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Abstract

High-throughput methods for identifying protein-protein interactions produce increasingly 

complex and intricate interaction networks. These networks are extremely rich in information, but 

extracting biologically meaningful hypotheses from them and representing them in a human-

readable manner is challenging. We propose a method to identify Gene Ontology terms that are 

locally over-represented in a subnetwork of a given biological network. Specifically, we propose 

several methods to evaluate the degree of clustering of proteins associated to a particular GO term 

in both weighted and unweighted PPI networks, and describe efficient methods to estimate the 

statistical significance of the observed clustering. We show, using Monte Carlo simulations, that 

our best approximation methods accurately estimate the true p-value, for random scale-free graphs 

as well as for actual yeast and human networks. When applied to these two biological networks, 

our approach recovers many known complexes and pathways, but also suggests potential functions 

for many subnetworks. Online Supplementary Material is available at www.liebertonline.com.
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1. INTRODUCTION

Gene ontologies provide a controlled, hierarchical vocabulary to describe various aspects of 

gene and protein function. The Gene Ontology (GO) Annotation project (Ashburner et al., 

2000) is a literature-based annotation of a gene’s molecular function, cellular component, 

and biological processes. GO analyses have become a staple of a number of high-throughput 

biological studies that produce lists of genes behaving interestingly with respect to a 

particular experiment. For example, a microarray experiment may result in the identification 

of a set of genes that are differentially expressed between normal and disease conditions. A 

GO term (or category) τ is said to be over-represented in a given list if the number of genes 

labeled with τ contained in the list is unexpectedly large, given the size of the list and the 
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overall abundance of genes labeled with τ in the species under consideration (see tools like 

GoMiner [Zeeberg et al., 2003], Fatigo [Al-Shahrour et al., 2004], or GoStat [Beissbarth and 

Speed, 2004]). Statistical over-representation is an indication that the GO category is 

directly or undirectly linked to the phenomenon under study. We say that this kind of set of 

differentially expressed genes is unstructured, in the sense that all genes within the list 

contribute equally to the analysis. A slightly more structured approach consists of 

considering an ordered list of genes, where genes are ranked by their “interest” with respect 

to a particular experiment (e.g., degree of differential expression). There, we seek GO terms 

what are surprisingly enriched near the top of the ranked list. This is the approach taken by 

the highly popular GSEA method (Subramanian et al., 2005), which generalizes this to 

include many kinds of gene annotations other than GO.

We propose taking this type of analysis one step further and applying GO term enrichment 

analysis to even more highly structured gene sets: biological networks. In such networks, 

genes (or their proteins) are vertices, and edges represent particular relationships (e.g., 

protein-protein interaction, regulatory interaction, genetic interaction). Given a fixed 

biological network G and a gene ontology annotation database, our goal is to identify every 

term τ such that the genes labeled with τ are unexpectedly clustered in the network (i.e., 

they mostly lie within the same “region” of the network). This local over-representation 

indicates that τ is likely to be linked to the function of that sub-network.1 Indeed, and 

unsurprisingly, GO term clustering has been observed to occur in most types biological 

networks (Daraselia et al., 2007; Li et al., 2008), and has been used as a criterion to evaluate 

the accuracy of computational complex or module prediction (Mete et al., 2008). However, 

to our knowledge, the problem of identifying locally over-represented GO terms in a 

network has never been formulated or addressed before.

This problem has a number of applications. High-throughput technologies generate large 

networks (thousands of proteins and interactions) that are impossible to analyze manually. 

Graph layout approaches (reviewed in Suderman and Hallett, 2007), which are integrated in 

many network visualization packages such as VisANT (Hu et al., 2004) and Cytoscape 

(Shannon et al., 2003), can help humans extract biological meaning from the data, but 

revealing all aspects of a complex data set in a single layout is impossible, and often, key 

components of the network remain unstudied because the layout used did not reveal them 

visually. Various approaches have been proposed to ease the analysis of biological networks, 

including packages performing graph clustering and path analysis (e.g., NeAT [Brohe et al., 

2008; Shannon et al., 2003]). Several methods have been proposed to identify pathways 

(Shlomi et al., 2006) within PPIs or combine expression data with PPI networks to infer 

signaling pathways (Scott et al., 2006). Expression data was also used to identify functional 

modules in PPI networks with a solution based on an integer-linear programming 

formulation (Dittrich et al., 2008). Another popular strategy starts by identifying dense 

subnetworks within the network (using, for example, MCL [Enright et al., 2002]), and then 

evaluates various biological properties of the subnetwork, including GO term enrichment 

(Sen et al., 2006).

