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ABSTRACT

Due to the large variability in survival times between cancer patients and the plethora

of genes on microarrays unrelated to outcome, building accurate prediction models that

are easy to interpret remains a challenge. In this paper, we propose a general strategy

for improving performance and interpretability of prediction models by integrating gene

expression data with prior biological knowledge. First, we link gene identifiers in expression

dataset with gene annotation databases such as Gene Ontology (GO). Then we construct

“supergenes” for each gene category by summarizing information from genes related to

outcome using a modified principal component analysis (PCA) method. Finally, instead of

using genes as predictors, we use these supergenes representing information from each gene

category as predictors to predict survival outcome. In addition to identifying gene categories

associated with outcome, the proposed approach also carries out additional within-category

selection to select important genes within each gene set. We show, using two real breast

cancer microarray datasets, that the prediction models constructed based on gene sets (or

pathway) information outperform the prediction models based on expression values of single

genes, with improved prediction accuracy and interpretability.
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1. INTRODUCTION

GENE EXPRESSION PROFILES have been used extensively in diagnostic and prognostic predictions of

various cancers (Alizadeh et al., 2000; Beer et al., 2002; Golub et al., 1999; Perou et al., 2000;

Ramaswamy et al., 2003; Rosenwald et al., 2002; Shipp et al., 2002; van’t Veer et al., 2002). Typically,

to predict tumor subtype or patient survival time, a prediction model is constructed based on expression

values of single genes. Some commonly used methods include the Lasso (Gui and Li, 2005; Segal, 2006),

principal component analysis (PCA) (Tan et al., 2005), Supervised principal component analysis (Bair and

Tibshirani, 2004), partial least squares (Ngyen and Rocke, 2002), support vector machine (Furey et al.,

2000), among others.
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However, due to the large variability in survival times between cancer patients and the plethora of

genes on the microarrays unrelated to outcome, building accurate prediction models that are easy to

interpret remains a challenge. In this paper, we propose a general strategy for improving performance and

interpretability of prediction models by integrating gene expression data with prior biological knowledge.

For simplicity, we use the terms “gene categories,” “pathways,” and “gene sets” interchangeably, although

they may not be strictly equivalent. The idea is simple: first, we link gene identifiers in expression dataset

with gene annotation databases such as Gene Ontology (GO) (Ashburner et al., 2000). Then we construct

“supergenes” for each pathway by summarizing information from genes related to outcome using a modified

PCA method. Finally, instead of using genes as predictors, we use these supergenes representing information

from each pathway as predictors to predict survival outcome.

We hypothesize that prediction models constructed based on pathway information will have improved

prediction performance and better interpretability for several reasons: (1) As suggested by Hanahan and

Weinberg (2000), the underlying disease process for cancer may be dependent on perturbations of different

pathways, so prediction models based on pathways may approximate the true disease process more closely

than gene-based models; moreover, because the lists of significant pathways are more stable over different

datasets compared to lists of significant genes (Manoli et al., 2006), information based on pathways may be

more robust to outlying samples or artifacts from sample handlings, thus serving as better predictors with

improved prediction accuracy. (2) The feature list comprised of significant pathways will help delineate

more clearly the underlying biological processes that are predictive of variations in outcome; by borrowing

strength across genes in the same pathway, pathway-based methods (Subramanian et al., 2005; Wang et al.,

2008) allow one to identify patterns that are too subtle to discern at single gene level. For example, Mootha

et al. (2003) showed that the oxidative phosphorylation genes are significantly associated with diabetes as

a group, while none of the genes in the pathway showed significant change individually. Segal et al. (2004,

2005) identified combinations of activated and deactivated gene sets that characterize different tumor stages

and types of cancer to obtain a global view underlying human cancer.

Some discussion of related approaches and comparisons of them with the proposed method are in

order. Tai and Pan (2007) proposed a method to incorporate prior knowledge of predictors into penalized

classifiers with multiple penalty terms. Wei and Li (2007) proposed a modified boosting method, called

“nonparametric pathway-based regression.” While the method of Tai and Pan (2007) applies only to

penalized classifiers and the method of Wei and Li (2007) applies only to boosting, our proposal is a more

general strategy that can be applied to a wide variety of prediction methods. Ma et al. (2007) proposed

the supervised group Lasso method, and Park et al. (2007) proposed using averaged gene expressions

for regression-based prediction models. However, the gene groupings for these methods are based on

statistically derived clusters, not on biological knowledge. In contrast, the gene annotation databases we

use provide an automatic way of grouping genes that are less dependent on the particular dataset being

analyzed; therefore, models based on these a priori defined gene sets will be more stable across different

datasets and will have better interpretability. Chuang et al. (2007) proposed using protein interaction

networks for classification of breast cancer metastasis status for patients. Instead of choosing a cut-off

such as 5-year-survival, which converts time-dependent survival outcomes to binary outcomes, we study

models for predicting right censored survival outcome such as time to metastasis. Censoring occurs, for

example, when patients survived over the entire study period or were lost to follow-up; in these cases, we

only know partial information on the outcome. We model survival outcomes with Cox proportional hazard

regression models.

