∈R r

in S . This enforces that every activation must have a ‘cause’ within the given model.
The question whether there exists a pattern of activations satisfying all formulas of S is an

instance of the satisfiability (SAT) problem (Truemper, 2004). In general, this problem is to ask for
a truth assignment such that the logical formula in CNF form is True:

Definition 1 (CNF, truth assignment, satisfiable).

1. A clause α is a disjunction of literals, i.e. α = A1 ∨ . . . ∨ An with literals Ai.

2. A formula α is in Conjunctive Normal Form (CNF) if and only if α is a conjunction of
clauses.

3. A formula α is in k-Conjunctive Normal Form (k-CNF) if and only if α is a conjunction of
k-clauses, i.e. every clause consists of at most k literals.

4. A truth assignment Γ of a propositional formula α is defined by

Γ :
{
α
∣∣∣α is a propositional formula

}
→ {0, 1} .

It can be calculated according to three rules:

(i) Γ(¬α) := 1, iff Γ(α) = 0

(ii) Γ(α ∨ β) := 1, iff Γ(α) = 1 or Γ(β) = 1

(iii) Γ(α ∧ β) := 1, iff Γ(α) = 1 and Γ(β) = 1

3



5. A propositional formula α is satisfiable if and only if there exists a truth assignment Γ, so
that Γ(α) = 1.

Definition 2. A model m of a CNF formula C is a satisfying truth assignment of C. The set of all
models of C are denoted by models(C). We denote that m assigns 1 (0) to variable x by m(x) = 1
(m(x) = 0). If m(x) = 1 implies m∗(x) = 1 for two models m and m∗, we say that m ≤ m∗. If neither
m ≤ m∗ nor m ≥ m∗ is true, the two models are incomparable. We call a model maximal (minimal)
if there is no model m∗ such that m < m∗ (m > m∗). We denote the set of all maximal (minimal)
models of C by maximal(C) (minimal(C)).

Problem 1 (SAT). Given a CNF (3-CNF) formula C, the SAT (3-SAT) problem is to decide if C is
satisfiable and, if so, to return a possible model.

In the setting of SAT problems we can also answer the question whether, given a partial set of
activations, there exists a solution for the entire formula S , by fixing some logical variables in S
to the prescribed values and solving the SAT problem for the remaining formula S ′. We are thus
prepared to introduce the signaling network satisfiability problem (IFFSAT) as:

Problem 2 (IFFSAT). Let
S =

{
S i =

∨
j∈LA

i
A j ↔

∨
j∈LB

i
B j

}
be a set of s = |S | equivalence formulas over the literal set L, and L0, L1 ⊆ L two sets of variables
to be fixed. An instance of the IFFSAT problem is of the form

s∧
i=1

S i ∧
∧
x∈L0

(¬x) ∧
∧
x∈L1

x. (IFFSAT)

Much research has been done to find effective solution algorithms for subclasses of
SAT (Truemper, 2004). There is, however, no algorithm that can efficiently (Garey and Johnson,
1979) check satisfiability for arbitrary propositional formulas, as we have to consider for this ap-
plication:

Lemma 1. The satisfiability problem for problems of the form (IFFSAT) is equivalent to 3-SAT,
hence NP-complete.

Proof. We only need to show that 3-SAT instances can be written in IFFSAT form. Using ≈ to
designate logical equivalence this can be seen as follows:∧

j∈I

x j
1 ∨ x j

2 ∨ x j
3

≈
∧
j∈I

[
(x j

1 ∨ x j
2 ↔ u j

1) ∧ (u j
1 ∨ x j

3)
]

≈
∧
j∈I

(x j
1 ∨ x j

2 ↔ u j
1) ∧

∧
j∈I

(u j
1 ∨ x j

3 ↔ u j
2) ∧

∧
j∈I

u j
2

This is an instance of IFFSAT form in which at most 2 |I| literals and 2 |I| propositional formulas
were added. �

4



H

A B C

ED

F

G

A ∧ B↔ D
C ↔ E

¬D ∨ E ↔ F
F ↔ G
¬G ↔ D

G ↔ H

Figure 1: A small signaling network from Example 1. The dashed lines denote inhibition while
the black node means a logic and.

As already known to Dantzig (Dantzig, 1963), SAT problems can be formulated as integer
programs, i.e. feasibility or optimization problems over linear systems of inequalities, where the
solutions are required to be integral. For an overview of this field see (Bertsimas and Weismantel,
2005). For the IFFSAT problem the associated integer program (IP) is constructed by introducing
|L| binary variables xl and their complements x̄l, and translating each IFF formula into the system∑

j∈LA
i

xA j − xBk ≥ 0 for all S i ∈ S , k ∈ LB
i

−xA j +
∑

k∈LB
i

xBk ≥ 0 for all S i ∈ S , j ∈ LA
i

xl + x̄l = 1 l ∈ L
xp = 1, xq = 0 p ∈ L1, q ∈ L0

(1)

where we will assume that for non-negated literals A ∈ L the variable xA, and for negated literals
¬A ∈ L, x̄A has been used in the formulation of the inequalities.
Remark 1. The integer programming formulation (1) of (IFFSAT) has the form of a generalized set
cover problem

Ax ≥ 1 − n(A), x ∈ {0, 1} , (2)

where n(A) is the number of negative entries in the corresponding row of A.
We illustrate the presented methods with the help of a small example.

Example 1. The inequality description to the network shown in Figure 1 reads

(1 − xA) + (1 − xB) ≥ (1 − xD) xD + xE ≥ xF

(1 − xA) ≤ (1 − xD) xD ≤ xF

(1 − xB) ≤ (1 − xD) xE ≤ xF

xC = xE (1 − xG) = xD

xF = xG xG = xH

xl ∈ {0, 1} ∀l

(3)

5



Several scenarios can be tested with these inequalities. First of all certain input and output patterns
can be checked for validity. For this purpose fix xA, xB, xC and xH to the desired value and solve
the IP with arbitrary objective value. If it is feasible, the input/output pattern is a valid assignment.
If one is interested in the output of the network for a prescribed input pattern, one fixes the inputs
to interesting values again and solves the IP with the objective to maximize xH. The returned
objective value is the value of H. In the example the input pattern xA = 0, xB = 1, xC = 0 gives and
output xH = 1.

Another issue for modeling signaling networks is to check the completeness of the model. This
can be done by checking whether the set described by the inequalities (3) contains feasible points.
Our example is feasible, as the point (xA, xB, xC, xD, xE, xF , xG, xH) = (1, 1, 0, 1, 0, 0, 0, 0) is valid.