1We note that in cases where the GO annotations themselves may be based on the PPI network, our analysis would form circular 
argument. However, GO annotations are based on a wide range of evidence and are rarely based on PPIs alone.
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Our proposed approach identifies subsets of genes that share the same GO annotation and 

are highly interconnected in the network, thus formulating the hypothesis that the function 

of the subnetwork is related to that GO annotation. This reduces the complexity of the data 

and allows easier grasp by human investigators. Our approach could be extended to help 

function prediction: genes with incomplete functional annotation that are found to be highly 

interconnected with a set of genes of known function can be expected to share that function 

(Chua et al., 2006; Sharan et al., 2007).

In this article, we define formally the problem of identification of locally enriched GO 

categories for unweighted and weighted undirected interaction networks. We start by 

defining two measures of clustering of a set of genes within a given weighted or unweighted 

network. We then discuss the critical question of assessing the statistical significance of the 

local clustering scores using analytical approaches of a given GO term within the network, 

under a null hypothesis where vertices are selected randomly (empirical approaches for 

shortest path distance significance have been proposed previously [Said et al., 2004]). We 

show that the exact computation of this probability is NP-hard, but we provide several 

efficient approximation methods. These p-value approximation methods are shown to be 

accurate on random scale-free graphs, as well as on large-scale yeast (Krogan et al., 2006) 

and human (Coulombe et al., 2008; Jeronimo et al., 2007) protein-protein interaction 

networks. We then refine each significant gene sets to core subsets that contribute the most 

to its statistical significance. Our analysis identifies regions of these two networks with 

known function. It also suggests interesting functions for regions of the network that are 

currently poorly understood.

2. METHODS

We are looking for GO terms whose distribution across a given network is non-random. In 

particular, we are interested in finding terms that are tightly clustered within the network. 

Let G = (V, E) be an undirected, unweighted graph, where V is a set of n proteins and E is a 

set of pairwise interactions between them. The Gene Ontology project assigns to each gene a 

set of functional annotations, using a controlled vocabulary. For a given GO term τ, let V (τ) 

⊆ V be the subset of the proteins annotated with that term. Our goal is to investigate, for 

every possible term τ, whether V (τ) is particularly clustered in G, which would hint to the 

fact that τ is particularly relevant to the function of that subgraph. To this end, we introduce 

in Section 2.1 two measures of clustering, as well as their generalizations to weighted graph, 

and show in Section 2.2 how to measure their statistical significance.

2.1. Measures of clustering on a network

A number of approaches have been proposed to measure the clustering of a set of vertices 

within a given graph, and to identify dense clusters (e.g., MCL [Enright et al., 2002]; for see 

a review, Brohe and van Helden [2006]. We focus on two simple but effective clustering 

measures, for which the statistical significance can be accurately approximated analytically.

2.1.1. Total pairwise distance—Given two vertices u and v in V, let dG (u, v) be the 

length of a shortest path from u to v in G. Since G is undirected, dG is symmetric. The 

distance matrix dG can be computed in time O(|V|3) using the Floyd-Warshall algorithm 
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(Floyd, 1962; Warshall, 1962). Let W be a subset of V. Then, the total pairwise distance for 

W is defined as

(1)

If most of the vertices in V (τ) are in the same region of the graph (e.g., the gray or black 

vertices in Fig. 1), then TPD(V (τ)) will be smaller than that of most random subsets of |V 
(τ)| vertices and τ will be reported as potentially interesting.

2.1.2. Random-walk based similarity—One issue with the TPD clustering measure is 

that it does not take into consideration the degree of the nodes on the path between the two 

proteins, in such a way that, for example, the two sets of proteins shown in black and gray in 

Figure 1 will get the same total pairwise distance (and, eventually, the same p-value), 

although intuitively the gray cluster appears more interesting. In addition, if the vertices in 

W form more than one dense subgraphs, and these clusters are far away from each other, the 

TPD measure may not reveal anything unusual. We introduce an alternative to the total 

pairwise distance, which we call the Probability of Staying within the Family (PSF) 

clustering measure. This random-walk based similarity measure shares a relationship with 

diffusion kernels (Kondor and Lafferty, 2002). The PSF for a subset of vertices W is defined 

based on the following random process (similar to that modeled by MCL [Enright et al., 

2002]), parameterized by a user-defined probability p: (i) Randomly select a vertex from W 
as a starting point; (ii) When at vertex u, stop with probability p, or, with probability 1 − p, 

continue to a vertex v uniformly chosen from the neighbors of u. Then, PSFp(W) is defined 

as the probability that the vertex where the process stops is an element of W. We note first 

that this process does make a difference between the two subsets in Figure 1 and will also 

assign a high score to a subset W that would consist of several dense but widely separated 

clusters.