In summary, our goal is to improve prediction accuracy and interpretability of models based on single

gene expression values for prediction of survival outcomes, by combining gene expression data with prior

biological knowledge on groups of genes. In the next section, we provide a more in-depth discussion

of the proposed method. By incorporating information from a priori defined gene sets, this method not

only models but also selects pathways and genes that are predictive of variations in survival outcome,

which could in turn shed light on the underlying mechanisms of the disease. We show, using two real

breast cancer microarray datasets, that when the proposed strategy is applied to the prediction methods

of Lasso and Supervised PCA, the model with pathway information as predictors has both improved

prediction accuracy and better interpretability compared to a gene-based prediction model. The details of

the prediction algorithms, software implementations, and performance evaluation criterion for the prediction

methods are presented in Methods.
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2. RESULTS AND DISCUSSION

An overview of pathway-based prediction models

Biologically, a subset of genes from an a priori defined gene set, each contributing a different amount,

work together to bring about changes in a cellular process, and this cellular process then relates to variations

in phenotype. Therefore, for each pathway, our objective is to select the subset of relevant genes, estimate

the latent variable associated with underlying cellular process and then construct prediction model based

on these latent variables. The selection of genes is especially important for gene sets with large number of

genes, therefore, a successful prediction method would need to be able to select pertinent genes in addition

to model variations in outcome.

When using gene sets from databases such as GO, one challenge is that some genes are not yet assigned

to a definite gene category. Rather than discarding these genes, we perform K-means clustering on these

genes to divide them into subgroups with similar expression patterns. To this end, we used the method of

Tibshirani et al. (2001), where the optimal number of clusters was estimated using the Gap statistics. The

resulting clusters or the pseudo gene categories were then combined with other gene sets from GO for

subsequent analysis.

There are two steps for building prediction models based on pathways: (1) for each gene set, select

genes associated with outcome and summarize information from these selected genes by estimating the

underlying latent variable, which are the “super genes;” and (2) construct prediction model using relevant

super genes as predictors. In this paper, we study pathway-based versus gene-based prediction models

using Supervised PCA (Bair and Tibshirani, 2004; Bair et al., 2006) and Lasso because of their simplicity

and popularity, but the proposed strategy can be easily adapted to other prediction models as well.

In the first step, PCA is a good strategy for data reduction and summarization of high-dimensional data

from expressions of multiple genes. However, because PCA is an unsupervised approach, the estimated

principal component (PC) score is often unrelated to outcome. To help ensure that estimated PC is driven

by sources of variations associated with outcome, we used the Supervised PCA method to summarize

information from genes in each pathway. This method selects subset of genes that are most associated with

outcome, with largest log likelihood using cross-validation first and then estimate principal component

using only the selected genes. Because outcome information is used in the gene selection step, this method

is supervised, thus called the “Supervised PCA model.” We call the latent variable (or the first PC score

explaining the largest proportion of variations in outcome) the “super gene” for the pathway. Note that

when evaluating performance of prediction models, only outcomes of training data should be used in

cross-validation to select genes.

In the second step, we apply the SPCA method again, to select supergenes (representing pathways) that

are most significantly associated with outcome. With selected supergenes, principal component regression

model can be constructed, with the first PC scores estimated from selected supergenes (or pathways) as

predictors; this is then the pathway-based prediction model. Similarly, Lasso constructs a linear model

based on pathways by shrinking some of the coefficients of supergenes in the linear regression model to

exactly zero.

Pathway-based prediction models improve prediction accuracy

We compared the pathway-based versus gene-based SPCA and Lasso prediction models using two breast

cancer microarray datasets. The pathway-based models used supergenes, or the first principal component

scores estimated from genes in each pathway as predictors, whereas the gene-based models used expression

values of single genes as predictors.

Wang et al. (2005) studied gene expression profiles from 286 lymph-node-negative breast cancer patients

using Affymetrix U133a GeneChip (GEO accession no. GSE2034). These patients were treated with surgery

or radiotherapy over an 11-year period, but they had not received adjuvant systemic treatment. As another

example, Miller et al. (2005) studied gene expression profiles from 251 Sweden patients using Affymetrix

U133a and U133b platforms (GEO accession no. GSE3494). Among these patients, 236 samples with

follow-up information on time and event of disease-specific survival were used for this analysis.

