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ABSTRACT

One of the major challenges with protein template-free modeling is an efficient sampling
algorithm that can explore a huge conformation space quickly. The popular fragment as-
sembly method constructs a conformation by stringing together short fragments extracted
from the Protein Data Base (PDB). The discrete nature of this method may limit generated
conformations to a subspace in which the native fold does not belong. Another worry is that
a protein with really new fold may contain some fragments not in the PDB. This article
presents a probabilistic model of protein conformational space to overcome the above two
limitations. This probabilistic model employs directional statistics to model the distribution
of backbone angles and 2"_order Conditional Random Fields (CRFs) to describe sequence-
angle relationship. Using this probabilistic model, we can sample protein conformations in a
continuous space, as opposed to the widely used fragment assembly and lattice model
methods that work in a discrete space. We show that when coupled with a simple energy
function, this probabilistic method compares favorably with the fragment assembly method
in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge,
this is the first probabilistic method that can search conformations in a continuous space and
achieves favorable performance. Our method also generated three-dimensional (3D) models
better than template-based methods for a couple of CASP8 hard targets. The method de-
scribed in this article can also be applied to protein loop modeling, model refinement, and
even RNA tertiary structure prediction.

Key words: conditional random fields (CRFs), directional statistics, fragment assembly, lattice
model, protein structure prediction, template-free modeling.

1. INTRODUCTION

O FULLY UNDERSTAND THE BIOLOGICAL FUNCTIONS OF A PROTEIN, the knowledge of its three-
dimensional (3D) structures is essential. Many computational methods have been developed to predict
the structure of a protein from its primary sequence. These methods can be roughly classified into two
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categories: template-based and template-free modeling. Despite significant progress in recent years, template-
free modeling is still one of the most challenging problems in computational structural biology. Template-free
modeling based on fragment assembly (Bowie and Eisenberg, 1994; Claessens et al., 1989; Jones and Thirup,
1986; Levitt, 1992; Simon et al., 1991; Sippl, 1993; Unger et al., 1989; Wendoloski and Salemme, 1992) and
lattice-models (Kihara et al., 2001; Xia et al., 2000; Zhang et al., 2003) has been extensively studied. These
two popular methods and their combination for template-free modeling have achieved great success in CASP
(Critical Assessment of Structure Prediction) competitions (Moult, 2005; Moult et al., 2003, 2005, 2007). For
example, the widely used fragment assembly program Robetta (Misura et al., 2006; Simons et al., 1997) is
one of the most successful template-free modeling programs. The TASSER program (Zhang and Skolnick,
2005a) and its derivative Zhang-Server (Wu et al., 2007) have achieved outstanding performance in both
CASP7 and CASPS8 by combining lattice model and threading-generated fragments and distance restraints.

Although existing template-free modeling methods demonstrate exciting performance, several important
issues have not yet been addressed. First, due to the limited number of experimental protein structures in
the PDB, it is still very difficult to have a library of even moderate-sized fragments that can cover all the
possible local conformations of a protein, especially in loop regions. In fact, a new fold may be composed
of rarely occurring super-secondary structure motif (A. Fisher, presentation at CASP8). Second, the con-
formation space defined by a fragment library or a lattice model is discrete in nature. This discrete nature
may exclude the native fold from the conformational space to be searched since even a slight change in
backbone angles can result in a totally different fold. Fragment-HMM (Li et al., 2008), a variant of Robetta,
can sample conformations from a continuous space, but still has the coverage problem since the Hidden
Markov model (HMM) used in this method is built from 9-mer fragments. The lattice model used in the
TOUCHSTONE programs (Kihara et al., 2001; Zhang et al., 2003) does not have the coverage problem, but
it samples protein conformations from a 3D lattice with finite resolution. More importantly, the sampled
conformations may not have a protein-like local structure because the TOUCHSTONE programs do not
sample a conformation based upon the primary sequence of a protein. Instead, the TOUCHSTONE pro-
grams use a few short-range statistical potentials in its energy function to guide the formation of protein-
like local structure.

There are also a few methods that attempt to sample protein conformations in a continuous space by
probability. The probability of a conformation approximately reflects its stability and is estimated from
sequence information. Feldman and Hogue (2002) developed a program FOLDTRAJ, which implements a
probabilistic all-atom conformation sampling algorithm. Tested on three small proteins 1VII, 1ENH, and
1PMC, FOLDTRALIJ can obtain the best structural models with RMSD from native being 3.95, 5.12, and
595 A, respectively, out of 100,000 decoys for each protein. However, neither sequence profile nor the
nearest neighbor effects is used in FOLDTRAJ to model local sequence-structure relationship. Therefore,
FOLDTRALIJ cannot generate models with quality comparable with the popular fragment assembly method
Rosetta. Recently, Hamelryck and colleagues have developed two HMM models (Boomsma et al., 2008;
Hamelryck et al., 2006), which not only capture the relationship between backbone angles and primary
sequence, but also consider the angle-dependency between two adjacent residues. They demonstrated that
their Torus-HMM model can generate local conformations as accurately as the fragment assembly method
(Boomsma et al., 2008). However, these HMM models do not consider angle-dependency among more than
two residues. It is also very difficult for these HMM models to make use of enriched sequence information
such as PSI-BLAST sequence profile or threading-generated restraints to further improve sampling effi-
ciency. Furthermore, these HMM models have not been applied to real-world template-free modeling yet.

Recently, we have proposed a protein conformation sampling algorithm based on the 1%-order condi-
tional random fields (CRF) (Zhao et al., 2008a) and directional statistics. The CRF model is a general-
ization of the HMM models and is much more powerful. Our CRF model can accurately describe the
complex sequence-angle relationship and estimate the probability of a conformation, by incorporating
various sequence and structure features and directly taking into consideration the nearest neighbor effects.
We have shown that by using the 1*-order CRF model, we can sample conformations with better quality
than Hamelryck et al.’s FB5S-HMM (Zhao et al., 2008a). All these studies have demonstrated that it is
promising to do template-free modeling without using discrete representations of protein conformational
space.