Potential failure modes and corresponding suitable intervention strategies can be found by
testing knock-in/knock-out scenarios and checking if this forces other variables to obtain a specific
value. Knock-in/knock-out scenarios are done by fixing various variables to a desired value. To test
whether other variables are thereby fixed, we solve different IPs. Two IPs are needed for checking
if two variables have a certain value. In our example we set xE = 0 and xH = 1. To check whether
e.g. xD and xA need to be fixed, we solve the IP with the objective function xD + xA. The solution is
1 and the variables are xD = 0 and xA = 1. Thus, we know that xD must have the value 0. Another
optimization problem with the objective to minimize xA gives the solution 0, and thus xA is not
necessarily 1 but can have both values.

6



3 Some Complexity Results for IFFSAT
The IFFSAT problem becomes easier if certain structural properties are fulfilled, as has been shown
in (Haus et al., 2007). From now on we will restrict the signaling networks to equivalence formulas
with only one literal on the right-hand-side, i.e. |LB

i | = 1 ∀i, unless it is explicitly stated differently.
Initially we have to transform IFFSAT to a special form that allows us to perform the subsequent

analysis.

Definition 3 (cascade form). A signaling network (IFFSAT) is called in cascade form if for all
clauses S i it holds that |LA

i | ≤ 2 and |LB
i | = 1.

Remark 2. Any signaling network can be transformed to cascade form by introducing additional
literals and equivalence clauses. Indeed, this can be achieved by recursively applying the following
replacement:

S i =

{(∨
j∈Ji

A j

)
↔ B

}
gets replaced by

S ′i = {A1 ∨ A2 ↔ C}

and
S ′′i =

{(∨
j∈Ji\{1,2} A j

)
∨C ↔ B

}
where C is a new literal.

Secondly we will review some notation from logic.

Definition 4. Let S be a 3-CNF formula. The undirected graph G(S) is defined by the variables of
S as its nodes and for every 2-clause of S there is an edge between the corresponding nodes.

Definition 5 (cutnode, cutnode condition).

1. Let a, b and c be nodes of a graph. We call c an a/b cutnode if removing c from the graph
disconnects the nodes a and b.

2. An IFFSAT instance S in cascade form fulfills the cutnode condition if for every equivalence
formula S i, Bi is an A1i/A2i cutnode in G(S ).

After IFFSAT is transformed to cascade form, the cutnode condition can easily be checked by
computing the connected components of G(S ). In (Haus et al., 2007) it is proved that

Theorem 2. If an instance of IFFSAT in cascade form satisfies the cutnode condition, it can be
solved in linear time.

The cutnode condition is a restriction to realistic networks but the following example shows
that, e.g., feedback loops do not in general contradict the condition.
Example 2. The network defined by

formula 2-clause(s)
A ∨ B↔ C ¬A ∨C,¬B ∨C
A→ D ¬A ∨ D
D→ E ¬D ∨ E
¬E → A E ∨ A

7



A

D

F B

C

Figure 2: Graph of the network from Example 2.

shown in Figure 2 has a cycle with an odd number of negations, but satisfies the cutnode
condition (there is one equivalence formula, and its output C is a cutnode).

For the inequality description (1) some nice polyhedral properties can be obtained. One of
them is unimodularity (Bertsimas and Weismantel, 2005), which leads to integral relaxations of
the polyhedron, for the smallest nonempty IFFSAT problems.

Definition 6 (unimodularity). A matrix A ∈ Zm×n of full row rank is unimodular if the determinant
of each basis of A is ±1.

Lemma 3. The submatrix of a single equivalence clause S i in the IP model (1) is unimodular if
the set LA

i has cardinality 2 and LB
i has cardinality 1.

Proof. Consider the case where the formula considered is exactly A ∨ B ↔ C with non-negated

atoms A, B,C. The matrix U =


1 1 −1
−1 0 1

0 −1 −1

 is clearly unimodular. Hence, M =

(
U 0
1 1

)
, where

1 denotes a 3 × 3 unit matrix, is unimodular.
All other cases arise from M by unimodular row operations, i.e. subtracting the complemen-

tarity constraint in the top 3 rows. �

Even for the simple formulas (A∨B)↔ (C∨D) as well as (A∨B∨C)↔ D, the inequality de-
scription (1) is non-unimodular. However, the linear relaxation of (1) for one equivalence formula
with arbitrary large LA

i and LB
i is still integral:

Lemma 4. The inequality description of a single equivalence clause S i in the IP model (1) is
integral.

Proof. See (Hooker, 2007, p. 338). �

These integrality results cannot be generalized to IFFSAT problems with an arbitrary number
of equivalence formulas, as the next example shows.

Example 3. We consider a set of two equivalences that model a small negative feedback cycle, i.e.

S = {(x1 ∨ x̄3 ↔ x4) ∧ (x2 ∨ x4 ↔ x3)} .

The integer programming formulation from (1) has the following LP relaxation:

8



x1+x̄3−x4≥ 0 x2−x3+x4≥ 0
−x1 +x4≥ 0 −x2+x3 ≥ 0
−x̄3+x4≥ 0 +x3−x4≥ 0
xi + x̄i = 1, 0 ≤ xi ≤ 1.

Computing the vertices we find both integral and fractional points:

x1 x2 x3 x̄3 x4
0 0 1/2 1/2 1/2

0 1/2 1/2 1/2 1/2

1/2 0 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2

0 1 1 0 0

1 0 1 0 1

1 1 1 0 1.

It should be noted that not all vertices are fractional, which means that this SAT instance is not
infeasible.

9



4 Dynamics of Signaling Networks
In practical applications signaling networks often turn out to be infeasible. This is not reasonable
in a biological sense, but it can occur due to delayed reactions modeled as instantaneous, or due
to modeling errors. Especially (negative) feedback loops with time delays make the static models
infeasible, but at the same time have a huge impact on the functionality of a signaling network since
certain activation cascades can be enabled initially and switched off at a later time point to avoid
overreaction. In order to model the dynamics of a signaling network we introduce an extension of
IFFSAT, the requirement IFFSAT problem.
Problem 3 (RIFFSAT). Let a set R of r = |R| equivalence formulas of the form

R =
{
Ri =

∨
j∈LA

i
(A j ∧ y j)↔ (Bi ∧

∨
j∈LA

i
y j)

}
(4)

over the literal set L ∪ Y be given, where Y is the set of requirement variables. Let L0, L1 ⊆ L ∪ Y ,
sets of fixings, be given, then the RIFFSAT problem is to find a satisfying solution of

r∧
i=1

Ri ∧
∧
x∈L0

(¬x) ∧
∧
x∈L1

x. (RIFFSAT)

In the signaling network context y j = 1 denotes influence of the corresponding component A j

on the right hand side while y j = 0 denotes no effect. In case y j = 0 for all j ∈ LA
i , we request Bi

to be free.
Remark 3. We ask the requirement variable y j of A j to be the different for every IFF formula in
which A j occurs on the left hand side, and to be equal to

∨
k∈LA

i
yk if A j is the right hand side of

clause Ri.
We denote by F the set of all 0/1-points for which (RIFFSAT) is True, i.e.

