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ABSTRACT

Genome-wide association studies have proven to be a highly successful method for identi-
fication of genetic loci for complex phenotypes in both humans and model organisms. These
large scale studies rely on the collection of hundreds of thousands of single nucleotide
polymorphisms (SNPs) across the genome. Standard high-throughput genotyping technol-
ogies capture only a fraction of the total genetic variation. Recent efforts have shown that it
is possible to ‘‘impute’’ with high accuracy the genotypes of SNPs that are not collected in
the study provided that they are present in a reference data set which contains both SNPs
collected in the study as well as other SNPs. We here introduce a novel HMM based
technique to solve the imputation problem that addresses several shortcomings of existing
methods. First, our method is adaptive which lets it estimate population genetic parameters
from the data and be applied to model organisms that have very different evolutionary
histories. Compared to previous methods, our method is up to ten times more accurate on
model organisms such as mouse. Second, our algorithm scales in memory usage in the
number of collected markers as opposed to the number of known SNPs. This issue is very
relevant due to the size of the reference data sets currently being generated. We compare
our method over mouse and human data sets to existing methods, and show that each has
either comparable or better performance and much lower memory usage. The method is
available for download at http://genetics.cs.ucla.edu/eminim.
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1. INTRODUCTION

Recent advances in high-throughput genotyping technologies are helping to uncover the genetic

basis of complex phenotypes in human (Wellcome Trust Case Control Consortium, 2007), mouse

(Frazer et al., 2007), rat (STAR Consortium, 2008), dog (Karlsson et al., 2007), arabidopsis (Borevitz et al.,

2007), and other model organisms. While the vast majority of positions in a genome are identical among

individuals in a population, a significant portion of positions differ. Many of these positions are single
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nucleotide polymorphisms (SNPs). In a typical study that attempts to identify variation involved in a trait,

variation information (e.g., SNP genotypes) is collected from a set of individuals and the trait is measured in

each individual. Each SNP is then correlated=associated with the trait. Any statistically significant associ-

ations are reported as possible causal variation with respect to the trait (Risch and Merikangas, 1996; de

Bakker et al., 2005).

Genotyping arrays, such as those developed by Affymetrix and Illumina (Matsuzaki et al., 2004;

Gunderson et al., 2005), simultaneously probe hundreds of thousands of marker SNPs in an individual’s

genome. While this is a significant amount of information, it is only a fraction of the millions of SNPs and

other genetic variation in the population. Only complete resequencing of individual genomes will guarantee

collecting all variation in a study. However, resequencing still remains prohibitively expensive. Array

based genotyping is currently the most practical cost-effective method for collecting large amounts of

variation information on a set of individuals. Although only a subset of individual genetic variation is

collected by a genotyping array, due to the correlation structure of variation in the genome, SNPs on the

array can serve as proxies for SNPs which are not collected (Devlin and Risch, 1995; Collins et al., 1998).

This property is called linkage disequilibrium (LD), and it greatly extends the coverage of the array since a

causal SNP need not be collected, but only strongly correlated with one of the collected markers on the

array (Zaitlen et al., 2007). However, if the causal variants are not in LD with one of the SNPs included on

the array then the study will not be able to discover the association. Thus, increasing the number of

collected SNPs in the study increases the study’s power to identify casual variation and is of fundamental

importance.

Recently, several studies have proposed methods to increase the ability of a study to identify associations

at SNPs which are not collected by ‘‘imputing’’ or predicting the genotypes of SNPs that are not contained

in the study data set. These methods work by using a reference sample, such as the HapMap (International

HapMap Consortium, 2007) for humans, which has genotyped millions of SNPs at great cost and effort.

These reference samples contain both SNPs which are collected in the study as well as other SNPs. An

imputation method uses the correlation patterns between the collected and uncollected SNPs inferred from

the reference sample to make predictions of the uncollected SNPs in the study sample. This problem is

effectively a missing data problem in which partial data is observed in the study and complete data is

observed in the reference sample.

Consider the example shown in Figure 1, where there is a set of reference individuals shown on top and a

study individual shown on the bottom. In the reference set, all the SNPs are genotyped in all five indi-

viduals. In the study individual, some of the SNPs are uncollected and denoted by ‘‘?.’’ The goal of

imputation is to resolve the genotypes of the uncollected SNPs by using the overlap of the typed SNPs

between the reference set and the study set. Our method selects the most likely reference individual for

FIG. 1. An example of the imputation problem. The five reference individuals are genotyped on all ten SNPs, while

the study individual is genotyped on only six SNPs. The goal of imputation is to resolve the genotypes of the

uncollected SNPs.
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each marker (both collected and uncollected). The path in bold shown in Figure 1 denotes that the sequence

of SNP values in target individual is composed of pieces of the three reference individuals along the six

collected and four uncollected markers. The actual imputation procedure is more complicated than the

above example due to the diploid nature of human genome and missing genotypes.