This article presents the first template-free modeling method that can search conformations in a con-
tinuous space and at the same time achieves performance comparable to the popular fragment assembly
methods. This article differs from our previous work (Zhao et al., 2008a) and FB5-HMM (Hamelryck et al.,
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2006) in that the latter two only describe a method for conformation sampling in a continuous space, but did
not demonstrate that this sampling technique actually lead to a template-free modeling method with
comparable performance as the fragment assembly method. By contrast, here we describe a 2"-order CRF
model of protein conformational space and show that with a simple energy function, the 2"%-order CRF
model works well for template-free modeling. We will show that it is necessary to use the 2"%-order model
instead of the 1%-order model described in our previous work since the former can dramatically improve
sampling efficiency over the latter, which makes the 2"-order model feasible for real-world template-free
modeling. Blindly tested in the CASP8 evaluation, our CRF method compares favorably with the Robetta
server (Misura et al., 2006; Simons et al., 1997), especially on alpha and small beta proteins. Our method
also generated 3D models better than template-based methods for a couple of CAPS8 hard targets.

2. RESULTS
A 2™-order CRF model of protein conformation space

We have described a 1*-order CRF model for protein conformation sampling in Zhao et al. (2008b).
Here we extend our 1*-order CRF model to a 2"%-order model to more accurately capture local sequence-
angle relationship. Table 1 lists some mathematical symbols used in our CRF model. In the context of CRF,
the primary sequence (or sequence profile) and predicted secondary structure are viewed as observations;
the backbone angles and their FBS distributions are treated as hidden states or labels.

Given a protein with solved structure, we can calculate its backbone angles at each position and
determine one of the 100 groups (i.e., states or labels) in which the angles at each position belong. Each
group is described by an FB5 distribution. Let S={s1,52, ...,sy} (s; € H) denote such a sequence of
states/labels (i.e., FB5 distributions) for this protein. We also denote the sequence profile of this protein as
M and its secondary structure as X. As shown in Figure 1, our CRF model defines the conditional
probability of S given M and X as follows.

PA(S|M, X) = exp (ZN:I F(S, M., X, i)) JZ(M, X) (1)

where A= (A1, 2, ..., 4,) is the model parameter and Z(M,X) = ZS exp(Z?’zl F(S,M, X, i)) iS a nor-
malization factor summing over all the possible labels for the given M and X. F(S, M, X, i) consists of two
edge features and two label features at position i. It is given by

F(S,M,X,i)=e((si—1,5:) + ex(si-1, Si, Si+1)
i+w i+w
+ > i M X)+ Y valsiot, i M, X)) )
j=l-w j

j=1-w

Where e(s;_1,s;) and ex(s;_1, S;, S;i+1) are the 1%-order and 2"_order edge feature functions, respectively.
vi(si, Mj, X;) and vy(s;_1, ;, M, X;) are the 1*order and 2"-order label feature functions, respectively. If we
remove ex(s;_1,58;, 8;1+1) and vo(s;_y, 5;, M;, X)), then we can get a 1*-order CRF model.

TABLE 1. SOME MATHEMATICAL SYMBOLS USED IN THE CRF MODELS

Symbols Annotations

X The PSIPRED-predicted secondary structure likelihood scores. A matrix with 3xN elements where
N is the number of residues in a protein.
The predicted likelihood of three secondary structure types at position i. It is a vector of three values,

X;
indicating the likelihood of helix, beta and loop, respectively.

X0 The predicted likelihood of secondary structure type x at position i.

M The position-specific frequency matrix with 20xN entries, each being the occurring frequency of one
amino acid at a given position.

M, A vector of 20 elements, denoting the occurring frequency of 20 amino acids at position i.

M(aa) The occurring frequency of amino acid aa at position i.

H H={hy,hy, ..., "o}, the set of 100 backbone angle states, each representing an FB5 distribution (see

Methods for its detailed description).
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FIG. 1. A second-order Conditional Random Fields (CRF) model of protein conformation space. Each backbone
angle state depends on a window (size 9) of sequence profiles and secondary structure and also the states in its local
neighborhood.

The two edge functions model local conformation dependency, given by

e1(si—1,5) =AW W)si—1 =H1ls;=h"] 3)

exsi—1,8i,8i+1) = MR B W) si— 1 =R lsi =h"[si41 =h"]. €]

Meanwhile, [s; = h] is an indicator function, which is equal to 1 if the state at position i is & € H, otherwise
0; A (W', h") is a model parameter identified by two states 4’ and 4”; and A (W', h”, h"’) is a model parameter
identified by three states. The two label feature functions are given by

vi(si, Mj, X;) = Z Z 2 — i, 5, aa, WX;(s)M;(aa)[s; = h]

s aa

+ DM~ s X)L = h] )
+ Z Mj — i, aa, YMj(aa)[s; = h]

va(sio1 80 My X) = D) "G — i s.aa i WX (s)Mjaa)si- = 1[s; = h"]

s aa

+ Y M s WX =W 1lsi = 1] (6)
+ Y M —i.aa i W)Mj(aa)siy = h1[s;=h"]

The label feature functions model the dependency of backbone angles on protein sequence profiles and
predicted secondary structure. Equations (5) and (6) indicate that not only the state (i.e., angle distribution)
itself but also the state transition depend on sequence profiles and predicted secondary structure. As shown
in the third and fourth items in the right hand side of Equation (2), the state (or state transition) at one
position depends on sequence profile and secondary structure in a window of width 2w + 1 where w is set to
4 in our experiments. It will slightly improve sampling performance by setting the window size larger.
Since secondary structure is predicted from sequence profiles, the former is not independent of the latter.
Therefore, we need to consider the correlation between sequence profiles and predicted secondary structure,
as shown in the first items of the right hand sides of Equations (5) and (6). The model parameters for the
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label features are identified by one or two states, secondary structure type, amino acid identity, and the
relative position of the observations.

The 2"-order CRF model has millions of features, each of which corresponds to a model parameter to be
trained. Once this model is trained, we can use it to sample protein conformations in a continuous space. Coupled
with an energy function and a folding simulation method, we can also use it for template-free modeling.