F =
{
x ∈ {0, 1}2|L| | Γ(

∧r
i=1 Ri ∧

∧
x∈L0

(¬x) ∧
∧

x∈L1
x) = 1

}
.

Usually one is interested in solving (RIFFSAT) with special properties on the set of requirement
variables yi

j, like a maximal or minimal models over y. Such a problem can be solved by a variation
of SAT, namely MAXVAR SAT (see (Truemper, 2004)). Here a satisfiable CNF system C and a set T
with True/False fixings of a variable subset is given, such that C is not satisfiable if all variables are
fixed according to T . The task is to determine a maximal subset T ∗ of T so that C is satisfiable. In
our setting T can be {y1 = . . . = y|L| = True}. MAXCLS SAT is also a related problem. We remark
that both problems are special cases of MAXSAT, which can not be approximated polynomially
better than 8/7 (Håstad, 2001) and hence it is NP-complete.

Besides the presented method from logic one can also find a maximal solution with the help of
integer programming techniques.

Lemma 5 (inequality description for RIFFSAT). Given one equivalence formula Ri ∈ R as in (4),
introduce ni = |LA

i | additional binary variables Yi = {xy1 , . . . , xyni
. Then the corresponding set of

feasible points FRi can be described by ni + ni · 2ni−1 inequalities plus binary constraints of the
form:

xBi ≥ xA j − (1 − xy j) j ∈ LA
i

xBi ≤
∑

k∈S xAk + (1 − xy j) +
∑

k<S xyk j ∈ S , ∅ , S ⊆ LA
i

xl ∈ {0, 1}
l ∈ LA

i ∪ {Bi} ∪ Yi1 = xl + x̄l

(5)

10



xA1 xA2 xA3 · · · xAn xBi y1 y2 y3 · · · yn

n points exploiting all free y j:
1 0 0 · · · 0 1 1 1 1 · · · 1
1 0 0 · · · 0 1 1 0 1 · · · 1
...

...
...

. . .
...

...
...

...
...

. . .
...

1 0 0 · · · 0 1 1 1 1 · · · 0

n − 1 points exploiting all free xA j:
1 1 0 · · · 0 1 1 1 1 · · · 1
1 0 1 · · · 0 1 1 1 1 · · · 1
...

...
...

. . .
...

...
...

...
...

. . .
...

1 0 0 · · · 1 1 1 1 1 · · · 1

two possible points with xBi = 0:
1 0 0 · · · 0 0 0 1 1 · · · 1
1 1 0 · · · 0 0 0 1 1 · · · 1

Table 1: 2n + 1 linearly independent points for xBi ≥ xA1 − y1.

We will assume that x̄l is used in the inequality description if the corresponding atom is negated. To
derive the inequality description for (RIFFSAT), introduce such inequalities for all Ri, i = 1, . . . , r,
and fix the variables according to L0 and L1.

Remark 4. Note that this formulation still preserves the form of a generalized set covering problem.
In addition, for each fixed xy the formulation reduces to an instance of (1).

Maximizing the sum over all requirement variables xy j yields one maximal feasible solution.
However, there are many inequalities needed to describe the feasible points. It turns out that all of
them are needed:

Lemma 6. The inequalities for a single relaxed equivalence clause (5) are facets for the convex
hull of their integral points F .

Proof. We will show that for every inequality there exist dim(conv(F )) = 2n+1 affine independent,
integral points fulfilling the corresponding inequality with equality, where n = |LA

i |.
xBi ≥ xA j − (1 − y j): For reasons of symmetry we restrict the analysis to j = 1. The 2n + 1

linearly independent points are displayed in Table 1.
xBi ≤

∑
j∈S xA j + (1 − yl) +

∑
j<S y j:

For an easier notation, let us assume that the first k indices belong to the selected set S and l = 1.
In Table 2 the linearly independent points are presented.

This concludes the proof. �

Lemma 6 thus implies that the inequalities that are needed to describe conv(F ) definitely in-
clude all constraints in (5). Hence, the number of inequalities is exponential in the number of
inputs of the clause. This motivates to explore alternative, extended formulations for modeling F
based on a cascade representation of their underlying IFFSAT instance.

Lemma 7. Each RIFFSAT instance can be transformed to cascade form.

11



xA1 xA2 · · · xAk xAk+1 xAk+2 · · · xAn xBi y1 y2 · · · yk yk+1 yk+2 · · · yn

n − k + 1 points exploiting all free xA j:
0 0 · · · 0 0 0 · · · 0 0 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 0 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 1 1 · · · 1 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
0 0 · · · 0 0 0 · · · 1 0 1 1 · · · 1 0 0 · · · 0

k − 1 points exploiting all free y j:
0 0 · · · 0 0 0 · · · 0 0 1 0 · · · 1 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
0 0 · · · 0 0 0 · · · 0 0 1 1 · · · 0 0 0 · · · 0

k points with one xA j = 1, j ∈ S each:
1 0 · · · 0 0 0 · · · 0 1 1 1 · · · 1 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 1 1 1 · · · 1 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
0 0 · · · 1 0 0 · · · 0 1 1 1 · · · 1 0 0 · · · 0

n − k points with one y j = 1, j ∈ LA
i \ S each:

0 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 1 0 · · · 0
0 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
0 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 0 · · · 1

one possible point with y1 = 0:
0 0 · · · 0 0 0 · · · 0 1 0 1 · · · 1 0 0 · · · 0

Table 2: 2n+1 linearly independent points for xBi ≤
∑

j∈S xA j +(1−y1)+
∑

j<S y j, with S = {1, . . . , k}.

12



The recursive construction is analogous to the IFFSAT case, handling each conjunction as one
literal and introducing variables of y-type for the artificial variables.

Although transforming the RIFFSAT instance to this specific form leads to more variables and
equivalence formulas, the growth of the instance is only quadratic. Recall that r = |R| and let n be
the largest number of inputs of all clauses. Then, due to the transformation, the number of literals
and clauses in the RIFFSAT instance increases by at most 2r(n − 2) and r(n − 2), respectively. In
contrast to that there are 6(r + r(n− 2)) inequalities needed to encode the signaling network in cas-
cade form compared to (n+n ·2n−1)r inequalities in the IP representation of Lemma 6. Both counts
leave out binary constraints and fixings. Hence, it is a reasonable tool to reduce the complexity of
the inequality description.

So far both approaches, MAXVAR SAT as well as IP, provide one maximal feasible solution. But
one is interested in all maximal solutions with respect to the requirement variables to find suitable
intervention strategies or to plan specific experiments verifying an actual network structure. In
order to find the set of all maximal models (see Definition 2) or all maximal feasible solutions with
respect to the y-variables it is necessary to use a ‘clever enumeration method’. For this purpose
we want to make use of the joint generation algorithm (Fredman and Khachiyan, 1996). This
method checks whether a pair of monotone boolean functions are dual. The problem is equivalent
to finding all maximal models of a monotone CNF formula.