To estimate prediction accuracy of gene-based versus pathway-based prediction models, for each dataset,

we randomly split the samples into training and testing samples with a 2:1 ratio. So, for the Wang et al.
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(2005) dataset, there were 190 training samples and 96 testing samples, and for the Miller et al. (2005)

dataset, there were 156 training samples and 80 testing samples. We next constructed gene-based and

pathway-based prediction models using training samples and estimated prediction accuracy using testing

samples. Note that, in order to achieve an unbiased evaluation, the models were completely specified using

only the training data; the test samples were never used in any aspect of any model building process.

When evaluating the performances of prediction models for survival outcomes, because of the presence

of censoring, the standard mean-squared-error or misclassification rate criteria are not appropriate. Here, to

account for censoring, we used the method described in Heagerty et al. (2000) for the calculation of time-

dependent operating characteristics curves (ROC) for survival outcome, where the bivariate distribution

function of predictors and survival time were estimated using a nearest neighbor estimator.

Because the survivals of patients change with time, we examined performances of the models over the

entire range of time. In Figure 1, we plotted area under ROC curves (AUC) over time for each model.

At each follow-up time t , we calculated a time-dependent ROC curve, ROC(t), and an overall measure,

AUC(t). The ROC curve shows that the trade-off between sensitivity and 1-specificity as threshold for

declaring disease status is varied; the AUC measures the overall discriminative abilities of the prediction

model over all thresholds. Figure 1 shows the AUCs for the four models over time for the Wang et al.

(2005) dataset and the Miller et al. (2005) dataset. Pathway-based SPCA model consistently outperformed

the gene-based SPCA model over the entire range of time with higher AUC. Similarly, the pathway-based

Lasso model consistently outperformed the gene-based Lasso model, except by a small margin at year 2.

To examine performance of the models more closely, Figure 2 shows the ROC curves estimated at 5-

year follow-up for gene-based and pathway-based models for the two datasets. Note that we accounted for

censoring in the estimation of ROC, so the result is different from ROC calculated from the binary outcome

with 5-year survival as the cut-off. Compared to the gene-based models, the pathway-based models had

better sensitivity across all levels of specificity. For the Wang et al. (2005) dataset, at 5-year follow-

up, the estimated AUCs for pathway-based SPCA and Lasso models were 0.735 and 0.669, respectively,

indicating improved performances over gene-based SPCA and Lasso models, with AUCs of 0.708 and

0.616, respectively. Similarly, for the Miller et al. (2005) data, the AUCs of pathway-based SPCA and

Lasso models at 5-year follow-up were 0.713 and 0.675, again outperforming gene-based SPCA and Lasso

models, with AUCs of 0.672 and 0.458, respectively.

In addition to time-dependent ROC curves, we also compared the gene-based and pathway-based

prediction models using two other measures: p-value and R2 statistic. The p-values were calculated

from likelihood ratio test comparing null model (intercept only) with a model with intercept and the linear

predictor (used in the last step of SPCA or Lasso model to predict survival outcome); therefore, a small

p-value indicates that the linear predictor from a given model is a good predictor for survival outcome. In

the SPCA model, the linear predictor is the supervised principal component score; in the Lasso model, the

linear predictor is the linear combination of predictors after applying shrinkage. The R2 statistic, which

ranges from 0 to 1, represents the proportion of variation in outcome explained by prediction model.

Table 1 shows that results of comparison for the four models using p-value and R2 were consistent with

results using survival ROC curves. For both the Wang et al. (2005) and Miller et al. (2005) datasets,

pathway-based models performed better with larger R2 and smaller p-values.

Factors contributing to improved performance of pathway-based prediction models

We conducted additional study to assess contributions of the following factors for the improved prediction

performance in pathway-based prediction models:

1. Gene screening (feature selection) within each GO category

2. Supergene screening at the pathway level

3. K-means clustering for genes not assigned to any gene category

For each of these contributing factors, we re-run pathway-based SPCA model for both the Wang et al.

(2005) and Miller et al. (2005) datasets, eliminating steps in the model corresponding to each factor, but

keeping all other steps unchanged. More specifically, in model 1, instead of using first Supervised PC score

as supergenes, we used PC score as supergenes in the model re-fitting; in model 2, all supergenes were

used to estimate the first principal component score in the final step of SPCA model; and in model 3, the

genes not assigned to any gene category were removed.
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FIG. 1. Time-dependent AUCs (area under ROC curve) for pathway-based and gene-based survival prediction models

using Wang et al. (2005) dataset (A) and Miller et al. (2005) dataset (B). The AUC measures the overall discriminative

abilities of the prediction model over all thresholds. To account for censoring in survival outcome, the method of

Heagerty et al. (2000) was used for estimation of AUC.

The results in Table 2 show that the within-category feature selection is the most critical step for the

superior prediction performance of pathway-based models. For both datasets, when all genes in each

category were used to estimate supergene values, R2 dropped substantially (0.304 vs. 0.122; 0.160 vs.