The 2™-order CRF model is much better than the 1°-order model

We compare our 2™-order CRF model with the 1*-order model in Zhao et al. (2008a) to see how much

improvement we can achieve by considering the interdependency among three adjacent residues. To
exclude the impact of an energy function in this comparison, we guide conformation search using only
compactness and self-avoiding constraints but not an energy function (for more details, see Zhao et al.,
2008a). In total, we tested our models on a set of 22 proteins with different structure properties. We
generated ~20,000 decoys for each test protein using each CRF model and then calculated the percentage
of decoys with RMSD smaller than a given threshold, as shown in Table 2.

In terms of the best decoys, the 2"%-order model is better on 13 out of 22 test proteins and worse on seven
proteins. The best decoys may be generated by chance, so they cannot be reliably used to evaluate the
performance of the two CRF models. We further examine their difference in terms of the percentage of
decoys with RMSD smaller than a given threshold. A general trend we observed is that when the proteins
under consideration are not big (<100 residues), the 2™-order model generally outperforms the 1%-order
model by a large margin. The only exception is 4icbA. The performance difference between these two CRF
models is small on relatively large proteins such as laa2, ljer, and T056. This may be because a large
protein tends to have a large conformation space and neither CRF model can search a very large con-
formation space efficiently. The reason that the 2"%-order model performs worse on 4icb is because there is
a cis-proline in 4icb, and the length of the virtual C,-bond ending at this proline is approximately 3.2A
instead of our assumption 3.8A. Therefore, the more accurately can our CRF models predict the backbone
angles, the more the decoys deviate from the native structure of 4icb. It is not very difficult to resolve this
issue since from PSI-BLAST sequence profile we can predict with accuracy 92% if a residue is a cis-proline
or not (data not shown). This comparison result indicates that we can dramatically improve sampling
efficiency by using the 2"%-order CRF model.

Comparison with FB5-HMM and fragment assembly

We further compare our two CRF models with the FB5-HMM model in Hamelryck et al. (2006), as
shown in Table 3. Here we compare FB5-HMM and our CRF models using PSIPRED-predicted secondary
structure and sequence information as their input. For each test protein, FBS-HMM generates 100,000
decoys, and we generated only ~20,000 decoys. As shown in Table 3, our CRF models can generate
decoys with significantly better quality than FB5-HMM on five out of six proteins tested in the FBS-HMM
article. The only exception is 4icb, which has been explained in the above section. The result of FB5-HMM
in Table 3 is taken from Hamelryck et al. (2006). The significant improvement of the 2"-order CRF models
over the FB5-HMM model lies in that in estimating the probability of the angles at one residue, the 2"%-
order CRF model can directly take into consideration the effects of its neighbor residues. Our 2"™-order
CRF also models the relationship among three adjacent residues. By contrast, FB5-HMM only takes into
consideration the relationship between two adjacent residues. Furthermore, FB5-HMM does not consider
the effects of the neighbor residues when estimate the probability of angles at one residue.

We also compare our 2"%-order CRF model with the fragment assembly method without using energy
function. We revised the Rosetta code to do conformation optimization using the compactness and self-
avoiding constraints instead of the Rosetta energy function. As shown in Table 3, the advantage of our 1°-
order CRF model over Rosetta is not obvious. However, our 2"%-order model can generate a much larger
percentage of good decoys than Rosetta for five out of six proteins. The protein 4icb is an exception, which
has been explained in previous sections. This comparison result further indicates that it is essential to use
the 2"%-order model instead of the 1*-order model for template-free modeling. In terms of the quality of the
best decoys, Rosetta is slightly better. One of the major differences between these two methods is that our
CRF model uses a more simplified representation of protein conformation than Rosetta. That is, we use the
pseudo backbone angles to represent a protein conformation while Rosetta uses the true backbone angles
(i.e., phi/psi). The phi/psi representation has almost twice the degree of freedom as that of the pseudo
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TABLE 2. QUALITY COMPARISON OF THE DECOYS GENERATED BY THE 1°"-ORDER AND 2"’-ORDER CRF MODELS

Size C Best <6A <7A <84 <94 <10A <IIA <I2A
laa2 108 o Ol 734 0 0 0.0350 0.245 1.05 4.27 13.5
02 731 0 0 0.0145 0.116 0.97 4.99 17.7
1beo 98 o Ol 642 0 0.0200  0.200 0.990 3.27 9.70 23.0
02 584 00093 00481  0.385 1.37 4.50 12.5 293
lctfA 68 aof Ol 370 241 7.18 16.2 31.4 51.7 77.2 95.9
02 367 662 22.3 47.1 64.7 78.9 94.8 99.5
1dkeA 72 B Ol 615 0 0.100 0.870 3.81 12.5 33.4 62.8
02 507 0121 1.48 5.94 16.2 343 59.3 82.6
lenhA 54 o« Ol 232 224 324 44.7 61.2 85.4 98.5 100
02 221 693 72.0 77.7 87.1 97.4 99.9 100
1fc2C 43 o« Ol 194 491 64.1 85.0 97.6 99.7 100 100
02 228 854 91.7 97.3 99.8 100 100 100
Ifca 55 B Ol 499  0.145 1.3 6.00 19.9 49.7 85.5 993
02 496 0207 2.65 13.5 36.3 68.2 94.0 99.8
Ifgp 67 f Ol 740 O 0 0.035 0.46 421 20.2 54.2
02 594 000481 0.0433 0582 425 18.2 48.2 81.8
ljer 110 g Ol 964 0 0 0 0 0.0050 0.120 0.910
02 102 0 0 0 0 0 0.185 1.11
Inkl 78 o« Ol 364 5091 14.1 25.1 452 66.6 86.8 97.7
02 306 203 30.1 442 65.3 84.0 96.7 99.8
1pgb 56 of Ol 3.5 223 45.0 65.1 81.0 93.0 98.6 99.9
02 260 632 85.8 93.9 97.7 99.5 99.9 100
1sro 76 B Ol 622 0 0.0700  0.525 2.75 10.0 27.1 54.7
02 539  0.0193 0.289 1.54 5.09 14.5 32.9 60.0
1ulA 62 o Ol 353 135 253 38.5 57.4 85.1 99.1 99.9
02 372 341 453 535 68.0 94.8 100 100
2croA 65 o Ol 280 168 314 479 63.3 79.9 93.0 99.6
02 258 354 52.9 67.4 79.3 88.9 95.6 99.9
2¢b1A 56 B Ol 291 233 45.6 65.8 81.8 93.2 98.8 99.9
02 204 652 86.1 93.8 97.8 99.5 100 100
4icbA 76 o Ol 463 0515 2.65 7.64 16.8 33.6 59.1 84.3
02 440  0.125 0.600 2.85 12.3 31.0 58.9 88.5
T052 98 f Ol 758 0 0 0.0100 0.0350 0.135 0.800 3.52
02 837 0 0 0 0.0251 0.296 1.78 6.58
TO56 114 o Ol 778 0 0 0.0198 0.0842 0.510 226 7.07
02 757 0 0 0.00497  0.0944 1.07 3.83 8.38
T059 71 B Ol 630 0 0.0100  0.135 1.14 7.20 26.8 61.1
02 621 0 0.0245  0.421 3.85 17.4 45.1 77.3
TO61 76 o« Ol 536 001 0.37 2.89 10.7 27.0 50.9 77.6
02 604 0 0.282 473 19.9 40.5 62.7 82.6
TO64 103 o Ol 723 0 0 0.035 0.2 0.91 2.79 7.30
02 747 0 0 0.0320 0.412 1.53 3.62 9.05
T074 98 o Ol 48  0.0150 0.235 1.23 4.00 10.4 22.0 41.0
02 422 0.0980 0.835 3.56 9.62 18.7 30.4 493