Definition 7 (monotone CNF). Let C be a CNF expression and let Z be a subset of the literals L.
Then C is called down-monotone (up-monotone) in Z if from m∗(Z, L \ Z) satisfying C it follows
that m(Z, L \ Z) satisfies C for all m(Z) ≤ m∗(Z) (m(Z) ≥ m∗(Z)) and m(L \ Z) = m∗(L \ Z).

An integral set is down-monotone in the vector z if (x, z∗) ∈ P leads to (x, z) ∈ P for all z ≤ z∗.

Remark 5. A CNF formula is down-monotone in x if all literals of x have only negative occurrence.

Note that RIFFSAT is not necessarily down-monotone in y as the next example shows:

Example 4. We consider the easy RIFFSAT instance

Z = (A ∧ yA) ∨ (B ∧ yB)↔ C ∧ (yA ∨ yB).

It is not down-monotone in Y = {yA, yB} since the truth assignment

A = 1 B = 0 yA = 1 yB = 1 C = 1

satisfies Z, while
A = 1 B = 0 yA = 0 yB = 1 C = 1

does not.

As RIFFSAT instances are non-monotone in general, we apply a transformation proposed
by (Kavvadias et al., 2000) to monotonize the requirement variables of non-monotone CNF terms.
The method preserves the set of maximal models while the general models can differ. Therefore
the positive y-variables are eliminated according to a recursive resolution procedure:

1. Expand the RIFFSAT instance K to CNF form.

2. Choose a variable yk that occurs as positive and negative literal in K.

13



3. Divide the clauses into three parts S yk ∪ S ȳk ∪ Ayk , the set of clauses with occurrence of yk, of
ȳk, and no occurrence at all. In this context ‘∪’ denotes a conjunction. We write Ki = (Ci∨yk)
for Ki ∈ S yk , i = 1, . . . , |S yk |, and K j = (D j ∨ ȳk) for K j ∈ S ȳk , j = 1, . . . , |S ȳk |. Thus, Ci and
D j are disjunctions of all other variables apart from yk.

4. Compute all resolvents Ryk of each pair of clauses in S yk and S ȳk with respect to yk, i.e.
Ryk =

{
(Ci ∨ D j) | Ki ∈ S yk , K j ∈ S ȳk

}
.

5. The expression Kyk = Ryk∪S ȳk∪Ayk is monotone in yk, since yk has only negative occurrences.

Theorem 8 (Kavvadias et al. 2000). With the above transformation it holds that models(K) ⊆
models(Kyk) and maximal(K) = maximal(Kyk).

Thus, we can apply this concept recursively and obtain a CNF expression which is monotone in
the y-variables and hence, we can utilize the joint generation algorithm (Fredman and Khachiyan,
1996) to compute the invariant maximal models.

However, it is easy to see that the transformation can lead to an exponentially larger expression.
But in the case of RIFFSAT instances the number of clauses even decreases.

Monotonizing the requirement variables in one Ri ∈ R, formula (4) reduces the clauses to∧
j∈LA

i

(
(¬A j ∨ ¬y j ∨ Bi) ∧

∨
k∈LA

i
Ak ∨ (¬y j ∨ ¬Bi)

)
≈

(∨
j∈LA

i
(A j ∧ y j)→ Bi

)
∧

(∨
j∈LA

i
(C ∧ y j)→

∨
k∈LA

i
Ak

)
.

(6)

In terms of inequalities this is modeled by

xBi ≥ xA j − (1 − xy j) j ∈ LA
ixBi ≤

∑
k∈LA

i
xAk + (1 − xy j)

xl ∈ {0, 1}
l ∈ LA

i ∪ {Bi} ∪ Yi.1 = xl + x̄l

(7)

Introducing such constraints for every Ri ∈ R gives the monotonized version of (RIFFSAT). We
denote by Fmon the set of integral points fulfilling (6) and thus also (7) for each i = 1, . . . , r.

Lemma 9. The system (6), and thus (7), are monotone in y and have the same maximal y-solutions
as (RIFFSAT) and (5).

Proof. From the inequalities it is easy to see that it is down-monotone in y, since pushing one y
component to 0, say xy j = 0, only relaxes both inequalities containing xy j . In particular, this means
that the same A and B components are feasible for xy j = 0 as for xy j = 1. In the logic formula one
can see the down-monotonicity in y by expanding the implications to CNF. All y-variables occur
as negated atoms.

To prove the accordance of the maximal solutions we can focus on a single RIFFSAT formula∨n
i=1(Ai ∧ yi) ↔ B ∧

∨n
i=1 yi, I = {1, . . . , n}, because the y variables are disjoint for every RIFFSAT

formula and thus the monotonized version of RIFFSAT can be built by monotonizing each formula
Ri.

14



We will show that the following two integer programs (V) and (W) have the same optimal
solutions with respect to the y components.

max
∑n

i=1 xyi

s.t. xB ≥ xA j − (1 − xy j) j ∈ I
xB ≤

∑
k∈S xAk + (1 − xy j) +

∑
k<S xyk j ∈ S , ∅ , S ⊆ I

xl ∈ {0, 1}
l ∈ {AI , yI , B}1 = xl + x̄l

(V)

and

max
∑n

i=1 xyi

s.t. xB ≥ xA j − (1 − xy j) j ∈ IxB ≤
∑n

k=1 xAk + (1 − xy j)
xl ∈ {0, 1}

l ∈ {AI , yI , B}1 = xl + x̄l

(W)

For an ease of notation we will subsequently use the index l for the variable xl. Let AI and yI denote
(A1, . . . , An) and (y1, . . . , yn). Let FV and FW be the set of integral points of problem (V) and (W),
respectively, and let x∗L indicate the optimal solution of problem (L), L=V,W. Then, y∗L denotes
the corresponding y components. Note that FV ⊂ FW .

Case 1: If there are no AI , B components fixed to a certain value, there exists an x∗L ∈ FL with
y∗L = 1. For example, the vector (AI , yI , B) = (0, 1, 0) is feasible for both IPs. Thus the optimal
solutions are equal.

Case 2: If some AI , B components are fixed to 0 or 1, there are two critical cases in which there
exists no xL ∈ FL such that yL = 1 for L=V,W.
The first one is AI = 0 and B = 1. Here, y∗L = 0 is necessary for both L since the second type of
inequalities of (W), which are also valid for (V), forces B immediately to 0 if one y j = 1. Thus,
the optimal values match.
The second critical configuration is that Ai = 1 for i ∈ I1 ⊆ I with I1 , ∅ and A j = 0, j < I1, but
B = 0. The optimal y solution is y∗Li = 0 for i ∈ I1 and y∗Lj = 1, j < I1, L=V,W, by the first type of
inequalities, which is valid for both programs. It forbids to lift another yL

i to 1 as this switches B
also to 1.