Multiple techniques have been successfully employed to solve the imputation problem, and Hidden

Markov models (HMMs) have been amongst the most popular, and have been used in several studies in

both human and model organisms such as mouse. However, each of these existing HMM techniques fails to

address at least one of several important problems. IMPUTE (Marchini et al., 2007) models an individual

haplotype as a result of mosaic recombination and mutation among a set of reference haplotypes. The

recombination probability follows a Continuous-Time Markov Process (CTMP) with respect to the genetic

distance, which is essentially the same model with traditional genetic model of meiosis with different

number of haploids as reference haplotype. This model is a reasonable approximation of the standard

population genetics model (Marchini et al., 2007; Kingman, 1982). However, the method requires to have

predefined recombination and mutation parameters, as well as the genetic distance between markers. This

leads to several limitations to apply this method to a general context of imputation problem. First, the

method is not useful when the genetic map in a certain population of reference individuals is not known a

priori. Second, the predefined parameters do not allow individual-specific difference in the imputation

procedure. In model organisms association mapping, where the genetic variations between individual

strains are more dramatic than the variations in one human population, this problem is manifested more

clearly. Another problem with IMPUTE is that it has memory requirements that grow linearly in the size of

the reference data set, which may become prohibitively large as more SNPs are discovered. This becomes

more important as the next-generation sequencing technologies discover orders of magnitude larger number

of SNPs in the next few years (Kaiser, 2008).

On the other hand, MACH (Scott et al., 2007) uses a similar hidden Markov model with a very different

idea from IMPUTE. Instead of imposing predefined recombination and mutation parameters like IMPUTE,

MACH allows different recombination and mutation parameters per each SNP differently. These param-

eters are learned from the data using a Monte-Carlo Haplotyping procedure, which essentially simulates the

haplotypes from the HMM and estimates the parameters iterative over multiple rounds. The advantage of

this method is that it does not depend on the predefined parameters or external resources such as genetic

map. However, this model does not account for the distance between markers when estimating the tran-

sition probabilities and it solely relies on the empirical correlation structure among the markers. Such an

estimation procedure of transitional probabilities per marker-interval can be accurate only if an enough

number of samples are imputed simultaneously. In addition, assigning the same transition and mutation

parameters per each marker across all individuals makes it impossible to account for the individual-specific

differences in a heterogeneous population. For inbred mouse imputation, when the number of samples is

small and the population structure is highly heterogeneous, such features of MACH will substantially

degenerate the accuracy of imputation.

As briefly discussed above, we are initially motivated by the problem of inbred mouse imputation that is

very different from classical context of human genotype imputation problem. First, the genealogy of inbred

mouse strains are complex and heterogeneous (Beck et al., 2000), so each individual mouse strain may have

very different recombination and mutation parameters when the HMM is applied. For example, the wild-

derived strains are genetically far apart from the classical inbred strains, and they must have substantially

higher recombination and mutation probabilities than the classical inbred strains. Second, the number of

inbred mouse strains are very small, so the methods that take advantages of the availability of a large

number target subjects for imputation may not be applicable. Third, the inbred mouse strains have ge-

netically identical pair of chromosomes via subsequent brother-sister mating for the sake of reproducibility,

so an haploid implementation of imputation algorithm is required instead of a diploid algorithm for inbred

mouse imputation. Although the haploid models are simpler than the diploid ones, there are few methods

flexibly implemented to allow haploid imputation. A recently developed algorithm similar to fastPHASE

(Scheet and Stephens, 2006) is specifically designed for inbred mouse imputation, employing HMMs with

a predefined sets of clusters with Dirichlet prior distribution and Viterbi training algorithm (Szatkiewicz

et al., 2008). The average imputation error reported was 10.4% and 4.4% for high-confidence genotypes,

which is higher than the error rates in most of the human imputation studies.

In this article, we propose EMINIM (Expectation-Maximized INtegrative IMputation), an adaptive

genotype imputation method that learns HMM parameters using an Expectation-Maximization (EM)
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algorithm (Dempster et al., 1977) under the sophisticated recombination model on which IMPUTE is based.

Our method robustly estimates the HMM parameters for each individual separately, accounting for het-

erogeneous sample structure. Our method utilizes various types of silent states in the HMM to estimate the

EM parameters, to increase memory-efficiency, to impute genotypes at collected SNPs, and to obtain a

leave-one-snp-out estimate of imputation accuracies. Our method is also more memory efficient allowing

much larger data sets to be imputed. Table 1 summarizes the comparisons among EMINIM, IMPUTE, and

MACH in several aspects discussed above. In this article, we describe the algorithmic detail of our method

that improves accuracy and computational efficiency in addition to the core statistical model, in order to

facilitate further progress in the area of genotype imputation.

We applied our method to the imputation of 8.27 million SNPs that have been discovered from a

resequencing of 15 inbred mouse strains (Frazer et al., 2007), based on the 138,980 SNPs collected from the

mouse HapMap project over 94 inbred strains. Imputation in mouse strains differs from human imputation

because the reference datasets have drastically different linkage properties. Using several different mea-

sures, we estimated the error rate of our method and compared it to the recently published mouse impu-

tation article (Szatkiewicz et al., 2008). Our method’s overall error rate is less than half the error rate of the

previous method, and for high confidence genotypes our error rate is ten time smaller (Table 2).