If AG is the adjacency matrix of G and degG(u) is the degree of vertex u, then the transition 

probability matrix TG for this random walk is defined as

(2)

and the probability Pu,v of stopping at vertex v, starting from vertex u, is given by

Thus,
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and we obtain that, as for the total pairwise distance, the PSF measure is a sum of pairwise 

scores, with sG(u,v) = Pu,v/|W|.

2.1.3. Generalization to weighted graphs—Edge weights are often used in protein-

protein interaction networks to reflect the confidence that a given interaction is a true 

positive. Such scores can be provided by mass spectrometry analysis programs (e.g., Mascot 

[Perkins et al., 1999] or PeptideProphet [Choi and Nesvizhskii, 2007]). Both the TPD and 

PSF clustering measures can be adapted in the context of a weighted graph. The weighted 

TPD (WTPD) measure is obviously generalized using the weighted shortest path distances 

for dG in Equation 1. In this case, edges are weighted as

where mascot(e) is the Mascot score associated with edge e and maxMascot = 500. The 

obtained weighted distance matrix will be referred as dGW. This measure penalizes paths 

with low confidence scores, therefore when the vertices in V (τ) are located in the same 

region of the graph and edges connecting those vertices have high confidence, WTPD(V (τ)) 

will be small.

A generalization of PSF to WPSF is obtained by replacing the adjacency matrix AG by the 

weighted adjacency matrix AGW in Equation 2, where

The resulting weighted similarity matrix will be referred to as sGW.

The methods proposed in Section 2.2 to assess statistical significance apply to both TPD and 

PSF, and their respective weighted versions.

2.2. Measuring the statistical significance

Given a matrix M|V|×|V| containing pairwise distances (dG or dGW), or similarities (sG or 

sGW), we consider the random variable obtained as follows. Let R = {r1, r2, …, rk} ⊆ {1, …, 

n} be a randomly selected subset of proteins of cardinality k. We are interested in the 

distribution of the random variable Sk = Σi, j∈R, i <j Mi, j. When using the weighted or 

unweighted TPD clustering measure, the p-value for GO term τ will be obtained as p-
valueTPD(τ) = Pr[S|V (τ)| ≤ TPD(V (τ))], whereas when using the PSF clustering measure, 

the p-value will be obtained as pvaluePSF(τ) = Pr[S|V (τ)| ≥ PSFp(V (τ))]. Note that there is 
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no need to adjust the p-values for k since we are analyzing a different distribution for each 

Sk.

A note on complexity—We first observe that computing the exact distribution of Sk 

when M = dG is NP-hard. Indeed,  is non-zero if and only if G contains a k-

clique. Therefore, we cannot expect an exact polynomial time algorithm. Although more 

difficult to prove, the same is likely true for PSF. We thus investigate three approaches that 

give approximations to the desired probability distributions.

2.3. Normal approximation

Being a sum of  random variables, the distribution of Sk should converge to a normal 

distribution as k and |V| become large (Central Limit Theorem), if these random variables 

were independent. Although these variables are clearly not independent (for example, in the 

case of TPD, they must satisfy the triangle inequality), it turns out that the normality 

assumption sometimes yields a useful approximation to the true distribution. The 

expectation of Sk can be calculated exactly in time O(|V|2). Let  be 

the average pairwise score in M. Then

The variance of Sk is more challenging to obtain. We have , where

The running time of the variance computation is thus O(n4), which, in many cases, is 

prohibitive. However, when a ≠b ≠c ≠d, Ma,b is nearly independent from Mc,d, so
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We call this approach the normal approximation method.

2.4. Convolution-based approaches

Considering again a random subset of vertices R = {r1, r2, …, rk}, we define the random 

variables Zi,j = Mri,rj, for 1 ≤ i < j ≤ n and , for i = 2 …k (Fig. 2). In this 

section, we assume that the scores in M are integers. This will always be the case when M = 

dG. When M = sG, M = sGW, or M = dGW, we assume that elements of M has been 

appropriately discretized to integers. Observe that . The 

random variable Sk is a sum of  random but dependent variables. If we ignored the 

dependencies, the distribution of Sk could be obtained as the -fold self-convolution of 

the discrete distribution fG, where  is the fraction of 

entries in M with value a. This turns out to produce a very poor approximation of the 

distribution of Sk, severely underestimating the correct probability for small values of Sk. 

We can improve the situation by modeling some of the dependencies. Again, the family of Y 

random variables are dependent: in particular, if  is small, i.e., r1, …, rk − 1 

form a tight cluster, then the variance of Yk is increased, because the variables Z*,k are 

highly dependent on each other (e.g., if Zi,k is small, then Zi′, k is also likely to be small, 

because i and i′ belong to the same tight cluster). We consider two approaches to the 

problem: the first calculates nearly exactly the distribution of the Yi’s but ignores their 

dependencies, while the second models the dependencies more accurately but is less 

accurate at the level of each distribution.