If xy j variables are fixed to 0 or 1, it influences both objective values equally. Thus, the objective
value of the integer programs (V) and (W) coincide in every possible case which concludes the
proof. �

Lemma 10. The inequality system (7) describes conv(Fmon) when substituting {0, 1} by [0, 1].

A proof for the Lemma can be found in the Appendix. Note that the system (7) are even a facet
description for conv(Fmon) as the inequalities (5) are facets for conv(F ) and all feasible points are
preserved.

The LP relaxation of a monotonized dynamic IP (7) containing more than one formula, i.e.
r ≥ 2, is not integral in general as the following example shows.

Example 5. Consider the monotonized version of the dynamic IP (7) of the signaling network from

15



A B

G

C

D

FE

A↔ C
B↔ C
C ↔ D
¬D↔ E

E ↔ A
D↔ F
¬F ↔ G

G ↔ B

Figure 3: A signaling network with two negative feedback loops from Example 6. The dashed line
denotes inhibition.

Example 3. Its linear relaxation is the following polyhedron

x1 − (1 − y1) ≤ x4 x2 − (1 − y2) ≤ x3

(1 − x3) − (1 − y3) ≤ x4 x4 − (1 − y4) ≤ x3

x1 + (1 − x3) + (1 − y1) ≥ x4 x2 + x4 + (1 − y2) ≥ x3

x1 + (1 − x3) + (1 − y3) ≥ x4 x2 + x4 + (1 − y4) ≥ x3

0 ≤ xi, yi ≤ 1 for i = 1, . . . , 4

This polyhedron is not integral, since e.g. (x, y) = (1/2, 1, 1/2, 1/2, 1, 1/2, 1, 1) is a vertex. But it
also has integral vertices like (0, 0, 1, 0, 1, 0, 1, 0) so that it is not infeasible.

To illustrate the use of the dynamic model we give a small example of a signaling network.

Example 6. Consider the network defined by

xC ≥ xA − (1 − yA) xA ≥ xE − (1 − yE)
xC ≤ xA + (1 − yA) xA ≤ xE + (1 − yE)
xC ≥ xB − (1 − yB) xF ≥ xD − (1 − yD)
xC ≤ xB + (1 − yB) xF ≤ xD + (1 − yD)
xD ≥ xC − (1 − yC) xG ≥ (1 − xF) − (1 − yF)
xD ≤ xC + (1 − yC) xG ≤ (1 − xF) + (1 − yF)
xE ≥ (1 − xD) − (1 − yD) xB ≥ xG − (1 − yG)
xE ≤ (1 − xD) + (1 − yD) xB ≤ xG + (1 − yG)

xl, yl ∈ {0, 1} ∀l

which is illustrated in Figure 3. As there are two negative feedbacks involved, using the static
approach leads to infeasibility. Thus, we are interested in the dynamics like possibly late reactions,
i.e. in maximal feasible subnetworks. In this case there are different possibilities to disturb the
cycles. One can either set yC = 0 and the rest to 1 or cut two disjoint arcs each in one cycle,
e.g. yE = 0 and yG = 0. The remaining variables can then be 1. With this guideline and precise
experiments the practitioner can then identify how the network structure actually looks like. Of
course, the obtained y values also give hints at suitable intervention strategies.

16



Remark 6. Note that one can also model timing information using the RIFFSAT formulation: Let
T ∈ Z+, a time horizon, be given. Then, for every t ∈ {1, . . . ,T } we have different signaling
networks, because of distinct reaction times. Due to these delays it is possible for a molecule to
be absent at one point t1, but to be present at t2. This can be modeled by T copies of the same
networks but each with a different yt vectors t = 1, . . . ,T , which imply absence or presence of each
interdependence in the biological unit at time point t. Each yt vector is according to Equation (5).
In this setting the changes of the signaling network over time is encoded by the difference of two
consecutive yt vectors, yt − yt−1, t ≥ 2.

Our proposed approach is also able to handle extra information about the structure of the net-
work over time. Such information can be statements like if an interactions is present at time point
t∗, it is present for all t ≥ t∗, or an interaction is only valid for exactly one t ∈ {1, . . . ,T }. It can be
expressed in terms of logical formulas/inequalities over the yt.

17



cols rows inputs outputs #feas #infeas total time (s) avg time (s)

214 376 3 14 36 131036 ≈ 120 0.001

Table 3: In/Out fixing of TCR from (Saez-Rodriguez et al., 2007).

5 Computations
We have tested the ideas presented in this paper on the TCR-signaling network
from (Saez-Rodriguez et al., 2007), as well as several randomly generated signaling networks. To
demonstrate that the integer programming formulation is in fact useful to test feasibility of scenar-
ios (on the full model or in knock-in/knock-out tests), we performed several tests: Table 3 shows
feasibility tests for all possible combinations of input/output values in the TCR model. Computa-
tions were performed using CPLEX 9.1 and Allegro Common Lisp 8.1 on a SUN-Fire-V890 with
1.2 GHz. Even though the IPs do not generally reduce to an LP description, the whole instances
could be solved within two minutes.

Due to the lack of real instances we generated three types of random signaling networks which
are built with different probability distributions so that each has a distinct structure. For tech-
nical reasons we deviate slightly from the standard form of a signaling network: we construct
IFFformulas of the form

∨
j∈J A j → B (OR-clauses) and

∧
j∈J A j → B (AND-clauses). All types are

constructed according to the following procedure:

1. Set the number of components n and operation nodes m and fix the proportion of AND- and
OR-nodes A/O. In our random types A/O will always be equal to 0.5.

2. Determine, with respect to A/O, which operation nodes are AND- and which are OR-nodes.
Therefore the realization of a random variable X which probability distribution reflects the
ratio A/O is generated. Clearly this means, P(X = AND) = A/O = 1 − P(X = OR).

3. List all components from 1 to n.

4. Let ai be the number of inputs of operation node i = 1, . . . ,m. Determine ai as a realization
of Ai with Ai ∼ R with some probability distribution R. Note that R changes for the different
generated types.

5. Choose the input and output components for each operation node separately by generating
the realization k of a random variable K, which is uniformly distributed on the set {1, . . . , n}.
The resulting number k refers to the index of the components. If a component is selected
more than once, the duplicates are deleted leading to a smaller input degree. Note that for
the selection of the output component of operation node i, the input components of i must
not be taken into account.