Next, we applied our method to the imputation of human HapMap SNPs from the Wellcome Trust Case-

Control Consortium (WTCCC) genotypes. The adaptive nature of our method can help to improve the

flexibility of the method and the accuracy imputation in human samples, too. Our results show that our

method consistently achieves similar or better imputation accuracy over different populations than other

state-of-the-art methods without requiring predefined parameters for each population. Our method also

shows a significant increase of memory-efficiency which can be an important technical issue when im-

puting genotypes of a dense SNP sets over a large number of reference samples. For example, in a recent

study, EMINIM used only 508 MB of memory to impute chromosome 22 while IMPUTE required 6.6 GB.

This problem will become even more severe on larger chromosomes and data sets. Our method is publicly

available at http:==genetics.cs.ucla.edu=eminim.

A shorter version of this article can be found in Kang et al. (2009). This article includes many more

details on the mathematical description of the model and its derivation as well as more details on the

experimental results and comparisons with other methods.

Table 2. Imputation Error Rates of Inbred Strains

Confidence cutoff

High (>0.98) Highþmedium (>0.8) All (� 0)

LOOCV with unknown reference 0.37% (81%) 0.81% (90%) 2.40% (100%)

LOOCV without unknown reference 0.52% (76%) 1.24% (93%) 2.46% (100%)

36 non-wild WTCHG strains 0.35% (89%) 1.00% (96%) 2.25% (100%)

all 47 WTCHG strains 0.37% (72%) 1.98% (89%) 4.86% (100%)

First two rows (LOOCV) use leave-one-strain-out estimation using 15 reference strains and 138,980 combined SNPs of the target

strain across 12 classical inbred strains. The unknown reference strain is used in the first but not in the second. Last two rows uses

WTCHG genotypes as validation set, and impute those genotypes in 47 WTCHG strains not included in the reference strains. The

fraction of imputed genotypes in each category is shown within a parenthesis.

Table 1. Feature Comparisons of EMINIM with Widely Used Imputation

Methods: IMPUTE and MACH

Features IMPUTE MACH EMINIM

Provide inbred=haploid interface X X O

Learn HMM parameters from data X O O

Run without genetic map X O O

Allow different HMM parameters per target X X O

Recombination model accounts distance between markers O X O

Accurate with a small number of targets O X O

Memory-efficient X O O
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2. METHODS

The imputation problem

In this section, we formalize the problem of imputing missing genotype data in an individual using a

reference population. The terms and definitions described here will be used throughout the text. We classify

the imputation problem into two categories—haploid (or inbred) imputation and diploid imputation.

Suppose that we genotype m SNP markers on an individual (target individual) and wish to determine the

genotypes of additional ‘‘uncollected’’ SNPs. We will employ a set of reference haplotype that are gen-

otyped on the m collected markers as well as an additional set of uncollected SNPs. In diploid model, we

assume that each reference individuals is already phased into two reference haplotypes. The allele of the

i-th reference haplotype at the t-th marker is represented as Gi, t 2 f0, 1, 2g, where 0 represents a missing

reference genotype and 1, 2 represents two alleles of biallelic SNP marker. Let n be the number of reference

haplotype collected at m markers in the target individual. Let d¼fd1, d2, � � � , dm�1g be the physical or

genetic distance between consecutive markers i - 1 and i for di. In the target individual, the genotype at the

t-th marker is represented as gt 2 f1, 2g in haploid model, and gt 2 ff1, 1g, f1, 2g, f2, 2gg in diploid

model, where 1 and 2 represents two alleles of the biallelic SNP marker.

In our model, we assume that in each region, the target individual has similar haplotypes to the reference

haplotypes. The goal of imputation can then be rephrased as assigning one (haploid model) or a pair of

(diploid model) the n reference haplotypes to each of the m markers. From these assignments, we will

assign the individual SNP genotype values to each uncollected SNP in the target individual by using the

alleles of the assigned reference haplotypes at the nearby markers. We employ HMM to assign the

reference haplotypes to the markers of the target individual. We first describe the detail of the HMM in

the haploid case, and describe the extension to the diploid model later on.

Hidden Markov model for imputation

In the following section, we describe the algorithm for performing imputation for haploid or inbred

organisms. In this case, the reference haplotypes (or individuals) are called reference strains and we assume

that we do not observe any genotypes where an individual has both alleles 1 and 2 of the SNP (i.e., no

heterozygous genotypes).

The goal is then to assign one of the n reference strains to each of the m markers as a mosaic combination

as described in the previous section. To accomplish this, we use an HMM like that shown in Figure 2. For

each of the m markers there are n states corresponding to each of the reference strains. From each state

FIG. 2. An example of the hidden Markov model for the imputation problem. p and q represent transition proba-

bilities to another state; m and 1� m represent the emission probability of an observed genotype given a state.
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there are n edges (with the exception of the states representing the final marker) directed towards the n states

for the next marker. The edges corresponding to a change in the reference strain are called transitions or a

recombination. Each state can also emit one of the two possible alleles for that marker. Emitting an allele

that does not match the target strain is called a mutation.