0.111), and p-values increased considerably (1:33 � 10�7 vs. 5:79 � 10�2; 2:97 � 10�3 vs. 2:42 � 10�2).

In contrast, selection of supergenes affected prediction performance only slightly, and dropping genes not

assigned to a definite gene category had little impact on prediction performance.

These results suggest that within each category, only a subset of genes may be related to outcome;

therefore, without a gene screening step, when all genes from an a priori defined gene set are used

to estimate principal components, performance of pathway-based prediction model would be adversely

affected by noisy signals from irrelevant genes, especially when the gene-set size is large (Chen et al.,

2008). This is because the estimated supergene (first principal component) is often driven by sources of
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FIG. 2. ROC curves for pathway-based and gene-based prediction models at 5-year follow-up for Wang et al. (2005)

dataset (A) and Miller et al. (2005) dataset (B). The ROC curves show the trade-off between sensitivity and 1-

specificity as threshold for declaring disease status is varied. To account for censoring in survival outcome, the method

of Heagerty et al. (2000) was used for estimation of ROC.

variation unrelated to outcome. In contrast, Supervised PCA removes irrelevant genes before extracting

the desired principal component, thus improving prediction performance in pathway-based models.

Pathway-based models identify biological processes and genes that play important roles

in tumorigenesis

Using all samples, we next constructed SPCA model which had the best prediction performance.

Although datasets in both Wang et al. (2005) and Miller et al. (2005) were from breast cancer patients,

different biological processes were identified because only samples from Wang et al. (2005) were lymph-

node-negative primary breast cancer.

For the dataset in Wang et al. (2005), we estimated supergenes (first principal component score) for each

gene set and constructed the final prediction model with 252 supergenes representing different biological

processes selected by the SPCA algorithm. To rank the selected gene sets, we next computed correla-

tions between supergene values and the first principal component score estimated from all 252 selected

supergenes in the final model. Table 1 shows the 10 supergenes with the highest absolute correlations.

TABLE 1. COMPARISON OF DIFFERENT METHODS USING p-VALUE AND R2

Methods R2 p-value

Wang et al. (2005) data set Gene-based SPCA 0.284 4:94 � 10�7

Pathway-based SPCA 0.304 1:33 � 10�7

Gene-based Lasso 0.060 1:51 � 10�2

Pathway-based Lasso 0.146 9:83 � 10�5

Miller et al. (2005) data set Gene-based SPCA 0.115 2:09 � 10�2

Pathway-based SPCA 0.160 2:97 � 10�3

Gene-based Lasso 0.003 0.646

Pathway-based Lasso 0.093 5:26 � 10�2

The p-values were calculated from likelihood ratio test comparing null model (intercept only)

with a model with intercept and the linear predictor (used in last step of SPCA or Lasso model to

predict survival outcome). The R2 statistic, which ranges from 0 to 1, represents the proportion of

variation in outcome explained by prediction model.
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TABLE 2. FACTORS CONTRIBUTING TO IMPROVED PERFORMANCE

OF PATHWAY-BASED PREDICTION MODELS

Methods R2 p-value

Wang et al. (2005) data set Pathway-based SPCA 0.304 1:33 � 10�7

(1) No gene screening in GO 0.122 5:79 � 10�2

(2) No supergene screening 0.261 2:15 � 10�6

(3) No K-means clusters 0.300 1:66 � 10�7

Miller et al. (2005) data set Pathway-based SPCA 0.16 2:97 � 10�3

(1) No gene screening in GO 0.111 2:42 � 10�2

(2) No supergene screening 0.158 3:12 � 10�3

(3) No K-means clusters 0.160 3:01 � 10�3

For each of the contributing factors (1)–(3), pathway-based SPCA model was re-run, eliminating steps

in the model corresponding to each factor, but keeping all other steps unchanged. In (1), instead of using

first Supervised PCA score as supergenes, we used PCA score as supergenes in the model re-fitting; in (2),

all supergenes were used to estimate the first principal component score in the final step of the Supervised

PCA model; in (3), the genes not assigned to any gene category were removed. The results show that

the within-category feature selection is the most critical step for the superior prediction performance of

pathway-based models. In contrast, selection of supergenes affected prediction performance only slightly,

and dropping genes not assigned to a definite gene category had little impact on prediction performance.

These gene sets are involved in different biological processes such as immune response, ion transport,

protein phosphorylation, and neuron development that are known to play important roles in tumorigenesis

and metastasis. For example, axon-guidance genes have been shown to be genetically and epigenetically

inactivated in human cancers, implying their roles as tumor suppressor genes.