6. Decide if S k or S k is assigned as an input, with a random number taking two equally probable
values.

For the first type of random networks, we generate the number of inputs according to a
χ2

f - distribution. The parameter of this distribution f , the degrees of freedom, equals the mean of

18



10-5a 10-5b 20-10a 20-10b 100-50a 100-50b 100-100a 100-100b

# subs 10 10 20 20 100 100 100 100
# ops 5 5 10 10 50 50 100 100
min in 1 1 1 1 1 1 1 1
max in 5 5 6 7 15 9 11 12
avg in 3.2 3 3 2.6 3.96 3.44 3.27 3.48
# sources 6 5 7 6 38 30 33 34
# sinks 1 1 2 3 6 5 3 2
# variables 26 20 40 46 208 214 252 262
# rows 38 30 58 63 354 335 566 599
time (sec) 0.010 0.000 0.000 0.000 0.010 0.010 0.010 0.020
# B&B nod 0 0 0 0 0 0 0 0
feas/infeas f f f f f f f f

Table 4: Overview of the properties of type I networks, which are specified by number of compo-
nents – number of operations. We always generated two networks, a and b, of the same size.

Ai. Hence, we set Ai to be χ2
3- distributed with three degrees of freedom in order to derive a ‘lean’

signaling network similar to the TCR network with three inputs per operation node on average. Re-
sults are displayed in Table 4. The number of molecules is denoted by ‘# subs’, ‘# ops’ denotes the
number of AND/OR operations used and ‘min/max/avg in’ means the minimal/maximal/average
number of elements on the left hand side of all IFFSAT formulas S i. The number of inputs and
outputs to the network are stated as ‘sources’ and ‘sinks’. The size of the IP is depicted in the
following two rows. The IPs could be solved very fast even in large cases and without any branch
and bound nodes used. The number of paths between sources and sinks is relatively large, there
are, e.g., 14, 15, 33 and 21424 paths.

Additionally the shortest path between sinks and sources has length 2, even in the large net-
works. This is not a realistic network structure. To avoid this feature we force the network to hold
more layers. This is done by generating several type I networks, such that the sinks of the previous
network are the sources of the next one. Type II networks contain three Type I networks glued to-
gether, which is reasonable as the shortest path in the TCR model is 5. Type II networks are similar
to the real model with respect to input degree number of paths and path length. Computations are
listed in Table 5 and are as fast as in the Type I case. The number of paths from input to output
layer decreases to 2, 1, 11, 422 and 9243, while its average length increases. Note that the number
of components and operations characterizing the different networks differ from the entries in the
table since they specify the amount of components and operations in each Type I network.

After the first two types were constructed similarly, the third type is generated distinctly. We
set R := U [1, 15], i.e. Ai is uniformly distributed on the interval [1, 15]. To obtain integral input
degrees, the generated random number is rounded up to the next integer. This results in an average
input number of eight. Hence, the networks have comparably many arcs and are more or less
‘thick’. The number of paths between sink and source are like in Type I networks quite high, e.g.
24, 51, 26 494. In Table 6 the computational results are displayed.

Next, we employed the joint-generation method (Fredman and Khachiyan, 1996) as imple-
mented in (Haus, 2008) to compute all minimal infeasible and maximal feasible vectors y. The

19



5-1a 5-1b 10-5a 10-5b 30-10a 30-10b 50-25a 50-25b

# subs 15 15 30 30 90 90 150 150
# ops 3 3 15 15 30 30 75 75
min in 1 1 0 1 0 0 0 0
max in 3 1 6 6 5 8 8 9
avg in 1.67 1 1.6 1.87 2.13 2.13 2.49 2.45
# sources 2 1 8 4 12 14 30 29
# sinks 1 1 4 2 2 5 10 13
# variables 30 30 64 74 184 184 318 322
# rows 22 22 74 70 186 186 428 429
time (sec) 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010
# B&B nod 0 0 0 0 0 0 0 0
feas/infeas f f f f f f f f

Table 5: Overview of the properties of type II networks, which are specified by number of compo-
nents - number of operations. We always generated two networks, a and b, of the same size.

25-5a 25-5b 50-10a 50-10b 100-20a 100-20b 150-50a 150-50b

# subs 25 25 50 50 100 100 150 150
# ops 5 5 10 10 20 20 50 50
min in 3 2 1 1 1 1 1 1
max in 9 10 13 10 14 13 14 14
avg in 6.2 7 6.3 4.8 7.2 7.6 7.24 7.1
# sources 11 9 20 13 42 42 75 73
# sinks 1 2 5 2 6 4 4 2
# variables 50 50 100 100 200 204 306 308
# rows 65 61 123 108 263 277 568 561
time (sec) 0.000 0.000 0.000 0.010 0.000 0.010 0.010 0.010
# B&B nod 0 0 0 0 0 0 0 0
feas/infeas f f f f f f f f

Table 6: Overview of the properties of type III networks, which are specified by number of com-
ponents – number of operations. We always generated two networks, a and b, of the same size.

20



TCRB CD4 CD28 max feas min infeas # oracle calls time

# max avg min # max avg min

0 0 0 1 324 324 324 0 1 0
0 0 1 1 322 322 322 2 323 323 323 974 0
0 1 0 1 322 322 322 2 323 323 323 974 0
0 1 1 1 320 320 320 4 323 323 323 1619 0
1 0 0 2 323 322.5 322 2 322 322 322 1298 0
1 0 1 2 321 320.5 320 4 323 322.5 322 1943 0
1 1 0 2 321 320.5 320 4 323 322.5 322 1943 0
1 1 1 2 319 318.5 318 6 323 322.3 322 2584 0

Table 7: Computation of minimal infeasible and maximal feasible vectors y on the TCR model
from (Saez-Rodriguez et al., 2007): Comparison of the cardinalities and computation time, and the
support of the 324-dimensional vector of y-variables for all 8 patterns of input signals. All timings
below measurement threshold of 10 ms.

feasibility oracle employed in this algorithm is solving integer feasibility problems of the form (5).

Acknowledgments
The first, second and fourth author were supprted by the FORSYS initiative of the German Ministry
of Education and Research through the Magdeburg Center for Systems Biology (MaCS) and the
Research Focus Program Dynamic Systems funded by the Kultusministerium of Saxony-Anhalt.

References
Bertsimas, D. and Weismantel, R. (2005). Optimization over Integers. Dynamic Ideas, Belmont,

Massachusetts, USA.

Büning, H. K. and Lettmann, T. (1999). Propositional Logic: Deduction and Algorithms, vol-
ume 48 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press.

Feist, A. M.; Henry, C. S.; Reed, J. L.; Krummenacker, M.; Joyce, A. R.; Karp, P. D.; Broadbelt,
L. J.; Hatzimanikatis, V.; and Palsson, B. O. (2007). ”A genome-scale metabolic reconstruction
for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic informa-
tion”. Molecular Systems Biology, 3(121).

Fredman, M. L. and Khachiyan, L. (1996). ”On the complexity of dualization of monotone dis-
junctive normal forms”. J. Algorithms, 21(3), pp. 618–628.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco.

21



Håstad, J. (2001). ”Some optimal inapproximability results”. J. ACM, 48(4), pp. 798–859.