Let St 2 f1, 2, . . . , ng be the reference strain assigned to the target strain at marker t 2 f0, 1, . . . , m�1g.
Since some of genomic segments may not be represented by any of the reference strains, we introduce

another reference strain consisting of only missing genotypes to represent the unknown reference state. We

let the initial probability that marker S0 is assigned to strain i be Pr(S0¼ i)¼ pi, with p¼fp1, . . . , png.
Similar to many other methods designed for genotype imputation and haplotype phasing (Marchini et al.,

2007; Scheet and Stephens, 2006), our HMM relies on a typical Markov chain model of population genetics

based on neutral Wright-Fisher model (Kingman, 1982). We use two parameters m, and y to be the mutation

and recombination parameters, and use the standard distributions for computing the probability of tran-

sitioning between states pn(x)¼ (1� e�x)=n and qn(x)¼ pn(x)þ e�x based on the continuous-time Markov

process. Figure 2 shows how the these probabilities correspond to the edges in the HMM. The transition

probabilities are computed from the recombination parameter and the distance between markers as follows.

Pr (St ¼ jjSt�1¼ i, h)¼ qn(�hdt) i¼ j

pn(�hdt) i 6¼ j

�
(1)

The probability of an observed genotype given a state is computed from the mutation parameter and the

allele observed at the reference strain at the state. If the reference strain has missing genotype at the marker,

then the probabilities are equally assigned between the alleles. Figure 2 shows examples of matching and

mutated genotypes in the emission states of the HMM.

Pr (gtjSt, l)¼
1� l gt¼GSt , t 4 0

l gt 6¼ GSt , t 4 0

0:5 GSt , t¼ 0

8<
: (2)

We assume a uniform distribution of initial state probabilities, p1¼ � � � ¼ pn¼ 1=n, and learn the mu-

tation and transition parameters from the data using the EM algorithm presented below.

EM algorithm for learning maximum-likelihood parameters

Many of the previous methods suggested for HMM-based imputation of missing genotypes use either

predefined transitional parameters (Marchini et al., 2007) or Viterbi training which may not converge to a

local maximum (Szatkiewicz et al., 2008). Other methods estimate the transition probabilities per marker

interval independently to avoid the computational complexity in constraining the transition parameters

consistently across different states (Scheet and Stephens, 2006; Scott et al., 2007).

In the genotype imputation of inbred mouse strains, independent unconstrained estimation of parameters at

each marker is prone to inherent bias and inaccuracy because of two reasons. First, the total number of target

strains is small, so estimating parameters per marker independently may be highly inaccurate. Second, these

strains have complex genetic relationship, so the transitional and mutational parameters vary greatly across

different strains. We constrain the parameters to be equal over the genome, but allows different transition and

mutation parameters for each strain. Instead of the simple Viterbi training algorithm, we present an EM

algorithm based on the exact conditional probabilities obtained from the forward-backward algorithm.

Let us denote X�t ¼ (X1, . . . , Xt) and Xþt ¼ (Xtþ 1, . . . , Xm) as observed data, and l¼ (p,m, y) be the

initial, mutational, and transitional parameters of the hidden Markov model. The forward-backward al-

gorithm estimates at(i)¼ Pr (X�t , St¼ ijk) and bt(i)¼ Pr (Xþt jSt¼ i, k) using a dynamic programming.

at(St)¼
X
St�1

at�1St�1 Pr (StjSt�1) Pr (XtjSt) (3)

bt(St)¼
X
Stþ1

btþ1Stþ1 Pr (Stþ1jSt) Pr (Xtþ1jStþ1) (4)

Let X¼ (g, G). The EM algorithm starts with initial parameters (m0, y0). At the E-step of r-th iteration,

Pr (StjX, lr) are computed from the forward-backward algorithm. Let S¼fS0, � � � , Sm�1g. At the M-step,

the expected likelihood function can be written as follows.
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Q(l, h)¼
X

S

Pr (SjX, kr) log Pr (g, Sjk) (5)

¼
Xm�1

t¼1

X
(St , St� 1)

log Pr (StjSt�1, h) Pr (St, St�1jX, kr)

þ
Xm�1

t¼0

X
St

log Pr (gtjSt, l) Pr (StjX, kr)�log n

The expectation-maximized parameters used for the next round of E-step can be obtained as follows.

lrþ 1¼
Pm

t¼1

P
St

I(gt 6¼ Gi, t) Pr (StjX, kr)Pm
t¼1

P
St

I(Gi, t 4 0) Pr (StjX, kr)
(6)

hrþ 1¼ arg max
h

Xm� 1

t¼1

X
(St , St� 1)

log Pr (StjSt� 1, h) Pr (St, St� 1jX, kr)

" #
(7)

¼ arg max Fh(h) (8)

In order to estimate the joint probability Pr(St,St�1jX,lr), we introduce a silent state Jt between St�1 and St

with the following transition probabilities which keeps Pr(StjSt�1) unchanged.

Pr (Jt¼ (i, b)jSt� 1¼ i, h)¼
qn(� hdt) b¼ 0

(n� 1)pn(� hdt) b¼ 1

�
(9)

Pr (St ¼ jjJt¼ (i, b), h)¼
1 b¼ 0, i¼ j

1=(n� 1) b¼ 1, i 6¼ j

�
(10)

The probabilities of the other transitions are set to zero. As illustrated in Figure 3, such a procedure

temporarily creates 2n silent states between a pair of consecutive states. When a recombination occurs, the

original state i makes a transition to a different state via the silent state (i, 1). If no recombination occurs, it

remains at the same state via the silent state (i, 0). The model of introducing a intermediate state is

somewhat similar to Scheet et al. (2006), but their EM algorithm is more trivial due to the independence

assumption between the recombination parameters across markers. The idea of constraining the parameters

across markers are only briefly mentioned, and here we present an non-trivial algorithmic detail to perform

EM parameter learning at a linear time complexity with respect to the number of states using silent states.