Columns 1-3 list the PDB code, protein size and the type of the test proteins. Columns “best” list the RMSD (10%) of the best decoys;
the other columns list the percentage of decoys with RMSD smaller than a given threshold. “O1” and “O2” denote the 1¥-order and
the 2"%-order CRF models, respectively. In total, ~20,000 decoys are generated for each protein without an energy function.

backbone angle representation. This may explain why our method tends to generate more decoys with

RMSD smaller than 6 A and the best decoys generated by Rosetta tend to have smaller RMSD.

Comparison with lattice model

By combining a simple energy function and our 2"%-order CRF model, we build a program, denoted as
CRFFolder, for template-free modeling. We compare CRFFolder with TOUCHSTONE-II, a representative
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TABLE 3. QUALITY COMPARISON OF THE DECOYS GENERATED BY FB5-HMM, THE 1°"-OrDER CRF,
THE 2"°-OrDER CRF, AND ROSETTA

Test proteins FB5-HMM I*-order CRF 2"_order CRF Rosetta

PDB L o, f Good Best Good Best Good Best Good Best
1FC2 43 2,0 17.1 2.6 49.1 1.94 854 2.28 36.5 2.72
1ENH 54 2,0 12.2 3.8 22.4 2.32 69.3 2.21 44.8 1.23
2GB1 56 1,4 0.0 5.9 23.3 291 65.2 2.04 5.82 2.26
2CRO 65 5,0 1.1 4.1 16.8 2.79 354 2.58 17.2 2.38
ICTF 63 3,1 0.35 4.1 24 3.70 6.62 3.67 2.35 1.30
4ICB 76 4.0 0.38 4.5 0.51 4.63 0.125 4.40 4.51 3.90

For each protein, 100,000 decoys are generated by FB5-HMM, while only ~20,000 decoys by each CRF model and Rosetta. No
energy function is used in this comparison. Columns 1-3 list name and PDB code, size and number of a-helices, and f-strands of the
test proteins. Columns “Good” and “Best” list the percentage of good decoys (with RMSD < 6 A) and the RMSD of the best decoys,
respectively.

lattice model method developed by Skolnick group. TOUCHSTONE-II is an excellent template-free
modeling program, and its two derivatives TASSER (Zhang and Skolnick, 2005a) and I-TASSER (Wu
et al., 2007) perform very well in both CASP7 and CASPS. We do not compare CRFFolder with the two
derivatives because both TASSER and [-TASSER use threading-generated constraints to guide confor-
mation search, while CRFFolder does not. Due to the limitations of computational power, we tested
CRFFolder on a set of 15 test proteins with various structure properties, which were also tested by
TOUCHSTONE-II. These test proteins have very different secondary structures and sizes ranging from 47
to 157. We generated approximately 3000 decoys for each alpha protein, 7000 decoys for each alpha-beta
protein, and 10,000 decoys for each beta protein. By contrast, TOUCHSTONE-II used a complex energy
function consisting of 21 items and generated 24,000 decoys for each test protein (Zhang et al., 2003). As
shown in Table 4, CRFFolder performs much better than TOUCHSTONE-II on all the alpha proteins
except one. CRFFolder also has comparable performance on beta and alpha-beta proteins. On larger
proteins, CRFFolder is slightly worse than TOUCHSTONE-II. This may be because the replica exchange
Monte Carlo algorithm used by TOUCHSTONE-II for energy minimization is better than the simulated
annealing algorithm used in CRFFolder. Note that since two programs use very different clustering
methods, it is not easy to compare these two programs fairly. TOUCHSTONE-II used a program SCAR to
do decoy clustering while we use MaxCluster'. For the purpose of comparison, we also show the RMSD of
the best decoys and the average RMSDs of the top 1% and 2% decoys generated by CRFFolder.

Performance in the blind CASPS evaluation

We tested the performance of our method by participating in the blind CASPS8 evaluation. Our 2nd-order
CRF model was trained before CASPS8 started (in May 2008), so it is unlikely for us to overfit our model for
the CASPS targets.

Comparison with Robetta. We first examine the performance of our method by comparing it with
Baker’s Robetta server on some CASP8 hard targets, on which both Robetta and CRFFolder did template-
free modeling before their experimental structures were released. These hard targets have no good tem-
plates in the PDB. It is unclear how many decoys Robetta generated for each target, but the top five models
generated by Robetta for each target are available at the Robetta web site®. Using our template-free
modeling program CRFFolder, we generated ~7000 decoys for each target and then chose the top five
models. Note that the first models chosen by CRFFolder are not exactly the same as our CASP8 sub-
missions since we submitted template-based models for some of these targets.