Haus, U.-U. (2008). ”cl-jointgen, a Common Lisp Implementation of the Joint-Generation
Method”. available at http://www.primaldual.de/cl-jointgen.

Haus, U.-U.; Truemper, K.; and Weismantel, R. (2007). ”Linear Satisfiability Algorithm for 3CNF
Formulas of Certain Signaling Networks”. submitted to Journal on Satisfiability, Boolean Mod-
eling and Computations.

Hooker, J. N. (2007). Integrated Methods for Optimization. Springer, Pennsylvania.

Kavvadias, D. J.; Sideri, M.; and Stavropoulos, E. C. (2000). ”Generating all maximal models of
a Boolean expression”. Information Processing Letters, 74(3-4), pp. 157–162.

Saez-Rodriguez, J.; Simeoni, L.; Lindquist, J.; Hemenway, R.; Bommhardt, U.; Arndt, B.; Haus,
U.-U.; Weismantel, R.; Gilles, E. D.; Klamt, S.; and Schraven, B. (2007). ”An Extensive Logical
Model Predicts Key Events in the T-cell Receptor Signaling Network”. PLoS Computational
Biology. DOI http:://dx.doi.org/10.1371/journal.pcbi.0030163.

Truemper, K. (2004). Design of Logic-based Intelligent Systems. John Wiley & Sons.

22

http://www.primaldual.de/cl-jointgen
http:://dx.doi.org/10.1371/journal.pcbi.0030163


A Appendix
Proof of Lemma 10. Without loss of generality let I = {1, . . . , n} implying the RIFFSAT formula∨n

i=1(Ai ∧ yi)↔ B ∧
∨n

i=1 yi, I = {1, . . . , n}. Thus, let

Fmon =


 A

y
B

 ∈ {0, 1}2n+1 : B ≥ Ai − (1 − yi) ∀ i = 1, . . . , n

B ≤
n∑

j=1

A j + (1 − yi) ∀ i = 1, . . . , n


and

P =


 A

y
B

 ∈ [0, 1]2n+1 : B ≥ Ai − (1 − yi) ∀ i = 1, . . . , n

B ≤
n∑

j=1

A j + (1 − yi) ∀ i = 1, . . . , n

 .

We need to show that P = conv(Fmon). It is clear that conv(Fmon) ⊆ P. For the converse, assume
that P has a fractional vertex f = (A, y, B). Since for a vertex 2n + 1 inequalities have to be tight,
f has at least one integral component (there are only 2n inequalities without box conditions). Let
n f be the number of fractional components of f; 0 ≤ n f ≤ 2n. It is to show that n f > 0 gives a
contradiction.

Let k1 be the number of tight inequalities of the first type and k2 the one of type two inequalities,
k1 + k2 = n f . I j denotes the corresponding equality index set of type j = 1, 2. To show the Lemma
we will distinguish between three cases:

(i) k1 > 0 ∧ k2 > 0,

(ii) k1 = n f > 0 ∧ k2 = 0,

(iii) k1 = 0 ∧ k2 = n f > 0.

Case (i): Let I1, I2 , ∅.
Since B =

∑n
j=1 A j + (1 − yl) for all l ∈ I2, yl must have the same value for all l ∈ I2. Additionally,

for i ∈ I1 and l ∈ I2 it holds that

Ai − (1 − yi) =
∑n

j=1 A j + (1 − yl) ⇔ 0 =
∑

j,i A j + (1 − yi) + (1 − yl).

Since all variables are non-negative, we find that A j = 0 ∀ j , i, yi = yl = 1 ∀l ∈ I2 and Ai =

B. Thus, AI\{i} = 0, yI1∪I2 = 1 and the only possible fractional components of f are y j for j ∈
I \ (I1 ∪ I2) = {l1, . . . , lk} and B = Ai. But if they are fractional, we can construct a convex
combination of integral points in Fmon, because the variables are all strictly between 0 and 1 and

23



all possible 0/1 combinations of the fractional variables are feasible points. For this purpose let
w.l.o.g. the fractional yI\(I1∪I2) be ordered so that yl1 ≤ . . . ≤ ylm ≤ B ≤ ylm+1 ≤ . . . ≤ ylk , and let
vA

S =
∑

i∈S eA
i , S ⊆ I, where eA

i is the i-th unity vector on the A-variables and the remaining n+1
components are 0. vy

S is analogously defined; eB ∈ {0, 1}2n+1 is the unity vector of B. Then the
convex combination for f is

f =yl1(e
A
i + vy

I + eB) + (yl2 − yl1)(e
A
i + vy

I\{l1}
+ eB) + · · · + (B − ylm)

(eA
i + vy

I\{l1,...,lm}
+ eB) + (ylm+1 − B) vy

I\{l1,...,lm}
+ · · · + (1 − ylk) vy

I1∪I2
.

If several components have the same value, this construction reduces them to one convex multipli-
cator, i.e. in the next vector they will all occur as 0. Thus, f is no vertex of P. E

Case (ii): Let I1 = {1, . . . , k1} and I2 = ∅.
The number of integral components of f must be greater or equal to n + 1, because n f = k1 ≤ n.
Thus, there exists an index j ∈ I1 such that the equality B = A j − (1 − y j) contains at least two
integral variables. Thus, all contained variables are integral and in particular B is integral. In the
equalities where only B is known to be integral, say B = Ak − (1 − yk), k ∈ I1, Ak and yk can be
fractional. There are two cases to be considered: B = 1 and B = 0.
B=1: :1 = Ai − (1 − yi) ∀i ∈ I1 ⇔ 2 = Ai + yi :Ai = yi = 1. Thus, the only fractional
components of f can be AI\I1 and yI\I1 . As B = 1 and Ai = yi = 1 for all i ∈ I1, there is a ‘reason’
for B being 1. Therefore the fractional components can be convexly combined as in case (i) since
AI\I1 and yI\I1 can be any 0/1 combination to complete a feasible point for P. Hence, f is no vertex.
E.
B=0: :Ai = 1 − yi ∀i ∈ I1. Let {p1, . . . , pm} = I f

1 ⊆ I1 denote the index set of the fractional A-
variables in I1 and thus their corresponding y-variables, which also have to be fractional according
to the equality. For j ∈ I \ I1 the inequalities imply that A j + y j < 1. We proceed similar to the
previous case. W.l.o.g. assume that Ai ≤ yi ∀i ∈ I f

1 and that Ap1 ≤ y j1 ≤ Ap2 ≤ . . . ≤ A jk ≤ y jl ≤

Apm , with ji ∈ I \ I1, i = 1, . . . , l, are the ordered fractional components. For ease of notation we
will leave out the integral Ai and yi, i ∈ I1 \ I f

1 and consider only the remaining components f∗.
Accordingly, vA

S , v
y
S and eB are adjusted to the new dimension. Then,

f∗ =Ap1(v
A
I f
1∪I\I1

+ vy
I\I1

) + (y j1 − Ap1)(v
A
(I f

1∪I\I1)\{p1}
+ vy

I\I1∪{p1}
) + (Ap2 − yp1)(v

A
(I f

1∪I\I1)\{p1}
+

vy
I\I1∪{p1}\{ j1}

) + · · · + (A jk − Apm−1)(e
A
jk + vy

I f
1∪{ jl}

) + (y jl − A jk)v
y

I f
1∪{ jl}

+ (yp1 − yp2)v
y

I f
1

.