In general, the marginal probabilities of these silent states can be computed, in the following way. Let L

be a silent state connecting St� 1 and St satisfying the following condition.

FIG. 3. Adding a silent state for EM parameter estimation. p and q represent original transition probabilities; a, b, c, and d

represent the transition probabilities of modified HMM after adding silent states. The emission probabilities remain the same.
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Pr (StjSt� 1, k)¼
X

L

Pr (StjL, k) Pr (LjSt�1, k) (11)

Then the transition probability between marker t� 1 and t will remain unchanged, and the results of

forward-backward algorithm can still be used because L do not emit any variables. The forward and

backward probability of any silent state L are computed as

a(L)¼
X
St�1

at� 1(St� 1) Pr (LjSt� 1) (12)

b(L)¼
X

St

bt(j) Pr (StjL) Pr (XtjSt) (13)

The computational complexity of forward and backward probability can be reduced to a constant time as

described in the upcoming section, so this procedure does not increase the time complexity of the inference

in HMM. Then the computation of posterior marginal probability of any silent state L is trivial, and thus the

marginal probability of Pr(JtjX,lr) can be computed. The objective function of M-step transitional pa-

rameter becomes

Fh(h)¼
Xm�1

t¼1

log qn(�hdt)
Xn

i¼1

Pr (Jt ¼ (i, 0)jX, kr)þ log pn(�hdt)
Xn

i¼1

Pr (Jt¼ (i, 1)jX, kr)

" #
(14)

This function can be numerically optimized using a Newton-Raphson algorithm. Although the complex

function F(y) may not be convex in general, we were able to find a consistent estimator of yrþ1 with various

initial parameters in the all experiment described in the results section.

Imputation of uncollected genotypes

Let ht be the number of ‘‘uncollected SNPs’’ that need to be imputed between marker (t� 1) and t.

An uncollected SNP is represented as (t, s), where t 2 f1, 2, . . . , m� 1g and s 2 f1, . . . , htg. Let

Tt, s 2 f1, . . . , ng be the state at an uncollected SNP (t, s).

We again modify the HMM by adding a silent state Tt, s to the original HMM. The transition probabilities

between St� 1,T(t,s), and St is defined in the same way to to Equation 1 based on the distance between them.

Let Hi, t, s 2 f0, 1, 2g be the genotypes of i-th reference strain at the uncollected SNP (t,s). Then distribution

of the imputed genotype zt,s at the uncollected SNP is estimated as follows.

Pr (zt, sjX, k)¼
(1� l)

Pn
i¼1 I(Hi, t, s¼ zt, s)pt, s(i)

þ l
Pn

i¼1 I(Hi, t, s 6¼ zt, s)pt, s(i) zt, s 4 0Pn
i¼1 I(Hi, t, s¼ 0)pt, s(i) zt, s¼ 0

8<
: (15)

where pt,s(i) denotes the marginal probability of state i at the uncollected SNP (t,s). When estimating leave-

one-snp-out imputation accuracy, the same imputation methods are applied by pretending marker t has a

silent state by ignoring the observed genotype.

Improving computation time complexity

A standard HMM implementation requires squared time complexity with respect to the number of

individuals when computing the forward and backward probabilities. It is possible to reduce the time

complexity to be linear in the number of states, by leveraging the fact that the transition probabilities are

uniform over different states. When t> 1, at(i) and bt(i) follows that

at(i)¼ exp (�hdt)at� 1(i)þ pn(�hdt)
Xn

x¼1

at� 1(x)

" #
Pr (XtjSt ¼ i) (16)

bt(i)¼ exp (�hdtþ 1)btþ 1(i) Pr (Xtþ 1jStþ 1¼ i)þ pn(�hdtþ 1)
Xn

x¼1

btþ 1(x) Pr (Xtþ 1jStþ 1¼ x) (17)

Each at(i) and bt(i) can be computed in a constant time if we precomputed
Pn

x¼1 at� 1(x) andPn
x¼1 btþ 1(x) Pr (Xtþ 1jStþ 1¼ x), which takes linear time in the number of states. So the computation of
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at(i) and bt(i) over all states can be performed in linear time. Such a reduction in the time complexity

applies the same way in the computation of forward and backward probabilities of silent states presented in

Equations 12 and 13.

When computing the forward and backward probabilities, precision problems will occur when the

number of markers are large since at(i) and bt(i) can have extremely small values. Storing the values in a

logarithmic scale would resolve this problem, but the computational cost will substantially increase due to

the repetitive execution of exponential and logarithmic functions. Since the forward and backward prob-

abilities are meaningful only relatively because they will have to be normalized in order to obtain posterior

marginal probabilities or joint probabilities. Since
Pn

x¼1 at�1(x) and
Pn

x¼1 btþ1(x) Pr (Xtþ1jStþ1¼ x) are

precomputed at each step, we can avoid the precision problem by maintaining the normalized values

divided by those summation instead. The HMM procedure would not be affected by such a normalization

procedure.