Table 5 compares CRFFolder and Robetta in terms of the quality of the first-ranked models. The model
quality is evaluated by a program TM-score (Zhang and Skolnick, 2005b), which generates a real number

'http: //www.sbg.bio.ic.ac.uk /~maxcluster/.
Zhttp: //robetta.org/queue.jsp?UserName=casp8&rpp=100
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TABLE 4. PERFORMANCE COMPARISON BETWEEN OUR CRFFOLDER AND SKOLNICK’S TOUCHSTONE-IL

ZHAO ET AL.

TOUCHSTONE CRFFolder

Target Size Class BestCluster BestCluster Best 1% 2%

1bw6A 56 o 4.79 (2/3) 3.82 (3/3) 2.75 3.38 3.54
1lea 72 o 5.69 (5/5) 4.10 (5/7) 341 4.19 4.48
2af8 86 o 11.07 (5/6) 8.9 (12/19) 7.07 8.53 8.97
256bA 106 o 3.61 (2/3) 2.75 (6/11) 2.50 3.45 3.70
Isra 151 o 10.71 (3/12) 13.95 (17/25) 10.82 13.76 14.24
lgpt 47 o f 6.30 (1/25) 5.55 (42/67) 4.34 5.20 547
1kp6A 79 o fi 10.01 (8/14) 7.99 (1/7) 6.29 7.51 7.81
1poh 85 o f 9.10 (5/9) 8.84 (5/10) 7.49 8.70 9.04
InpsA 88 o f 6.89 (33/34) 9.91 (41/57) 7.87 9.19 9.66
1t1dA 100 o fi 8.96 (7/13) 9.22 (10/13) 6.51 9.51 9.94
1msi 66 p 7.72 (19/28) 7.77 (12/15) 6.24 7.55 7.89
lhoe 74 p 9.39 (5/13) 9.87 (16/35) 7.96 10.00 10.37
lezgA 82 p 11.03 (40/44) 10.42 (42/66) 9.66 10.35 10.62
1sfp 111 p 7.48 (2/18) 11.07 (5/11) 9.32 11.09 11.59
1b2pA 119 p 12.52 (31/56) 10.01 (18/25) 8.76 10.89 11.32

Columns 1-3 list the PDB code, size, and type of the test proteins. Column “Best Cluster” lists the RMSDs of the representative
decoys of the best clusters. In this column, the first number in parentheses denotes the rank of the best cluster and the second number is
the total number of clusters. Column “best” lists the RMSDs of the best decoys. Columns “1%” and “2%” list the average RMSDs of
the top 1% and 2% decoys, respectively. The results of TOUCHSTONE-II are from Zhang et al. (2003).

between 0 and 1 to indicate the quality of a structure model. Roughly, the higher the TM-score is, the better
the model quality. Note that in this table the domain definition of TO510_D3 is from Zhang’s CASP8
assessment page, while others are from Robetta CASP8 web site. As shown in Table 5, overall CRFFolder
is better than Robetta by ~8%. Compared to the Robetta server, our method performs very well on mainly
alpha proteins, e.g., T0460, T0496_D1 and T0496_D2. This could be expected since our CRF model can
capture well the local sequence-structure relationship and alpha helices are stabilized by local interactions
between neighbor residues. Our method also works well on small, mainly beta proteins. For example, our
method is better than Robetta on two small beta proteins T0480° and TO0510_D3. However, our method
does not fare well on a relatively large protein (>100 residues) with a few beta strands, e.g., T0482 and
T0513_D2. This is probably because our CRF method can only model local sequence-structure relationship
while a beta sheet is stabilized by non-local hydrogen bonding. For a small beta protein, our method can
search more thoroughly the conformation space by sampling in a continuous space and potentially do
better. However, for a large beta-containing protein, the search space is too big to be explored in a
continuous space. Another possible reason is that our energy function is not as good as the Robetta energy
function in guiding the formation of beta-sheets.

It is also worth noting that compared to Robetta, our method did better on the first domain of T0496, a
mainly-alpha protein with120 residues. According to the study in Shi et al. (2009), this domain target is one
of the only two CASP8 targets with really new folds. Our method did as well as Robetta on another target
with new fold (i.e., T0397_D1).

Comparison with template-based methods. Our program CRFFolder can also generate 3D models
better than template-based methods for a couple of hard CASP8 targets. According to the CASPS official
assessment, if only the first-ranked models are evaluated, CRFFolder produced the best model among all
the CASP8 human and server groups for T0510_D3, a small alpha/beta protein with 43 residues®.

3T0480 is evaluated without removing the disordered regions at the two ends. If the disorder regions are removed,
CRFFolder is still better than Robetta by about 0.12.
“http: //predictioncenter.org /casp8 /results.cgi
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TABLE 5. PERFORMANCE COMPARISON BETWEEN CRFFOLDER AND ROBETTA ON SOME
CASP8 HARD TARGETS

Target Size Class Robetta CRFFolder
T0397_D1 70 off 0.25 0.258
T0460 111 off 0.262 0.308
T0465 157 off 0.243 0.253
T0466 128 p 0.326 0.217
T0467 97 b 0.303 0.364
T0468 109 off 0.253 0.308
T0476 108 off 0.279 0.250
T0480 55 p 0.208 0.307
T0482 120 off 0.352 0.223
T0484 62 o 0.253 0.249
T0495_D2 65 off 0.312 0.436
T0496_D1 110 off 0.235 0.293
T0496_D2 68 o 0.291 0.500
T0510_D3 43 off 0.147 0.352
T0513_D2 77 off 0.581 0.367
TO0514 145 off 0.283 0.277
Average 0.286 0.310

T0510_D3 is treated as a free-modeling target by CASP8 while Grishin et al. classified it as a fold
recognition target (Shi et al., 2009). We also examined all the template-based models generated by our
threading methods in CASPS8 for this target. The best template-based model has TM-score of 0.339.