The Y-convolution method—Let  be the fraction of pairs of 

vertices (i,*) with score a and let  be the l-fold self-convolution of gi. Then, 
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 (this is an approximation because the convolution 

models a situation where the random subset R would be allowed to repeatedly pick the same 

pair of vertices). Assuming the independence of the Yi’s, the distribution of Sk would be 

obtained by the convolution y2 * y3 * …* yk. We will refer to this approximation as the Y-
convolution method. Its running time is O(|V|2k2d2), where d is the diameter of G, although 

the use of Fast Fourier transforms to compute convolutions may yield significant 

improvements. In the context of WTPD, PSF, or WPSF the running time becomes O(|V|2 k2 

(δ · κ)2), where δ is the discretization factor and κ is maxu, v∈V, u<v dGW (u, v), maxu, v∈V, 

u<v sG(u, v), or maxu, v∈V, u<v sGW (u, v), respectively.

The triangle decomposition methods—An alternate approach is to use a dynamic 

programming algorithm to better model dependencies (Fig. 2b):

Define , for 1 ≤ k′ < k, so that Yk = Tk−1,k. The term of the form Pr[Yk = 

b|Sk−1 = c] = Pr[Tk−1, k = b|Sk−1 = c] is calculated using another convolution-based dynamic 

programming algorithm.

It is most likely impossible to calculate exactly and in polynomial time Pr [Zk′, k = b − d|Sk

−1 = c, Tk′−1, k = d], as otherwise the derivation above would give the exact probability 

distribution for Sk, which we have shown to be an NP-hard problem. Instead, we boil down 

the information in the condition (Sk−1 = c, Tk′−1, k = d)) to a simpler condition for which the 

conditional probability is easier to compute. Notice that if Sk−1 = c, the average pairwise 

distance among r1, …, rk−1 is . Also, if Tk′−1, k = d, then the average 

pairwise distance between rk and r1, …, rk′ − 1 is l2 = d/(k′ − 1) is l2 = d/(k′ −1).

Rounding approach—We assume that the desired condition can be represented as the 

condition Z1, k′ =Z2, k′ = …= Zk′ −1, k′= [l1], Z1, k = Z2, k = …= Zk′ −1, k = [l2], where [l1] 

is the rounding of l1, and similarly for l2. The information on Zk′, k thus comes in the form 

of k′ − 1 nearly independent pairs (Zi, k′ = [l1], Zi, k = [l2]). Let t(a, b, c) be the number of 

triplets 1 ≤ i < j < k ≤ n such that M(i, j) = a, M(i, k) = b, M(j, k) = c. Assuming the 

independence of the k′ − 1 conditions, the desired posterior probability of Zk′, k is obtained 

as:
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where ζ is a normalizing constant that does not need to be computed (it is sufficient to 

normalize the distribution to make it sum to 1).

Interpolation approach—The rounding procedure yields a rather crude modeling of the 

actual posterior probability, especially when l1 or l2 are far from [l1] or [l2], respectively. A 

better modeling may be obtained as follows. Instead of assuming that all k′ − 1 condition 

pairs have the same values [l1] and [l2], we assume N00 = frac(l1) · frac(l2) · (k′ − 1) pairs 

have values (⌊l1⌋,⌊l2⌋), N01 = frac(l1) · (1 − frac(l2)) · (k′ − 1) pairs have values (⌊l1⌋, ⌈l2⌉), 
N10 = (1 − frac(l1)) · frac(l2) · (k′ − 1) pairs have values (⌈l1⌉, ⌊l2⌋), and N11 = (1 − frac(l1)) · 

(1 − frac(l2)) · (k′ − 1) pairs have values ⌈l1⌉, ⌈l2⌉). We thus approximate:

Both triangle convolution approaches run in time O(k6d3 + |V|3) in the case of TPD, where d 
is the diameter of G. For WTPD, PSF, or WPSF the running time is O(k6(δ · κ)3 + |V|3), 

where δ is the discretization factor and κ is maxu, v∈V, u<vdGW (u, v), maxu, v∈V, u<v sG (u, 

v), or maxu, v∈V, u<v sGW (u, v), respectively.