Extension to diploid model

When imputing human genotype data, the reference individuals are typically provided as phased hap-

lotypes across a dense set of SNPs, and a number of unphased genotypes of a target individual are provided

as a subset of SNPs. In this case, the state at each collected marker Zt¼ (i, j) represents the combined states

of each haplotype. Here we assume there are no missing alleles in the reference haplotypes because they are

phased. However, missing alleles can also be handled in a similar way presented as in the haploid model.

Their initial state probabilities are defined as Pr(Z0¼ (i, j))¼ pij¼ 1=n2, and the transition probabilities are

defined as follows.

Pr (Zt¼ (i, j)jZt� 1¼ (k, l), h)¼
qn(�hdt)

2 i¼ k, j¼ l

pn(�hdt)qn(�hdt) i¼ k � j¼ l

pn(�hdt)
2 i 6¼ k, j 6¼ l

8<
: (18)

where � denotes exclusive OR operator. Let Zt¼ (Zt,0,Zt,1) be the individual states of each chromosome,

then the imputed genotype (gt,0jZt,0, G,gt,1jZt,1,G) independently follows the mutational distribution in the

inbred imputation.

The observed genotype gt¼fgt,0, gt,1g 2 ff1,1g, f1, 2g, f2, 2gg represents one of homozygous base

alleles, heterozygous alleles, or homozygous mutant alleles. Based on these probability models, an HMM

can be constructed with n2 states for each collected marker.

Let bt be the number of state changes between marker t� 1 and t. In order to estimate EM parameters, we

introduce a silent state Jt connecting Zt�1 and Zt, with the following transition probabilities.

Pr (Jt ¼ (k, l, bt)jZt�1¼ (i, j))¼
qn(�hdt)

2 k¼ i, l¼ j, bt¼ 0

2(n� 1)pn(�hdt)qn(�hdt) k¼ i, l¼ j, bt ¼ 1

(n� 1)2pn(�hdt)
2 k¼ i, l¼ j, bt ¼ 2

8><
>: (19)

Pr (Zt¼ (i, j)jJt¼ (k, l, b))¼
1 k¼ i, l¼ j, bt¼ 0

1=(2n� 2) (k¼ i� l¼ j), bt¼ 1

1=(n� 1)2 k 6¼ i, l 6¼ j, bt¼ 2

8<
: (20)

From the expectation maximized parameters in the M-step it follows that

lrþ 1¼
1

m

Xm�1

t¼0

X
Zt

g(gt, GZt, 0, t, GZt, 1, t) Pr (ZtjX, kr) (21)

hrþ 1¼ arg max
h

Xm�1

t¼1

X
(Zt , Zt�1)

log Pr (ZtjZt�1, h) Pr (Zt, Zt� 1jX, kr)

" #
(22)

¼ arg max
h

Fd(h) (23)

where Z(g, h1, h2) is the number of mismatched alleles between genotype g and {h1, h2}. Fd(y) can be

rewritten to be numerically optimized using a Newton-Raphson algorithm as follows.
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Xm

t¼1

[2 log qn(� hdt) Pr (bt¼ 0jX, kr)þ log(pn(�hdt)qn(�hdt)) Pr (bt ¼ 1jX, kr)

þ 2 log (pn(�hdt)) Pr (bt¼ 2jX, kr)]

(24)

Similar to the haploid model, each uncollected genotype is imputed without increasing memory by

adding a silent state. For example, at(Zt¼ (i, j)) can be computed in a linear time in the number of possible

states as follows:

at(i, j)¼ exp (�hdt)
2at� 1(i, j)þ exp (�hdt)pn(�hdt)

Xn

x¼1

(at� 1(i, x)þ at� 1(x, j))

"

þ pn(�hdt)
2
Xn

x¼1

Xn

y¼1

at� 1(x, y)

#
Pr (XtjZt ¼ (i, j)) (25)

bt(i, j)¼ exp (�hdtþ 1)2btþ 1(i, j) Pr (Xtþ 1jZtþ 1¼ (i, j))

þ exp (�hdtþ 1)pn(�hdtþ 1)
Xn

x¼1

btþ 1(i, x) Pr (Xtþ 1jZtþ 1¼ (i, x))

þ exp (�hdtþ 1)pn(�hdtþ 1)
Xn

x¼1

btþ 1(x, j) Pr (Xtþ 1jZtþ 1¼ (x, j))

þ pn(�hdt)
2
Xn

x¼1

Xn

y¼1

btþ 1(x, y) Pr (Xtþ 1jZt¼ (x, y)) (26)

In order to ensure linear time complexity overall, the following values needs to be precomputed to avoid

redundancy:

Xn

x¼1

at(i, x)¼
Xn

x¼1

at(x, i) (27)

Xn

x¼1

Xn

y¼1

at(x, y) (28)

Xn

x¼1

bt(i, x) Pr (XtjZt¼ (i, x))¼
Xn

x¼1

bt(x, i) Pr (XtjZt¼ (x, i)) (29)

Xn

x¼1

Xn

y¼1

bt(x, y) Pr (XtjZt¼ (x, y)) (30)

Genotype resources

We used 138,980 mouse HapMap SNPs which combine 121,433 Broad SNPs over 94 strains, 7,570

NIEHS=Perlegen gap-filling SNPs over 40 strains, and 13,094 Wellcome Trust SNPs collected in 67 strains

among the 94 strains. We imputed the genotypes of 8,223,225 NIEHS=Perlegen SNPs successfully mapped to

NCBI mouse build 37 from the genotypes of 15 resequenced strains in addition to the sequenced reference strain

C57BL=6J. For the imputation of human genotypes, we used the chromosome 22 data in the WTCCC control

set of 1,367 individuals, which consist of 4, 367 distinct collected markers. A total of 42,101 polymorphic

HapMap SNPs in chromosome 22 are imputed from the phased haplotypes of 60 CEU unrelated samples. We

use the genetic map estimated from HapMap CEU population to model transitional probabilities.