In addition to identifying supergenes representing different biological processes associated with cancer

survival, the pathway-based SPCA model also identified important genes within each gene set. In Table 3,

we list the selected genes used to estimate supergene values. There were a total of 41 genes selected to

estimate supergene values in these 10 gene sets. The relations between these genes and cancer are also

supported by experimental results in the literature. For example, EFNB1 encodes a member of the ephrin

family of transmembrane ligands for Eph receptor tyrosine kinases, and the expression of EFNB1 gene is

regulated by p53 directly (Arakawa, 2005); the product of TGFB2 is transforming growth factor–ˇ, which

has dual roles in beast cancer development; in the early tumor formation stage, TGFˇ is a potent inhibitor

of epithelial cell proliferation, but in the later stages the overexpression of TGFB can accelerate metastases

(Dumont and Arteaga, 2000; Muraoka-Cook et al., 2005).

We next assessed the likelihood of these genes being included in gene-based prediction models. First,

for each gene on the array, we fit univariate Cox proportional hazard regression model with survival

outcome and single gene value as predictor. Next, we ranked p-values from Cox model for all genes.

The mean and median rankings of the 41 genes selected by Supervised PCA algorithm were 1161 and

401, respectively. Among these 41 genes, several well-known cancer prognostic genes, such as TGFB2

(ranking 401), and MYC (ranking 3582) are unlikely to pass the gene screening step to be included in

the gene-based prediction model. Therefore, the pathway-based SPCA model allows one to select genes

that may not be differentially expressed itself, but are significantly associated with the biological process

predictive of survival outcome.

Another feature of the pathway-based SPCA algorithm is that genes that play important roles in multiple

biological processes predictive of survival outcome are automatically assigned more weight. In Table 3,

among the top 10 gene sets, several genes such as IGHM, TNFRSF17, and LTF were selected multiple

times in different gene sets. Among these genes, IGHM and TNFRSF17 are related to immune responses.

IGHM has been shown to have a key prognostic impact in node-negative breast cancer (Schmidt et al.,

2008). This is reasonable since all samples in this dataset were from node-negative patients. In addition,

TNFRSF17 has also been shown to be a good prognosis marker in estrogen-receptor-negative breast cancer

(Teschendorff et al., 2007).

For the Miller et al. (2005) dataset, Table 4 shows the 10 most significant gene sets from pathway-based

SPCA model and 85 selected genes from these gene sets. Most of these gene sets are related to signal



272 CHEN AND WANG

TABLE 3. TEN MOST SIGNIFICANT PREDICTORS FOR PREDICTING SURVIVAL OUTCOME

IN LYMPH-NODE-NEGATIVE PRIMARY BREAST CANCER DATASET (WANG ET AL. 2005)

USING PATHWAY-BASED SUPERVISED PCA MODEL

Gene set Description Set size

No. of

selected

genes Gene symbols

GO:0007411 Axon guidance 46 5 EFNB1, NRXN3, NTN2L,

TGFB2, ATOH1

GO:0006826 Iron ion transport 18 3 LTF, SLC11A1, SLC25A28

GO:0000187 Activation of MAPK

activity

30 3 TDGF1, IGHM, SHC1

GO:0006879 Cellular iron ion

homeostasis

16 6 LTF, MYC, ABCB6, TFRC, TF,

IREB2

GO:0008150 Biological process 503 6 TNFRSF17, C18orf1, IGHM,

BTN3A2, ABO, EPB41L4A

GO:0030890 Positive regulation of B

cell proliferation

5 3 IL7, IL4, IGHM

GO:0050371 Positive regulation of

peptidyl-tyrosine

phosphorylation

10 6 CD81, CD4, TDGF1, CD80,

TNFRSF17, IGHM

GO:0006811 Ion transport 375 10 LTF, TRPC1, GABRG2, KCNS1,

SCN5A, P2RX3, TRPA1,

SLC39A4, SLC25A28,

SLC22A7

GO:0050853 B cell receptor signaling

pathway

5 3 CD79A, IGHM, PTPRC

GO:0007275 Multicellular organismal

development

668 5 MMP11, TNFRSF17, RECQL4,

GREM1, CDX4

“Set size” refers to the number of genes in the GO category. In addition to identifying gene categories associated with outcome,

the pathway-based Supervised PCA model also carries out additional within-category selection to select important genes within

each gene set. “No. of selected genes” refers to the number of selected genes in each gene set that were used to estimate principal

component score or supergene. Gene symbols for the selected genes are listed in the last column.

transduction and response to stimulus. Among them, estrogen receptor signaling pathway is most directly

related to breast cancer, since estrogen receptors are overexpressed in around 70% of breast cancer.