CRFFolder also produced one of the best models for T0496_D1, better than other template-based
models. Both CASP8 and Grishin et al. classified T0496_D1 as a free-modeling target (Shi et al., 2009). In
fact, the first-ranked model we submitted for T0496_D1 is much worse than the best decoy we generated
for this target. Among the ~7000 decoys we generated, there are around 18% decoys with TM-score better
than the first-ranked model. The best decoy has TM-score 0.475 and RMSD to native 6.592A. By contrast,
the first-ranked template-free model has TM-score 0.293 and RMSD 11.457A. The best template-based
model generated by our threading methods in CASPS for this has TM-score 0.251, and RMSD 15.372A.

We also examined all the template-based models generated by our threading methods in CASP8 for
T0397_D1, another target with really new fold (Shi et al. 2009). There are only six template-based models
with TM-score higher than the first-ranked template-free models generated by CRFFolder. The best
template-based model generated by us in CASP8 has a TM-score of 0.338. while the best template-free
model generated by CRFFolder has a TM-score of 0.364. There are 6.6% decoys generated by CRFFolder
have have a TM-score better than our first-ranked template-free model.

3. CONCLUSION

This article has presented a probabilistic and continuous model of protein conformational space for
template-free modeling. By using the 2"%-order CRF model and directional statistics, we can accurately
describe protein sequence-angle relationship and explore a continuous conformation space by probability,
without worrying about that the native fold is excluded from our conformation space. This method
overcomes the following limitations of the fragment assembly method: (1) fragment assembly samples
conformations in a discrete space; and (2) fragment assembly is not really template free since it still uses
short fragments (e.g., 9-mer) extracted from the PDB. Both restrictions may cause loss of prediction
accuracy.

Even though we use a simple energy function to guide conformation search, our probabilistic model
enables us to do template-free modeling as well as two well-developed programs TOUCHSTONE-II and
Robetta. Both of them have been developed for many years and have well-tuned and sophisticated energy
functions. Our template-free modeling is much better than TOUCHSTONE-II on alpha proteins and has
similar performance on mainly beta proteins. Blindly tested on some CASPS8 hard targets, our method is
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also better than the Robetta server on quite a few (mainly alpha and small beta) proteins but worse on
some relatively large beta-containing proteins. Finally, our method also generated the 3D models for a
couple of CASP8 targets (i.e., one mainly-alpha target T0496_D1 and one small alpha/beta target
T0510_D3) better than template-based methods. The good performance on alpha proteins indicates that
our 2™-order CRF model can capture well the local sequence-structure relationship for alpha proteins.
The good performance on small beta proteins indicates that by sampling in a continuous space we can
explore the conformational space of small beta proteins more thoroughly. To improve the performance of
our template-free modeling on relatively large beta-containing proteins, we need to further improve our
probabilistic model of beta regions and develop a better hydrogen-bonding energy item for the formation
of beta sheets.

A direct application of the method described in this paper is to refine template-based models. By
extracting distance constraints from template-based models, the conformational space of a target is dra-
matically reduced and thus we can afford to search this reduced space using our continuous-model-based
sampling method, which may search conformational space more thoroughly and lead to better prediction
accuracy. The method described in this article potentially can also be applied to protein loop modeling,
model refinement, and even RNA tertiary structure prediction.

4. METHODS
Continuous representation of protein conformations

It is time-consuming to evaluate a full-atom energy function, but a residue-level energy function usually
is not as accurate as an atom-level energy function. Here we use a simplified and continuous representation
of a protein model. In particular, we only consider the main chain and Cy atoms in folding simulation.

C,-trace representation

The length of the virtual bond between two adjacent C,, atoms can be approximated as a constant (i.e.,
3.8A), so we can represent the C,-trace of a protein using a set of pseudo backbone angles (6, 7). Given a
residue at position i, its 0 is defined as the pseudo bond angle formed by the C, atoms at positions i-1, i and
i+1; 7 is a pseudo dihedral angle around virtual bond between i-land i and can be calculated from the C,
atoms at positions i-2, i-1, I, and i+1. Given the C, atoms at positions i-2, i-1, and i, we can build the C,
atom at position i+1 using (6, 7) at position i. Therefore, given the first three C, positions and N —2 pairs of
(0, 1), we can build the C, trace of N residues. The relative positions of the first three C, atoms are given by
0 at the second residue.

Distribution of bond angles

The preferred conformations of a residue in the protein backbone can be described as a probabilistic
distribution of (6, 7). Each (6, t) corresponds to a unit vector in the 3D space (i.e., a point on a unit sphere
surface). We can use the 5-parameter Fisher-Bingham (FBS5) distribution to model the probability distri-
butions over unit vectors (Kent, 1982). FB5 is the analogue on the unit sphere of the bivariate normal
distribution with an unconstrained covariance matrix. The probability density function of the FB5 distri-
bution is given by

fu)= exp (icy; - u+ B((y - u)* — (73 - w)*)

1
c(x, )
where u is a unit vector variable and c(x, f§) is a normalizing constant. The parameters x and f§ determine
the concentration of the distribution and the ellipticity of the contours of equal probability, respectively.
The higher x and f§ are, the more concentrated and elliptical the distribution is, respectively. The three
vectors )1, 7,, and y3 are the mean direction, and the major and minor axes, respectively. The latter two
vectors determine the orientation of the equal probability contours on the sphere, while the first vector
determines the common center of the contours.

We cluster the whole space of (0, 7) into 100 groups, each of which can be described by an FB35
distribution. We calculate the (6, 7) distribution for each group from a set of ~3000 non-redundant proteins
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with high-resolution x-ray structures using KentEstimator (Hamelryck et al., 2006). For a detailed de-
scription of how to calculate the FBS distributions, Zhao et al. (2008a). Once we know the distribution of
(0, 7) at one residue, we can sample a pair of real-valued (6, 7) angles in a probabilistic way and thus,
explore protein conformations in a continuous space.

Building backbone atoms

Using (0, 7) representation, only the coordinates of the C, atoms can be built. To use an atom-level energy
function, we also need to build the coordinates of other atoms. Given a C, trace, there are many methods that
can build the coordinates for the main chain and Cy atoms (Gront et al., 2007; Holm and Sander, 1991;
Maupetit et al., 2000). To save computing time, we want a method that is both accurate and efficient. We
choose to use a method similar to BBQ (Gront et al., 2007). The original BBQ method can only build
coordinates for the backbone N, C, and O atoms. We extend the method to build coordinates for the C atom.
Experimental results (data not shown) indicate that RMSD of this method is approximately 0.5 A supposing
the native C,-trace is available. This level of accuracy is good enough for our folding simulation.