3. RESULTS

Genotype imputation of 94 inbred mouse strains

A recent NIEHS=Perlegen mouse resequencing project identified 8.27 million SNPs among 16 inbred

mouse strains (Frazer et al., 2007). The Broad mouse HapMap project collected genotypes over 94 strains
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at 138,980 SNPs, which is only 1.7% of the number of SNPs identified in the resequencing project. We can

achieve high imputation accuracy even with such a small fraction of the SNPs because of the very long

regions of linkage disequilibrium.

We evaluated the accuracy of our genotype imputation method through leave-one-out analysis. For each

of the 16 resequenced strains, we ran our EMINIM algorithm to impute the genotypes at NIEHS=Perlegen

SNPs using the mouse HapMap genotypes and the NIEHS=Perlegen SNPs for the other 15 strains. Sin-

gleton SNPs polymorphic only in the target strain were removed in the evaluation of accuracy since they

are not able to be imputed using the rest of strains. The leave-one-strain-out validation provides a con-

servative estimate of the genome wide imputation accuracy of a unresequenced strain using 16 resequenced

strains.

The overall average imputation error over 12 classical strains is 2.40%. We classified the imputed

genotypes into the ‘‘high-confidence’’ category if the posterior probability is >0.98, and ‘‘medium-

confidence’’ for 0.8–0.98. When considering only high-confidence imputed genotypes after discarding

18.9% of low and medium confidence genotypes, the average imputation error significantly reduces to

0.37%. When including wild-derived strains, the imputation error significantly increases. The average

imputation error between four wild-derived strains was 19.2%, each of them ranging from 13.0% (WSB=
EiJ) to 34.0% (CAST=EiJ). None of the wild-derived strains have high-confidence imputed genotypes due

to high estimates of mutation rates.

Unlike previous imputation methods based on hidden Markov models, we introduce an additional state to

account for genomic regions that are not explained by any of the reference strain. We compared this model

to one without an additional state, by computing imputation accuracy using leave-one-strain-out cross-

validation. The results over 12 classical inbred strains show that the overall imputation error increased from

2.40% to 2.46%. More notably, the average imputation errors in high confidence category increased from

0.37% to 0.52%, and the coverage of high-confidence category reduced from 81.1% to 75.7%. This

suggests that our model with additional state for unknown reference strains significantly affects the im-

putation accuracy probably because some genomic segments are not well characterized by any of the 16

reference strains.

Next, we evaluated the imputation accuracy by comparing the genotypes typed for 78 non-resequenced

strains. We used the Wellcome Trust genotypes as a validation set and evaluated how accurately our

method can impute the genotypes in the validation set using the 16 resequenced strains as reference strains.

Sixty-two strains out of 94 strains were genotyped by Wellcome Trust, and 47 of them were not included in

the 16 reference strains. A total of 493,033 genotypes in the validation set were evaluated for imputation

accuracy, and the overall imputation error was 4.86%. 353,704 (71.7%) genotypes fall into high-confidence

genotypes, and the imputation errors on these high-confidence genotypes are 0.37%. Figure 4 demonstrates

that our imputation errors for high-confidence category is more than ten times smaller than the recently

published results which used a different imputation method at a similar level of call-rate (Szatkiewicz et al.,

FIG. 4. Comparison of imputation accuracies of classical inbred mouse strains between Szatkiewicz et al. (2008)

(blue) and EMINIM (red).

ADAPTIVE AND MEMORY-EFFICIENT IMPUTATION 557



2008). Their imputation errors at high-confidence genotypes were reported to be 4.4% with 69.5% call rate.

When excluding eleven wild-derived strains the average error reduced to 2.26%, which is slightly lower

than what we observed in 12 classical inbred strains with leave-one-strain-out cross-validation. Among the

rest of 36 non-wild strains, 344,747 (88.9%) genotypes out of 387,817 fall into the high-confidence

category with an average imputation error of 0.35%, suggesting a high coverage of the mouse HapMap

SNP sets with high imputation accuracy.

Imputation of HapMap SNPs in WTCCC samples

We applied EMINIM to impute the uncollected HapMap SNPs of the 1,376 WTCCC control samples.

We compared the imputation accuracy and memory efficiency with other published methods to demonstrate

the robustness of our method. Our evaluation of chromosome 22 can be extrapolated to the estimate the

performance of each method on a genome-wide scale.

