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ABSTRACT

When cultured on flat surfaces, fibroblasts and many other cells spread to form thin la-
mellar sheets. Motion then occurs by extension of the sheet at the leading edge and re-
traction at the trailing edge. Comprehensive quantitative models of these phenomena have
so far been lacking and to address this need, we have designed a three-dimensional code
called Cytopede specialized for the simulation of the mechanical and signaling behavior of
plated cells. Under assumptions by which the cytosol and the cytoskeleton are treated from a
continuum mechanical perspective, Cytopede uses the finite element method to solve mass
and momentum equations for each phase, and thus determine the time evolution of cellular
models. We present the physical concepts that underlie Cytopede together with the algo-
rithms used for their implementation. We then validate the approach by a computation of
the spread of a viscous sessile droplet. Finally, to exemplify how Cytopede enables the testing
of ideas about cell mechanics, we simulate a simple fibroblast model. We show how Cytopede
allows computation, not only of basic characteristics of shape and velocity, but also of maps
of cell thickness, cytoskeletal density, cytoskeletal flow, and substratum tractions that are
readily compared with experimental data.

Key words: cytoskeleton, fibroblast, finite element, sessile drop, thin film, traction force

microscopy.

1. INTRODUCTION

Animal cells plated on a flat culture dish, as is the case in the vast majority of laboratory

experiments, take on an archetypal ‘‘fried egg’’ appearance. During migration, they spontaneously

assume a polarized shape that varies according to cell type (e.g., hand-mirror for fibroblasts, or crescent for

fish keratocytes). A thin sheet of cytoplasm extends at the leading edge (the lamellipodium) and undergoes

cycles of protrusion, adhesion, and traction. Most of the time, this morphology is robustly preserved under

perturbations but occasionally, certain maneuvers have drastic effects, in particular those that directly affect

cytoskeletal organization.

The experimental methods of molecular and cell biology (imaging, biochemistry, genetics) have revealed

a large number of the key chemical players and pathways involved in generating and controlling cell

motility (Bakal et al., 2007; Jaffe and Hall, 2005). This information has been supplemented by biophysical
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approaches that include speckle imaging, FRAP, FLAP, atomic force microscopy and traction microscopy

(Harris et al., 1980; Dembo et al., 1996; Dembo and Wang, 1999; Zicha et al., 2003; Waterman-Storer and

Danuser, 2002; Danuser and Waterman-Storer, 2006). Unfortunately, analysis and integration of the

massive datasets generated by these methods presents major conceptual, mathematical and numerical

difficulties. To help bridge the gap we offer here a prototypical tool for cytomechanical modeling and

computation, which we have named Cytopede. Cytopede is based on and extends an earlier computational

environment for cytomechanics—the RIF, or ‘‘reactive interpenetrative flow’’ method (Dembo and Harlow,

1986).

The overarching scheme of Cytopede is derived from a sense that the issues and challenges involved in

understanding cell motility are numerous and difficult but also highly modular and separable. Therefore,

Cytopede starts by a process of deconstruction and analysis to enumerate and computationally implement

fundamental physical components such as ‘‘viscosity’’ or ‘‘protrusive force’’ that drive a cell from one

mechanical state to the next. These building blocks can then be combined and modulated in an infinite

variety of ways.

In addition, Cytopede was designed to incorporate two key sets of attributes: first to automatically

enforce fundamental laws of mass and momentum transport and conservation which, like everything else,

cells must obey; second to allow straightforward contact with laboratory experiments. For the latter,

compatibility with certain types of datasets is especially important. These are: (i) cell geometry which is

simply given by the cell contour, and which may occasionally be complemented by information on cell

thickness within that contour, (ii) cytoskeletal concentration, composition, reactivity and flow as revealed

by fluorescent markers, and (iii) traction forces which can be determined via the deformable substratum

method.

Cytopede is a software package dedicated to the simulation of free-boundary multiphase low-Reynolds

number three-dimensional films in general and to the simulation of spread cells in particular. It uses the

finite element method, distinguishes cytosolic from cytoskeletal dynamics (hence the label multiphase),

and allows a wide range of shape changes as long as the ventral side of the cell that is modeled remains in

contact with a flat substratum. Computationally innovative aspects include a new kind of adaptive mesh

with specialized volume elements, surface elements, and line elements to allow for flexible im-

plementation of free boundaries dynamics and of adhesion and detachment dynamics between a cell and

its substrate.