To employ the KMB hydrogen-bonding energy (Morozov et al., 2004) for -containing proteins, we also
need to build the backbone hydrogen atoms. We use a quick and dirty method to build coordinates for the
hydrogen atom HN (Branden and Tooze, 1999). Let N; denote the position of the main chain N atom in the
same residue as the HN atom. Let N; C;_; denote the normalized bond vector from the N atom to the C atom
in the previous residue. Let N; C,, denote the normalized bond vector from the N atom to the C, atom in the
same residue. Then the position of the hydrogen atom HN can be estimated by N; — % The
average RMSD of this method is approximately 0.2A (data not shown) supposing the native coordinates of
other main chain atoms are available.

Model parameter training

Given a set of m proteins with sequence profile M!, predicted secondary structure X' and corresponding
backbone angles S' (i=1, 2, ..., m), our CRF model trains its parameter A= {1, 4, ..., 4,} by max-
imizing the conditional log-likelihood L of the data:

L= log(Ps(S'|M', X)) - k;—; (7)
The second item in Equation (7) is a regularization factor to deal with the sparsity in the training data.
When the complexity of the model is high (i.e., the model has many features and parameters) and the
training data is sparse, overfitting may occur, and it is possible that many models can fit the training data.
Our 2"%-order CRF model has around one million of parameters;, we place a Gaussian prior exp( > 2%)
on the model parameter to choose the model with a “small” parameter in order to avoid overfitting. This
regularization can improve the generalization capability of the model in both theory and practice (Vapnik,
1998). This kind of training is also called discriminative training or conditional training. Different from the
generative training in the FB5-HMM model, discriminative training directly optimizes the predictive ability
of the model while ignoring the generative probability of the observation.

The objective function in Equation (7) is convex and hence theoretically a globally optimal solution can
be found using any efficient gradient-based optimization technique. There is no analytical solution to the
above equation for a real-world application. Quasi-Newton methods such as L-BFGS (Liu and Nocedal,
1989) can be used to solve the above equation and usually can converge to a good solution within a couple
of hundred iterations. For a detailed description of how to train a CRF model, see elsewhere (Lafferty et al.,
2001; Sha and Pereira, 2003) We revised the FlexCRFs program (Phan et al., 2005) to train our CRF model,
and it takes approximately 24 hours to train a single model on a cluster of 150 2GHz CPUs.

We used a set of ~3000 non-redundant proteins to train the parameters in our CRF model. Any two proteins
in the training set share no more than 30% sequence identity, and the resolution of a training protein is at least
2.0A. To avoid overlap between the training data and the test proteins (i.e., the proteins in Tables 2—4), we
removed the following proteins from our training set: (1) the proteins sharing at least 25% sequence identity
with our test proteins; (2) the proteins in the same fold class as our test proteins according to the SCOP
classification; and (3) the proteins having a TM-score 0.5 with our test proteins in case some recently released
proteins do not have a SCOP ID. If the TM-score of two protein structures is smaller than 0.5, then a threading
program such as PROSPECTOR_3 cannot identify their similarity relationship with high confidence.
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The training set is randomly divided into five sets of same size and then used for five-fold cross validation.
We trained our CRF model using three different regularization factors (i.e., 62 in Equation (7)): 25, 125, and
625, and chose the one with the best Fl-value. Fl-value is a widely used measurement of the prediction
capability of a machine learning model. F1-value is an even combination of precision p and recall r and
calculated as (pz” ~. The higher the Fl-value is, the better the CRF model. The average Fl-values for

+r)"

regularization factors 25, 125, and 625 are 21.73%, 21.55%, and 22.03%, respectively. In terms of F1-
value, the difference among these regularization factors is small. Therefore, we choose a small regular-
ization factor 25 to control the model complexity since a model with lower complexity usually generalizes
better to the test data. The regularization factor is the only parameter that we need to tune manually. All the
other model parameters (i.e., weights for features) can be estimated automatically in the training process.

Conformation sampling and resampling

Initial conformation sampling. Once the CRF model is trained, we can sample a protein confor-
mation or resample the local conformation of a segment by probability using a forward-backward algo-
rithm. We first sample labels (i.e., angle distribution) by probability estimated from our CRF model and
then sample real-valued angles from the labels. Let V(i,s;, s;;;) denote the sum of all the edge features
associated with edge (s;, s;,1) and all the label features associated with labels s;, 5,1 and (s;s;, ). Let
G(i,s;,8;+1) denote the marginal probability of a label pair (s;,s;,.1). We can recursively calculate
G(i, s;,8;+1) from N-terminal to C-terminal as follows.

G(0, 59, 51) = " O 050

G, s, 5i11) = €055+ ZY (G — 1,51, s;)e™si=1-5050))
Si—1

where 4 (s;_1, s;, s;1) can be interpreted as state transition log-likelihood. Once G(N — 1, sy_;, sy) is
calculated where N is the protein size, we can sample a conformation from C-terminal to N-terminal. First,

we sample a label pair (sy_1, sy) for the last two positions by probability D G — (71(’1;”*1":”) - Then we
— LISN-1,5N
SN — 155N

supposing that the sampled

GUi, i, Si 1) €XP (A(Si, Si 4+ 1, 8i +2))
Es' Gi, 51,511 1) Xp (A5, Si 1, 5112))

labels at position i+1 and i+2 are s, and s;,,, respectively.

sample the label s; for position i by probability

Conformation resampling. The algorithm for resampling the local conformation of a randomly
chosen segment is similar. We first randomly determine a segment for which we are going to resample
backbone angles. Then we resample the angles for this segment using a forward-backward algorithm
similar to the initial conformation sampling algorithm. The major difference is that in this scenario we
calculate G(i, s;, ;1) for a segment conditioning on the labels of the two residues flanking this segment at
the left and when do resampling we also have to consider the two residues flanking this segment at the right.