The vectors used in this representation are all elements of P. Furthermore the convex multiplicator
sum up to 1, as Ai + yi = 1 for i ∈ I f

1 . Thus, f is not a vertex. E

Case (iii): Let I2 = {1, . . . , k2} and I1 = ∅.
Analogous to case (i), it follows that y1 = . . . = yk2 . We also know that there are n f = k2 fractional
components of f.
If these fractional components are yi, i ∈ I2, the other variables are all integral. But the equality
B =

∑n
j=1 A j + (1 − yi) for all i ∈ I2 and the integrality of all involved variables but yi yield that

yi ∈ {0, 1} ∀i ∈ I2 and therefore f is integral.
Thus, yi must be integral for all i ∈ I2. We need to distinguish between 6 cases:

24



a) Ai for i ∈ IA ⊆ I is fractional (|IA| = k2),

b) yi for i ∈ Iy ⊆ I \ I2 is fractional (|Iy| = k2),

c) B, Ai, i ∈ IA ⊆ I are fractional (|IA| = k2 − 1),

d) B, yi, i ∈ Iy ⊆ I \ I2 are fractional (|Iy| = k2 − 1),

e) Ai, y j, i ∈ IA ⊆ I, j ∈ Iy ⊆ I \ I2 are fractional (|IA| + |Iy| = k2),

f) B, Ai, y j, i ∈ IA ⊆ I, j ∈ Iy ⊆ I \ I2 are fractional (|IA| + |Iy| = k2 − 1),

The case where only B is fractional does not have to be considered as equality in at least one type
two inequality immediately forces B to be integral, as well.

a) With the equality it also follows that
∑

i∈IA Ai ∈ {0, 1}.

•
∑

i∈IA Ai = 0 : Ai = 0 ∀i ∈ IA. E

•
∑

i∈IA Ai = 1. B =
∑n

j=1 A j + (1 − yl), l ∈ I2 : B = 1, Ai = 0, i ∈ I \ IA, yl = 1, l ∈ I2. As
B = 1, we only need one Ai, i ∈ IA to be 1, independent of the y pattern, for a feasible point.
Let IA = {i1, . . . , im}, then f can be convexly combined by

f = Ai1(e
A
i1 + vy

I2
+ vy

S + eB) + · · · + Aim(eA
im + vy

I2
+ vy

S + eB)

for the subset S of I \ I2, where y j = 1. Since we know that
∑

i∈IA Ai = 1, we have a real
convex combination. E

b) As Iy ∩ I2 = ∅,
∑n

j=1 A j + (1 − yk) = B <
∑n

j=1 A j + (1 − yi), i ∈ Iy : yi < yk for all k ∈ I2.

• yk = 0 for k ∈ I2 :yi < 0 for i ∈ Iy. E

• yk = 1. Thus, either B = 0 = A1 = . . . = An or (w.l.o.g.) B = 1 = A1, A2 = . . . = An = 0.
In both cases, we can choose any yIy pattern to get a feasible point in P. Therefore, one can
follow the same procedure to construct a convex combination of integral points as in case
(i). E

c) Again, equality implies B −
∑

i∈IA Ai ∈ {0, 1}.

• B −
∑

i∈IA Ai = 1 : B = 1, Ai = 0, i ∈ IA. E

• B −
∑

i∈IA Ai = 0 ⇔ 0 =
∑

j<IA A j + (1 − yk) ∀k ∈ I2

:A j = 0, j < IA and yk = 1, k ∈ I2. Additionally, y j ∈ {0, 1} for j ∈ I \ I2 and for a subset
S ⊆ I \ I2 y j = 1. Then we can convexly combine integral elements of P to obtain f. For this,
let IA = {i1, . . . , im}:

f = Ai1(eA
i1 + vy

I2
+ vy

S + eB) + · · · + Aim(eA
im + vy

I2
+ vy

S + eB) + (1 −
∑

i∈IA Ai)(vy
I2

+ vy
S )

Therefore, f is no vertex. E

d) Since B =
∑n

j=1 A j + (1 − yk), k ∈ I2 and all variables involved except for B are integral, B
must be integral as well. Hence, we are in case b). E

e) As shown in case b) it follows that yi < yk for all i ∈ Iy and k ∈ I2 and with this yk = 1∀k ∈ I2.
This implies that B =

∑n
j=1 A j and hence

∑
i∈IA Ai ∈ {0, 1}.

25



•
∑

i∈IA Ai = 0 : Ai = 0∀i ∈ IA. The only remaining fractional components are y j, j ∈ Iy. The
possible cases for the integral components are analogous to case b) and they can be convexly
combined as in case (i). E

•
∑

i∈IA Ai = 1 : Ai = 0 i < IA, B = 1, y j = 1, j ∈ I2. We again want to apply the scheme used
in case (i), i.e. look for the minimum within the fractional components, set all fractional
components to 1 in the convex combinator, multiply it by the lowest value, then take the
minimal difference between the fractional entries and the previous minimum, set the com-
ponent of the previous minimum to 0 and multiply it by the difference of the two. For this
purpose it is necessary to make sure that there is always at least one Ai, i ∈ IA, that is one in
the convex combinator. This can be achieved by adjusting the system a little bit to a combi-
nation of the procedures of case (i) and case (iii), a): We set only one Ai at a time to 1 until
its value is reached and then the next becomes 1. For the y components an arbitrary pattern
can be chosen. For an easier description assume that IA = {i1, . . . , im}, Iy = { j1, . . . , jk} and
Ai1 ≤ y j1 ≤ Ai2 ≤ . . .:

f =Ai1(e
A
i1 + vy

I2
+ vy

Iy + eB) + (y j1 − Ai1)(e
A
i2 + vy

I2
+ vy

Iy + eB)

+ (Ai2 − y j1)(e
A
i2 + vy

I2
+ vy

Iy\{ j1}
+ eB) + · · ·

Since
∑

i∈IA Ai = 1 it follows that the constructions yields a real convex combination. E

f) In this case one can construct a convex combination of f by using a combination of the cases
e) and c). E

In a all cases the fractional vertex f could be convexly combined and thus can not be a vertex. This
implies P = conv(Fmon) �

26


	Introduction
	Modeling Logical Interactions
	Some Complexity Results for IFFSAT
	Dynamics of Signaling Networks
	Computations
	Appendix