First, we evaluated the accuracy of our method by randomly choosing 25% of SNPs out of the collected

SNPs and imputing them from the rest of the collected SNPs. We varied the initial HMM transitional

parameters of each method and observed the changes of the imputation accuracy to compare the adaptivity

of the methods against the bias of the initial parameter. While IMPUTE shows a considerable change of

imputation accuracy based on the transitional parameters, EMINIM shows almost the same accuracy

regardless of the initial values of HMM parameters, because the optimal parameters are learned from the

genotype and haplotype data using EM algorithm. The accuracy table consistently shows that our method

has a higher accuracy than the previous methods (Table 3). The imputation accuracy of MACH was

outperformed by EMINIM and IMPUTE. Since MACH does not use genetic map as input, we ran EMINIM

using physical map instead of genetic map to compare their performance in the absence of genetic map, and

EMINIM still showed a higher accuracy. To ensure comparable computational time, MACH is run only for

10 rounds. However, if the number of rounds substantially increases, the imputation accuracy of MACH

outperforms EMINIM with physical map because the availability of a large number of target individuals

provides advantages to MACH to estimate the transition probability specific to each marker quite accu-

rately.

Next, we compared the memory efficiency between different algorithms. Since each imputation method

requires a significantly large amount of memory to impute a large genomic region, the memory efficiency is

an important issue when practically using the methods. The methods requiring too large amount of memory

need to partition the chromosome into smaller segments at the expense of increased error rates and

redundant computation. While IMPUTE requires 6.6GB of memory space, to impute all the polymorphic

HapMap SNPs in chromosome 22, EMINIM requires only 508MB of memory, and MACH used 502MB of

memory. This is mainly due to the fact that IMPUTE consumes memory space for each uncollected SNP

while EMINIM requires memory space only for collected SNPs using a silent state when imputing each

uncollected SNP. Such a difference may be substantial in a larger chromosome such as chromosome

Table 3. Estimated Error Rates of Each Imputation Method with Different

Transition Parameters across Different Confidence Cutoffs

Confidence cutoff

>0.9 >0.8 >0.7 All

EMINIM (N0
e ¼ 11,400) 1.23% (81%) 2.09% (87%) 3.07% (91%) 6.57% (100%)

EMINIM (N0
e ¼ 1,140) 1.23% (81%) 2.09% (87%) 3.07% (91%) 6.57% (100%)

EMINIM (N0
e ¼ 114) 1.23% (81%) 2.09% (87%) 3.07% (91%) 6.57% (100%)

IMPUTE (Ne¼ 11,400) 1.35% (81%) 2.25% (87%) 3.21% (91%) 6.61% (100%)

IMPUTE (Ne¼ 1,140) 2.79% (87%) 4.00% (91%) 5.04% (94%) 7.52% (100%)

IMPUTE (Ne¼ 114) 3.97% (88%) 5.19% (92%) 6.16% (95%) 8.23% (100%)

EMINIM (physical map) 1.50% (79%) 2.62% (86%) 3.78% (91%) 7.29% (100%)

MACH N=A N=A N=A 7.69% (100%)

Ne¼ 11,400 is suggested by Marchini et al. (2007), corresponding y¼ 3.8, and different parameters are applied to demonstrate the

effect of the initial parameters. The values in parenthesis represents the fraction of imputed genotypes with confidence above the threshold.

Note that MACH provides only expected dosage of genotypes, so per-confidence cutoff comparisons are not performed directly.
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1 which has more than five times as many SNPs as chromosome 22. In this case, EMINIM is expected to

use 2.5GB of memory while IMPUTE may require 33GB of memory space. Such a difference may be more

crucial as the number of reference samples increases. The overall CPU time of EMINIM was 4.7 hours with

Intel Xeon E5320 Processor, which was faster than IMPUTE 0.5.0 (6.5 hours) and MACH 1.0 (7.2 hours

with only 10 rounds), despite the fact that EMINIM runs HMM multiple times per individuals to estimate

the EM parameters.

4. DISCUSSION

We have proposed an adaptive and memory efficient imputation method EMINIM. Our method adap-

tively learns HMM parameters using an EM algorithm. As a result, both in the human and inbred mouse

strain imputation problems, our method is shown to outperform previous imputation methods specifically

designed for each organism. In addition, the memory requirement of our method is independent of the

number of uncollected SNPs by utilizing silent states, which significantly increase the scalability and

computational efficiency of our method to genome-wide imputation.

There are several imputation algorithms that are not directly compared against our method. In the inbred

model organism mapping, Roberts et al. (2007) proposed a nearest-neighbor search algorithms over sliding

windows mainly to fill-in the missing information in the SNPs. This method can be also used for genotype

imputation. Their simulation results suggest that the method may achieve a comparable imputation ac-

curacy to the fastPHASE. However, the main drawback of the nearest-neighboring method is that they do

not provide a posterior probability of the imputed genotypes. Accounting for the probabilities can be used

for quality control of imputed genotypes, and for improving the power of association-based statistics

(Marchini et al., 2007).

Other HMMs for genotype imputation algorithms (Browning and Browning, 2009; Guan and Stephens,

2008) use similar heuristic approaches with MACH (Scott et al., 2007), relying on the availability of large

imputation target samples enabling us to estimate the parameters per marker differently. Such advantages

of marker-specific parameter estimation are orthogonal to the advantages that our method that allows

individual-specific parameter estimation. Our method can be combined with one of these heuristics to

account for different types of heterogeneity presents in the data as sample structure and recombination

hotspots.
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