Among the 85 selected genes, NPY1 is the most interesting one since it was selected five times in

the top 10 gene sets, but its single gene ranking is 4599. Another interesting gene is Neuropeptide Y

(NPY), a 36-amino acid peptide neurotransmitter found in the brain and autonomic nervous system, which

plays important roles in food intake, obesity, memory, and anxiety. It had never been linked to cancer

development, until recent findings which showed that the NPY Y1 receptor (NPY1R) subtype is expressed

in 85% of the primary human breast cancer carcinomas (Reubi et al., 2001). Finally, estrogen was also

found to up-regulate NPY1R expression, which is coupled to both cAMP and calcium signaling pathway

to reduce the proliferative activity of estrogen in breast cancer (Amlal et al., 2006). Again, the mean and

median of rankings of Cox model p-values for the 85 genes in the univariate gene list were 5829 and 5650,

respectively, suggesting they are unlikely to be included as predictors in traditional gene-based prediction

models.

3. CONCLUSION

In this paper, we have described a general strategy for constructing survival prediction models by

integrating biological knowledge with gene expression data. We have shown that these pathway-based

models have improved prediction accuracy and interpretability over gene-based prediction models. In

addition to identifying gene categories associated with outcome, the proposed approach also carries out

additional within-category selection to select important genes within the gene sets. These genes can provide
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TABLE 4. TEN MOST SIGNIFICANT PREDICTORS FOR PREDICTING SURVIVAL OUTCOME IN SWEDEN BREAST

CANCER DATASET (MILLER ET AL., 2005) USING PATHWAY-BASED SUPERVISED PCA MODEL

Gene set Description Set size

No. of

selected

genes Gene symbols

GO:0019233 Sensory perception of pain 5 4 NPY1R, NGF, NDN, PENK

GO:0007193 G-protein signaling,

adenylate cyclase

inhibiting pathway

10 6 RGS1, EDG1, NPY1R, OPRD1,

CORT, GPR44

GO:0030520 Estrogen receptor

signaling pathway

9 8 TAF7, RBM14, ESR1, NCOA6,

ARID1A, ESR2, RBM9,

DDX54

GO:0050729 Positive regulation of

inflammatory response

5 3 STAT5A, FABP4, STAT5B

GO:0007631 Feeding behavior 20 12 NPY1R, BDNF, AGRP, HTR2C,

HCRTR1, HCRT CCKBR,

CCKAR, GALR2 PYY, FYN,

MCHR1

GO:0001816 Cytokine production 8 7 CD4, FABP4, PTAFR, CD226,

MAF, NFATC2IP, NOD2

GO:0007026 Negative regulation of

microtubule

depolymerization

10 4 MAP4, MAPT, CLASP2,

MID1IP1

GO:0007626 Locomotory behavior 17 13 SEPP1, HEXA, HEXB, GNAO1,

NPY1R, C1QL1, NOVA1,

PGDS, GRM1, ADRA1B,

NRG1, DRD1, CELSR1

GO:0007187 G-protein signaling,

coupled to cyclic

nucleotide second

messenger

37 29 VIPR1, NPY1R, MC1R, PTHR1,

NPY, CNR2, HTR6, HTR1E,

HTR, OPRD1, HTR7, SSTR1,

MTNR1B, MC5R, HTR1B,

CALCRL, OPRM1, CNR1,

SSTR4, DRD1, CCL2, SSTR2,

HRH3, HRH2, EDG7,

MTNR1A, MC3R, HTR1F,

XCR1

GO:0032012 Regulation of ARF protein

signal transduction

13 6 PSD4, PSD3, PSD, IQSEC3,

ARFGEF2, PSCD4

“Set size” refers to the number of genes in the GO category. In addition to identifying gene categories associated with outcome,

the pathway-based Supervised PCA model also carries out additional within-category selection to select important genes within

each gene set. “No. of selected genes” refers to the number of selected genes in each gene set that were used to estimate principal

component score or supergene. Gene symbols for the selected genes are listed in the last column.

starting points for carrying out additional experiments to understand the disease processes. The power and

potential of the proposed strategy will increase as the coverage and quality of gene annotation databases

improve. Although a comprehensive comparison of pathway-based versus gene-based models is beyond

the scope of this paper, we believe that many other gene-based prediction models will also benefit from

the proposed strategy.

4. METHODS

Supervised PCA method

The details of the Supervised PCA method were described in Bair and Tibshirani (2004) and Bair et al.

(2006). The idea behind the Supervised PCA method is that there is an underlying latent variable U that
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is possibly associated with the outcome. For the i th subject, we have model 1:

Yi D ˇ0 C ˇ1Ui C "i (1)

Here, U represents the underlying biological process. We assume only a subset of genes from all the genes

on each array is related to U . Our objective is then to select these relevant genes, estimate U , and fit

model 1.

We follow these detailed steps:

1. Compute association measure between each gene with outcome.

2. Select genes most associated with outcome using cross-validation.

3. Estimate principle component scores using only the selected genes.

4. Fit regression with outcome using model 1.

In step 1, an association measure with outcome is computed for each gene separately. This can be obtained

by fitting linear, logistic, or proportional hazards models for continuous, binary or survival outcomes

respectively with a single gene as the predictor and take the score statistics for the predictor (gene) as the

association measure. For linear regression, this measure is simply the standardized regression coefficient.