2.5. Identification of core subgraphs

If a GO term τ obtains a small p-value from one of the methods described above, this means 

that the genes in V (τ) are unexpectedly clustered within G. This does not, however, mean 

that every gene in V (τ) belongs to that dense cluster, but only that a significant subset of V 
(τ) does. We call the core(τ) ⊆ V (τ) the set of mutually exclusive subsets of V (τ) that 

contributes the most to its statistical significance, i.e., the set of one or more subsets of genes 

in V (τ) that are the most significantly clustered. core(τ) may consist of a single dense 

cluster, or of several dense but distant clusters. In most situations, it is core(τ), rather than V 
(τ), that sheds the most light on the function of a portion of a network. We use a simple 

partitioning algorithm (Algorithm 1) to reduce V (τ) to core(τ), by first building a hierchical 

clustering tree of the proteins using average linkage algorithm and TPD, PSF, WTPD, or 

WPSF measures. Each node of the tree represents the set of proteins below it in the tree and 

p-values can be assigned to each node using one of the approaches proposed in Section 2.2. 

We then recursively traverse the tree starting from the root exploring, and deciding to keep 

the current cluster or to split it into two subclusters corresponding to the left and right 

subtrees, based on the p-values at the current node and the two children (see Algorithm 2). 

The construction of the tree with hierchical clustering runs in O(|V (τ)|2 · log(|V (τ)|)) and 

identifying the cores runs in O(|V (τ)|). This heuristic algorithm does not guarantee 

optimality but generally succeeds at identifying the key components of V (τ). The results 

presented in Section 3.2 are the cores of the GO terms that obtained good p-values.
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2.6. Implementation considerations

The implementation of some of the four approximation schemes described in this section 

proves quite technically challenging, with issues of numerical precision arising for the two 

triangle convolution. Our crude approach to the problem is to make sure that, at every step, 

the intermediate probability distributions are properly normalized to sum to 1, although 

more subtle approaches would certainly improve our accuracy. Another issue is the time and 

memory required for the computation of the triangle convolution approaches, which require 

the storage of numerous large intermediate tables, currently limiting their utilization to the 

computation of p-values for values of k less than 25. Program optimizations were required to 

accelerate the running time for the triangle convolution approaches. They consist in stopping 

the computations of a distribution for a given Sk when the only probabilities left to compute 

are those at the right tail of the distribution that are smaller than the 64-bit double precision. 

The discretization level chosen to be applied for the PSF, WTPD, and WPSF methods was 

also an important aspect to consider in the implementation. A coarse discretization of the 

distributions can accelerate the running time for methods like the Y-convolution or both 

triangle convolutions, but provide a rather inaccurate estimation of the final distributions of 

Sk. On the other hand, a much finer discretization would require much more computational 

time but would yield a more accurate approximation. The challenge resides in determining 

the degree at which the distribution will be discretized in order to compute in reasonnable 

time an accurate distribution approximation.

3. RESULTS

3.1. Accuracy of p-value approximation methods

The accuracy of our four p-value approximation schemes can be assessed by Monte Carlo 

simulations: for a given graph G, repeatedly sample randomly a subset of k vertices and 

compute the sum of pairwise scores to eventually obtain an unbiased estimate of the true 

distribution. The limit of this approach is of course that the accuracy of the estimation 

depends on the number of samples, making small p-values difficult to estimate quickly.

We have measured the accuracy of our approximation approaches on both simulated and 

actual biological networks. Protein-protein interaction networks have been reported to be 

accurately modeled by scale-free random graphs (Barabasi and Albert, 1999), although 

geometric random graphs have also been used (Przulj et al., 2004). We randomly generated 

scale-free graphs with 1000 vertices and a number of edges ranging from 1000 to 3000. In 

total, 2100 random graphs were generated. The distributions of the TPD and PSF score were 

estimated empirically, using 106 samples, for each graph and each value of k = 5, 10, 20, 50. 

For each combination, critical values Z0.1, Z0.01, and Z0.001 were estimated as being the 

value of TPD and PSF that obtains the empirical p-value 0.1, 0.01, and 0.001, respectively. 

Each of the four analytical approximation methods2 were then used to estimate the p-values 

for Z0.1, Z0.01, and Z0.001. Figures 3 and 4 report the accuracy of the p-values produced by 

each of our methods for the TPD and PSF clustering measures, for the target p-values 0.1, 

2Note that the triangle decomposition with interpolation approximation was not performed for PSF because of its high memory and 
running time requirements.

LAVALLÉE-ADAM et al. Page 10

J Comput Biol. Author manuscript; available in PMC 2015 December 03.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



0.01, and 0.001, and for k = 5, 10, 20, 50. We start by observing that although our p-value 

approximation methods apply in principle to both the TPD and PSF clustering measures, 

specificities of these data sets result in our methods behaving quite differently. This is due to 

the fact that the similarity scores that constitute the PSF clustering scores exhibit much 

stronger inter-dependencies than the pairwise distances that constitute the TPD clustering 

score, resulting in worse approximations when independence in assumed. Our observations 

are summarized below:

• Y-convolution: In the case of TPD, this method severely underestimates small p-

values, by a factor ranging from 2 to 100 for k = 5 to more than 104 for k = 50. 