Biased sampling. Our sampling method works well in alpha regions but not in beta regions. We
decided that we should do more frequent sampling in beta and loop regions than in alpha regions. This is
because both beta and loop regions are more varied than alpha regions. By sampling in the beta and loop
regions more frequently, we can generate decoys with better quality. We achieve this goal by empirically
assigning different weights to each position depending on its predicted secondary structure type. The
weights for alpha, beta and loop regions are 1, 5, and 3 respectively. These weights are empirically
determined using a simple enumeration method on the test proteins in Table 2. To determine which
segment with angles to be resampled, we first uniformly sample the segment length / between 1 and 15.
Then we sample the starting position of this segment using biased sampling. We calculate the weight of a
segment as the sum of the weights of all the positions in this segment. Then we randomly sample a segment
with the length / by probability proportional to the weight of this segment.

Biased sampling is employed only when we do folding simulations using the energy function described
in this paper. In the case that the energy function is not used, we still use uniform sampling.

Energy function

The energy function we used for folding simulation consists of three items: DOPE, KMBhbond, and
ESP. The weight factors combining these three energy items are trained on the proteins in Table 2 using



PROBABILISTIC MODEL FOR TEMPLATE-FREE MODELING 795

grid search in a progressive way. First, we fix the weight factor of DOPE to 1 and determine the weight
factor for ESP by minimizing the average RMSDs of generated decoys. Then we fix the weight factors of
both DOPE and ESP and determine the weight factor for KMBhbond using the same way.

DOPE. DOPE is a full-atom, distance-dependent pairwise statistical potential originally designed by
Shen and Sali and then improved by the Sosnick group (Fitzgerald et al., 2007; Shen and Sali, 2006). DOPE
performs as well or better than many other statistical potentials and force fields in differentiating a native
structure from decoys. The statistical potential in DOPE distinguishes the amino acid identity and atomic
identity of two interacting particles. In our folding simulation, we only build coordinates for main chain and
Cp atoms, so only the statistical potentials related to main-chain and Cg atoms are used to calculate the
energy of a conformation. We denote this revised DOPE as DOPE-Cg. According to Fitzgerald et al.
(2007), DOPE-Cg is highly correlated with the full-atom DOPE. DOPE-Cy also performs favorably in
applications to intra-basin protein folding (Colubri et al., 2006).

Hydrogen bonding. KMBhbond is a statistical potential for hydrogen bonding developed by the
Baker group (Morozov et al., 2004). It depends on the distance between the geometric centers of the N-H
bond vector and the C=O0 bond vector, the bond angle between the N-H bond vector and the hydrogen
bond, the bond angle between the C=0 bond vector and the hydrogen bond, and the dihedral angle about
the acceptor-acceptor base bond. The three angles describe the relative orientation of the bond vectors in
the hydrogen bond.

ESP. ESP is an approximation to the Ooi-Scheraga solvent-accessible surface area (SASA) potential
(Ooi et al., 1987). Since our conformation representation does not contain side-chain atoms, which are
necessary for the calculation of the solvent-accessible surface area potential, we employ a simple ESP that
assigns each residue with an environmental energy score. ESP is a function of the protein size and the
number of C, atoms contained within an 8.5-A sphere centered on the residue’s C, atom (Fernandez et al.,
2002). Explicitly, the ESP statistical potential has the form given by

P(n|R, aa)

ESP(aa,n)= — In PUlR)

where n is the number of C, atoms in an 8.5-A sphere centered on the C, atom of the residue, R is the
radius of gyration of the protein, aa is the amino acid identity of the residue, P(n|R) is the number of C,
atoms in an 8.5-A sphere for a given protein radius regardless of amino acid identity, and P(n|R,aa) is
the number of C, atoms in an 8.5-A sphere for a given protein radius and amino acid identity. We
calculate ESP(aa, n) from a set of ~3000 non-redundant experimental structures chosen by the PISCES
server (Wang and Dunbrack, 2003). Each protein in this set has resolution at least 2.0 A R factor no
bigger than 0.25, and at least 30 residues. Any two proteins in this set share no more than 30% sequence
identity.

To parameterize the ESP potential, we need to discretize the radius of gyration R, which ranges from
7A to 39A in our training set. We tested the following three discretization schemes: (1) R is discretized into
65 bins with equal width 0.5/0%; (2) R is discretized into 33 bins with equal width 110\; and (3) R is first
discretized into 33 bins with equal width 1A. Then we merge [7, 9), [34, 36) and [37, 39] into a single bin,
respectively, to guarantee sufficient statistics for these intervals. We calculated the Pearson correlation
coefficient between the resultant ESP energys and TM-score of the decoys. The third scheme yields the best
correlation and thus is used in our energy function.

Energy minimization

We employ a simulated annealing (SA) algorithm to minimize the energy function for a given protein.
The SA routine is based on the algorithm proposed by Aarts and Korst (1991). We start with sampling an
initial conformation and then search for a better one by minimizing the energy function. Given a con-
formation, we propose a new conformation by resampling the local conformation of a randomly-chosen
small segment using the CRF model. The new conformation is rejected if there are serious steric clashes
among atoms; otherwise, it is accepted with probability min (1, e~ ") where AE is the energy increment and
t is the annealing temperature.
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The initial annealing temperature is chosen so that at the beginning of the annealing process an energy
increase is accepted with a given probability po(=0.8). The initial temperature t, is determined by
th= — mAﬁ where AE is the average energy increase. To determine AE, we first conduct a series of trial
conformation samplings and accept all the generated conformations. Then we estimate AE by calculating
the average energy increase observed in our trial samplings.

During the folding simulation process, we decrease the annealing temperature gradually using an
exponential cooling schedule. The temperature is updated by t,,; =0.9t. At each annealing temper-
ature, the number of sampled conformations is set to (1004+N) where N is the number of residues in the
protein. This number is set to achieve thermal equilibrium. The termination of the SA process is
triggered when any of the following two conditions is satisfied: (1) either the temperature is low
enough such that almost no energy increase is accepted and the annealing process is trapped at local
minima; or (2) or the number of conformations generated in a single simulation process reaches a
threshold (say 10,000).
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