In step 2, a cross-validation procedure is used to select relevant genes by fitting model 1 to leave-out

samples. Specifically,

a. Pre-determine a set of threshold values.

b. For a given threshold value, select only genes with association measure above it. For each cross-

validation (CV) fold, compute PCA scores using training data and save coefficients of the PCA scores

(these are the eigenvectors).

c. Apply these coefficients to leave-out samples to obtain PCA scores for leave-out samples. Fit model 1

to leave-out sample, calculate log-likelihood ratio statistics (LRT) associated with first PCA score.

d. Do this for each CV fold, and average LRTs over all folds. Select threshold value to be the one

corresponding to largest average LRT for leave-out samples in CV.

In step 3, the estimation of PC scores for selected genes can be computed using Singular Value

Decomposition. Briefly, let X be an N � p matrix with columns corresponding to standardized gene

expression values (with mean 0 and variance 1) of selected genes, so there are N samples and p genes.

Let r D rank.X /, the kth PC score is zk D X˛k where ˛k is unit length eigenvector of covariance matrix

S D X
t
X=.N � 1/ corresponding to kth largest eigenvalue �k , and var.zk/ D �k .

The singular value decomposition (SVD) of X is

X D ULA
T (2)

where U D Œu1; u2; : : : ; ur � is an N � r matrix where uk D l
�1=2

k X˛k is scaled kth principal component

score, these are linear combinations of gene expression values corresponding to columns of matrix X.

L D diagfl
1=2
1 ; l

1=2
2 ; : : : ; l

1=2
r g is an r � r diagonal matrix where lk is kth eigenvalue of X t X , A D

Œ˛1; ˛2; : : : ˛r � is a p �r matrix where ˛k is eigenvector of covariance matrix S, which are also coefficients

for defining PC scores. Note that since kth eigenvalue of covariance matrix S is �k D lk=.N � 1/, we

have var.uk/ D 1=.N � 1/. Therefore, SVD provides not only the coefficients and standard deviations for

the PCs with L and A matrices, but also the PC scores of each observation with matrix UL.

L1-regularized Cox proportional hazard models

The Cox proportional hazard model for survival model has the form

�.t jX/ D �0.t/ exp.ˇT X/ (3)

where �0.t/ is baseline hazard function and ˇ is the coefficients vector for predictors X (Cox, 1972). The

parameter ˇ is the maximum likelihood estimate from partial likelihood

L.ˇ/ D
Y

r2D

exp.ˇT xr /
X

j 2Rr

exp.ˇT xj /
(4)
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where D is the set of indices for the failures and Rr is the set of indices for patients at risk at time tr .

For general linear regression, Tibshirani (1996) proposed the “Lasso” method as a variable selection

strategy using L1 penalty. This method is attractive in the high-dimensional problem setting, because it

can shrink coefficients for some of the predictors to exactly zero. For survival analysis, a similar strategy

was proposed for L1-penalized Cox regression model to estimate ˇ with regularization:

Ǒ.�/ D arg min
ˇ

Œ� logfL.ˇ/g C �kˇk1� (5)

where L.ˇ/ is the partial likelihood and � > 0 is the regularization parameter (Tibshirani, 1997). To

increase computational efficiency of the iteratively reweighted least squares (IRLS)–based linearization

optimization method used in Tibshirani (1997), especially for large p and small n situation, a more

efficient algorithm was recently developed by Park and Hastie (2007) for generalized linear models and

Cox models. This algorithm uses the predictor-corrector method to determine the entire path of coefficient

estimates as parameter � varies. The optimal � value is chosen by cross-validation.

In this paper, we used the method of Park and Hastie (2007) for fitting the L1-regularized Cox

proportional hazard models for simulation data and real data (for simplicity, we called this method “Lasso”).

For gene level analysis, the Lasso was fitted using single gene expression values as predictors. For pathway-

based model, the supergenes (estimated from Supervised PCA) from each gene category were used as

predictors for Lasso regression models. The R package glmpath was used for fitting Lasso models.

K-means clustering method and the Gap statistic

The K-means clustering method is a simple but very useful unsupervised data partition algorithm. To

apply this method, first, the number of clusters k is pre-determined for n data points. Next, k-clusters are

obtained by minimizing the squared error function

J D

k
X

mD1

n
X

iD1

kxi � cmk2 (6)

where xi is the i th data point and cm is the centroid of cluster m. Initially, the data points are randomly

assigned to each cluster and centroids are calculated for each cluster, then the data points are assigned to

the closest cluster by measuring the distance between the data point and centroids. These procedures are

iterated until the assignments of all data points do not change.