This due to the fact that dependencies in the graph are greatly underestimated. 

However, the approximation improves with the edge density. On the contrary, the 

method works quite well on PSF clustering for graphs with low edge density, but 

it severely underestimates p-values of highly connected graphs.

• Normal approximation: This approximation obtains much better results than 

the Y-convolution approximation in the case of TPD clustering, producing p-

values that generally slightly over-estimate the correct p-value (1- to 3-fold for 

small k, 10- to 50-fold for k = 50). Surprisingly, although, for small k, the quality 

of the approximation improves with the edge density, the opposite trend is 

observed for larger k. However, for PSF clustering, this yields an extremely poor 

approximation for all values of k, erring by a factor ranging from 1010 to 1060 for 

a true p-value of 0.001.

• Triangle decomposition with rounding: We found that this method is an 

improvement to the Y-convolution approximation for TPD clustering since it 

does not underestimate as much p-values for small k (factor ranging from 2 to 10 

for k = 5 and from 10 to 100 for k = 10). However, it behaves more irregularly 

for k = 20, underestimating the p-values by a factor greater than 100. This 

approach also yield good approximations for PSF clustering, overestimating 

small p-values for any k by a small margin. Interestingly, for both clustering 

measures, the accuracy of this approximation does not seem to be affected by the 

edge density of the network.

• Triangle decomposition with interpolation: The results obtained from this 

method on TPD clustering are comparable to the normal approximation 

estimation. For p-values 0.01 or less, computed p-values are slightly over-

estimating the correct p-values (1- to 4-fold for small k). It sometimes even 

provides a tighter upper bound on the correct p-values. Again the accuracy of the 

p-value estimation for this method is not influenced by the edge density. We 

were unable to use this approximation for PSF because of high running time and 

memory requirements of the method.

Notably, all 4 methods behaved extremely similarly in terms of accuracy for both WTPD 

and WPSF compared to their respective unweighted version TPD and PSF. Overall, we 

conclude that given how quickly it can be computed, the normal approximation approach is 

the best tradeoff between running time and accuracy for TPD. However, the quality of that 

approximation degrades with the edge density, which is not the case for the two Triangle 
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convolution approaches. This is an important point since we expect protein-protein 

interaction networks to gain in edge density as new high-throughput assays become 

available. The Triangle convolution approach is also the most accurate for PSF. It is the only 

method providing tight upper bounds on p-values even for large k in highly connected 

graphs. However, because of its intensive use of memory and slow running time, it is hard to 

obtain p-value approximations for very large k. Since it produces p-value approximations in 

a much more reasonable time, the Y-convolution method can be used in this situation.

Our results on two larger actual PPI networks in yeast (Krogan et al., 2006) and human 

(Jeronimo et al., 2007) (see Section 3.2) largely confirm our observations on random graphs. 

Figure 5 shows the complete TPD distributions (for k = 10) obtained by Monte Carlo 

simulations, as well as each of our approximation methods, for the Krogan et al.’s yeast PPI 

network, which consists of more than 2500 proteins and 7000 interactions.

Of the four approximation methods proposed, the fastest is the normal approximation (Table 

1). The Y-convolution method is approximately 10-fold slower, while the two triangle-based 

convolution approaches are several orders of magnitude slower. Note that for PSF, Triangle 

convolution with interpolation runs several order of magnitude slower than the values 

presented.

3.2. Biological analyses

We first applied our analysis using TPD to the yeast protein-protein interaction data set 

produced by Krogan et al. (2006). We analyzed the largest connected component of their 

“core” network, which consists of 2559 proteins and 7037 interactions. Of the 299 GO terms 

present more than twice in the network, 91 obtained a normal approximation (conservative) 

p-value below 0.05 (corresponding to a ), and 42 obtain a p-value 

below 0.001 ( ). As seen in Figure 6, the GO terms with significant 

p-values allow the automated annotation of much of the network. For many of the GO terms 

reported, our results reflect known protein complexes (e.g., ribosome, ribo-nuclease MRP, 

general pol-II transcription factors). Other clusters, often the larger, more diffuse ones, do 

not correspond to complexes but rather contain proteins that interact with many of the same 

partners (e.g., the translation initiation factors or the signal sequence binding proteins). 

While most GO terms form a single, dense cluster, some (such as the structural components 

of the ribosome, the general RNA pol-II TFs, and the endopeptidases) are broken into two or 

three dense subgroups. Many of the fundamental functional interactions between groups of 

proteins of different function immediately stand out, for example the interplay between 

histone deacetylases (yellow), histone acetyltransferases (in cyan), and ATP-dependent 3′-5′ 
DNA helicases (in green). The annotated network is clearly more interpretable and readily 

allows the formulation of specific hypotheses about the function of various unannotated 

proteins and of the various interactions observed. For complete results, see online 

Supplementary Material at www.liebertonline.com.

Finally, we analyzed a human protein-protein interaction network published by Jeronimo et 

al. [Coulombe et al., 2008] using PSF and WPSF. The network contains 1053 proteins and 

2014 interactions, built from 32 tagged proteins and their interactors in the soluble fraction 
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of HEK293 cells. The tagged proteins are predominantly proteins related to the (extended) 

transcription machinery. As can be seen from Figure 7a, the network is quite dense and 

existing automated layout systems fail to reveal much of the biological information 

contained in the graph. We ran our analyses on the network to identify which of the 135 GO 

categories present more than twice in the graph show unexpected clustering. Twenty-four 

GO categories obtained p-values below 0.05 (  for PSF and 19 for 

WPSF ( ; see online Supplementary Material at 

www.liebertonline.com). Genes belonging to some of these categories are colored coded in 

Figure 7b (several categories are somewhat redundant; only one representative per group is 

shown). When the graph is manually laid out to highlight the connectivity among the 

selected protein groups (Fig. 7b), the role of several subnetworks is clearly revealed. For 

example, we can easily identify subunits of the RNA polymerase I, II, and III, classified by 

GO as “DNA-directed RNA polymerase activity,” which are clustered together. We also 

notice that RPAP1 is tightly connected to the POLR2 subunits within that cluster. This 

corroborates the observation of Jeronimo et al. where RPAP1, XAB1, C1ORF82, and 

FLJ21908 (now referred to as RPAP2 and RPAP3, respectively) are forming an interface 

between the RNA polymerase II subunits and some molecular chaperone and prefoldins. We 

can also see that our method, by highlighting this GO term, facilitated the visualization of 

the interactions between the POLR2 subunits with the XAB1, RPAP2, and RPAP3 proteins. 

Hexamethylene bis-acetamide inducible (HEXIM) proteins were also found to be clustered 

with cyclin-dependent kinase 9 (CDK9) and cyclin T1 (CCNT1), both members of the P-

TEFb complex (Peng et al., 1998). All of these are associated with the GO term “snRNA 

binding.” Interestingly, HEXIMs are known to be inhibitors of the cyclin-dependent kinase 

activity of P-TEFb (Barboric et al., 2005; Byers et al., 2005). In addition, BCDIN3 (also 

known as MEPCE) and SART3, which are part of the 7SK snRNP complex, itself containing 

P-TEFb, are closely associated with HEXIMs and CDK9 (Jeronimo et al., 2007; Coulombe 

et al., 2008). Finally, numerous TATA box binding protein (TBP)–associated factors (TAFs) 

and a general transcription factor II (GTF2A1), all sharing the “general RNA polymerase II 

transcription factor activity” GO function, were found to be significantly clustered. Many of 

these TAFs and GTF2A1 are interacting with TBPL1, another protein playing a key role in 

transcription (Ohbayashi et al., 1999).

4. CONCLUSION

The idea described in this article, of seeking gene attributes that cluster within a given 

network, can be used to annotate PPI networks with any type of gene or protein features. 

Besides gene ontologies, we are currently expanding our tool to use protein domains from 

the PFAM database (Finn et al., 2008), pathways from the KEGG database (Kanehisa et al., 

2008), and gene expression data. Indeed, any annotation coming in the form of gene sets can 

be used to annotate the network, including, for example, those collected through the laudable 

efforts of the GSEA (Subramanian et al., 2005) team.

In the future, we will try to improve the accuracy and efficiency of our approximation 

algorithm. We will also seek provable approximation bounds for the p-value estimation 

problem. Currently, one of the main computational issues is that some of our best 
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approximation methods are quite slow and require a lot of memory. More efficient 

implementations would thus have a significant practical impact.

In this article, we only studied the simplest version of a family of interesting problems. A 

number of extensions will be considered. One important generalization is to consider 

directed graphs. In these graphs, the edge directions represent biological information about 

the tag experiment that was performed. For instance, an edge would connect two proteins 

from the tagged protein to the purified protein. We are also considering the problem where 

gene annotations are not in the binary form (i.e., they belong to a given gene set or now) but 

are more quantitative measures, such as gene expression.