To avoid arbitrariness for the number k, the Gap statistic (Tibshirani, 2001) was proposed to estimate

the optimal number of clusters for expression values of genes not assigned to any pathway. In our data,

each observation is represented by xij for i D 1; 2; : : : ; n genes and j D 1; 2; : : : ; p individuals. Suppose

all non-annotated gene expression data has been grouped into k clusters,G1; G2; : : : ; Gm, using K-means

method, and let the sample size for each cluster be nm. The within-cluster dispersion measure is then

defined as

Wk D

k
X

mD1

1

2nm

8

<

:

X

i;i 02Gm

E2
i;i 0

9

=

;

(7)

where Ei;i 0 D
q

P

j .xij � xi 0j /2 is the Euclidean distance for two observations in the same cluster. To

determine the optimal cluster number, we followed these steps:

1. Group the data into k clusters by K-means method and calculate Wk .

2. Permute the gene expression observations to generate the new data set B times and repeat step 1 to

have W �

kb
each time.

3. Compute the Gap statistic

Gap.k/ D .1=B/
X

b

log.W �

kb / � log.Wk/ (8)

and the standard deviation sk D
q

BC1
B2

PB
bD1. NWk � log.W �

kb //2 .
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4. Choose the smallest number Ok that satisfies the condition

Gap.k/ � Gap.k C 1/ � skC1:

We used the R package SLmics for k-means clustering and the determination of the optimal number of

clusters.

Pathway-based prediction models

Given a collection of gene sets from gene annotations databases such as GO and a gene expression dataset

from a microarray experiment with survival outcome, there are several steps involved for the construction

of pathway-based prediction models:

(1) Add grouping information to genes in expression data set. For the Wang et al. (2005) dataset, to

integrate gene expression data with gene annotation database GO, we first mapped the 22283 transcripts

from Affymetrix U133A gene chip to EntrezGene IDs and then associated each gene with the GO

“Biological Process” (GO-BP) categories that include it as a member. When multiple probe sets for a

gene were present, the median of all probe sets values was used for further analysis. After these steps, we

were left with 13,441 genes, of which 9983 genes belong to 848 GO categories with gene set size more

than 4, the remaining 3458 genes were divided into 4 groups with similar gene expression pattern using

k-means clustering. The optimal number of clusters, which is 4 in this example, was determined by the

Gap statistic (Tibshirani et al., 2001). Similarly, for the Miller et al. (2005) dataset, we mapped 848 GO

categories, and the remaining 3558 genes were divided into seven clusters. The R packages hgu133a and

SLmics were used for mapping and K-means clustering.

(2) Summarize information from each pathway. For each pathway, we applied the Supervised PCA

method to select a subset of genes that are most associated with outcome. The supergenes or the principal

component scores associated with largest eigenvalue were then estimated using only the selected genes.

The first PC score is the linear combination of gene expression values with the largest sample variance

among all unit-length linear combinations of gene expression values. For simple models, it can be shown

that the PC scores provide an optimal approximation to the original variables (Bair and Tibshirani, 2006).

The R package superpc was used for selection of relevant genes and estimation of PC score.

(3) Construct prediction model based on pathway information. For the Lasso model, the algorithm

in Park and Hastie (2007) was used for fitting L1 regularized Cox proportional hazard models. With

estimated supergenes for each pathway, the R package glmpath was used for constructing pathway-based

Lasso model.

For the Supervised PCA model, the number of principal component scores for the final prediction model

was determined by cross-validation using training data only. The rankings of gene sets in Tables 3 and 4

were determined by absolute correlation between values of supergenes and the first principal component

score in the final pathway-based prediction model. The R package superpc was used for constructing the

pathway-based Supervised PCA model.

For gene-based prediction models, gene expression values from single genes were used as predictors, and

the R packages glmpath and superpc were used for the Lasso and Supervised PCA models, respectively.

Performance evaluation for predicting survival outcomes

The time-dependent ROC method for censored survival outcomes was developed by Heagerty et al.

(2000). For survival time prediction, letf .x/ be the predictive model based on genes x, let D.t/ D 1 or 0

be disease status for patient at time t . The time-dependent sensitivity and specificity at time t for cut-off

point c, are defined as

sensitivity.c; t/ D Prff .x/ > c j D.t/ D 1g (9)

specificity.c; t/ D Prff .x/ < c j D.t/ D 0g (10)
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and these conditional probabilities can be estimated using a nearest neighbor estimator for the bivariate

distribution function of .x; T /, where T is survival time. The time-dependent ROC curve at time t ,

ROC(t j f .x/), is a plot of sensitivity(c; t j f .x// versus 1-specificity(c; t j f .x// with all possible cut-off

values c. The area under the time-dependent ROC curve is defined as time-dependent AUC(t). We used

the R package survivalROC for the calculation and graphing of time-dependent ROC curves.
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