As we discussed previously, our method could be used for protein function prediction. For a 

given set of proteins sharing the same GO term that are surprisingly clustered, 

uncharacterized proteins co-clustering with the GO term could be expected to share the same 

GO annotation. Another exciting prospect is to use this type of local over-representation to 

search for sequence motifs. One would seek motifs that are locally enriched in a subnetwork 

of the graph. Locally over-represented motifs found in protein sequences may correspond to 

new domains or localization signals. Those found in the 5′ or 3′ UTRs of genes may 

contain mRNA localization signals or post-transcriptional regulatory elements relevant to the 

subnetwork, while those found in the regulatory regions (promoters and enhancers) would 

allow the coordinated transcription of the proteins in the subnetwork.

The Java program used to identify GO terms enriched in subnetworks is available as online 

Supplementary Material at www.liebertonline.com.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Example of a toy PPI network. The black and gray subsets of vertices obtain the same Total 

Pairwise Distance (13), but the gray subset obtains a higher Probability of Stopping within 

the Family (PSF).
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FIG. 2. 
Definition of the variables used in the convolution approaches. (a) Y-convolution method. 

(b) Triangle decomposition method.
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FIG. 3. 
P-values predicted by our four approximation schemes (normal, red; Y-convolution, blue; 

triangle convolution with rounding, yellow; triangle convolution with interpolation, green) 

for the TPD clustering measure. Each data point records the approximated p-value (y-axis) 

for the TPD score that obtained the given empirical p-value (0.001, 0.01, 0.1), on a random 

scale-free graph with 1000 vertices and the given number of edges (x-axis). The triangle 

convolution with rounding method was too slow to be evaluated for k > 20, and that with 

interpolation could only be run for k = 5 and k = 10.
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FIG. 4. 
P-values predicted by three approximation schemes (normal, red; Y-convolution, blue; 

triangle convolution with rounding, yellow) for the PSF clustering measure. See caption of 

Figure 3. The triangle convolution with rounding method was too slow to be evaluated for k 
> 20 and some graphs for k = 20. The triangle convolution with interpolation was too slow 

for all k. The normal approximation method produced p-value estimates that were too poor 

to show on these graphs, usually erring by a factor of 1010 or more.
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FIG. 5. 
Empirical and approximated TPD distributions for the yeast PPI network, for k = 10.
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FIG. 6. 
Yeast PPI network from Krogan et al. (2006), annotated with the cores of some of the GO 

categories with significant clustering. The p-values given were obtained using the Normal 

approximation approach, which is almost always conservative. For readability, not all 

significant GO categories are shown. Subsets of core(τ) of size at least 3 are shown.
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FIG. 7. 
(a) Human PPI network from Jeronimo et al. (2007), laid out using the “relaxed” automatic 

layout procedure of VisANT (Hu et al., 2004). (b) Groups of protein with a significant PSF 

and WPSF clustering p-value are highlighted in colors. The triangle convolution was used 

when the group size was small enough; otherwise, the Y-convolution was used. Monte Carlo 

estimated p-value are between parentheses. Network laid out manually to highlight the 

connectivity of the proteins within each GO category reported (to improve readablity, 

proteins that do not belong to any shortest path between pairs of proteins of the selected 
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groups are not shown). GTF2H3 (in orange) is part of both red and yellow groups. GTF2H2 

(in khaki green) is part of both the yellow and blue groups. Subsets of core(τ) of size at least 

3 are shown. Clearly, without the information provided by our GO clustering approach, the 

PPI network showed at the top would be hard to interpret.
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Table 1

Approximate Running Time, in Minutes, to Calculate One Clustering p-Value for a 1000-Vertex Scale-Free 

Graph with 2000 Edges, for the TPD Clustering Measure

k = 10 k = 20 k = 50

Monte Carlo simulationa 2 5 20

Normal 0.3 0.7 1

Y-convolution 1 5 15

Triangle with rounding 2 300 >1000

Triangle with interpolation 5 600 >1000

a
106 samplings were performed for the Monte Carlo simulations.
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LAVALLÉE-ADAM et al. Page 26

Algorithm 1

Find core subgraph

Input: Graph G, Vertex subset V (τ), maximum p-value of interest maxPvalue

Output: Vertex subset core(τ)

 root ←HierchicalClustering(V (τ))

 return DivideCluster(root, maxPvalue)
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LAVALLÉE-ADAM et al. Page 27

Algorithm 2

DivideCluster

Input: Root r, maximum p-value of interest maxPvalue

Output: A set of subsets of vertices of the subtree rooted at r that form significant clusters

 if p-value(r)> maxPvalue then

  return ϕ

 else

  if p-value(r) < p-value(leftChild(r)) and p-value(r) < p-value(leftChild(r)) then

   return {V (r)} % where V(r) is the set of vertices in the subtree rooted at r.

  else

   return DivideCluster(leftChild(r), maxPvalue) ∪ DivideCluster(rightChild(r), maxPvalue)

  end if

 end if
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