As it matures, Cytopede is intended to be freely available to the community at large of researchers

interested in modeling cell motility. The main objectives of this article are thus to some extent pedagogical

and encompass the following themes: a discussion of the physical concepts that inform the approach used in

Cytopede to address problems of cell motility; a description of the implementation of these concepts

through the algorithms used by Cytopede; testing of the code through a numerical experiment performed on

a viscous drop with surface tension spreading under the influence of gravity; and a biological example in

which Cytopede is used to formulate and solve a simple model of a locomoting cell.

2. PHYSICAL CONCEPTS

Compared to other instances of locomotion, the most remarkable feature of a migrating cell is the rapid

chemical turnover of its structural elements. Cytoskeletal polymers are assembled at the front of the cell

from components floating in the cytosol (actin monomers, cross-linkers, adhesion proteins, motor proteins,

etc.). They are then disassembled, reassembled, and so forth through some unknown number of cycles,

before reaching the rear. The simple fact that the reactivity of the cytoskeleton occurs on the same time

scale as its motion means that the two phenomena cannot be separated and that a cell truly ‘‘makes itself

anew’’ as it moves forward. Indeed, the importance and close connection between the chemistry and

physics of the cytoskeleton has long been recognized in biophysical and modeling circles and has received

overwhelming experimental confirmation (Watanabe and Mitchison, 2002). For the purposes of a physical

analysis, the first consequence of this extreme reactivity is that it precludes models in which the cytoplasm

is reduced to a single continuum. At minimum, it is necessary to consider interpenetrating cytosolic and

cytoskeletal phases, and one must focus on the structural rules that govern the definition of the phases

and the dynamical rules that govern their interconversion. Thus, actin monomers will contribute to the
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cytoskeletal phase if they are in the filamentous form and to the cytosolic phase when in the globular

diffusible form but they cannot be part of both phases simultaneously.

With this in mind, consider the three principal structural components of animal cells:

� The cytoskeleton is a porous continuum consisting mainly of actin filaments that resists deformation

through viscoelastic properties and is driven by molecular motors (e.g., myosin), polymerization

forces, and thermodynamic (colloid) effects (e.g., electrostatic or steric).
� The cytosol flows passively through the cytoskeleton; it is a medium for the propagation of diffusible

signals. It is incompressible and therefore conducts pressure. Finally, it can be converted to cyto-

skeleton via the polymerization of dissolved monomers (e.g., G-actin? F-actin) and vice versa.
� The plasmalemma (or cortical membrane) defines the boundary of the cell by controlling (and often

preventing) electrical, chemical and volumetric exchanges with the external medium. It is furthermore

highly flexible to bending motions, highly fluid to shearing deformations, and yet very resistant to area

expansions. Together, these three properties make it a good conductor of stress in the form of cortical

tension.

Note that this classification ignores organelles, such as granules, or the cell nucleus. One could of course

construct models that include such elements, but in most circumstances, the cost in terms of complexity

becomes so large as to dominate the scientific return. In addition, the ability of cell fragments to migrate

autonomously (Verkhovsky et al., 1999) lends further credibility to this approximation.

If one makes the key assumption that at the mesoscopic scale—i.e., at a scale small compared to the

whole cell but large compared to individual molecules—the properties of the cell can be represented by

continuous fields, then the general framework of continuum mechanics can be applied to animal cells just

as it is done with any other materials. Given a cell occupying a simply connected domain O(t) with

boundary qO(t), Cytopede assembles an internally consistent set of coupled differential equations,

boundary conditions and initial conditions that govern the temporal evolution of the domain itself and of

various scalar and vector fields defined in its interior and on its surface. If x 2 X is a position vector and t

time, then the most basic and important fields are:

� yn(x, t) the network phase (cytoskeleton) volume fraction,
� ys(x, t) the solvent phase (cytosol) volume fraction,
� vn(x, t) the network velocity field,
� vs(x, t) the solvent velocity field, and
� P(x, t) the cytoplasmic pressure.

The evolution equations for the quantities yn, ys, vn, vs, and P are then determined by the laws of mass

and momentum conservation.

Of note is that since it was developed in the context of cell motility in the 1980s (Dembo and Harlow,

1986), the two-phase fluid description is becoming more prevalent with several recent computational

implementations (Rubinstein et al., 2005; Zajac et al., 2008).

2.1. Mass conservation

The fact that we only consider two phases (cytoskeleton and cytosol) mandates that the sum of network

and solvent volume fractions is unity:

hnþ hs¼ 1: (1)

Net cytoplasmic volume flow is given by the sum of the flow of cytosolic volume and cytoskeletal volume,

i.e. v¼ ynvnþ ysvs. Since both components of the cytoplasm are condensed phases, it is an excellent

approximation to regard the combined flow as incompressible (! � v¼ 0):

r � (hnvnþ hsvs)¼ 0: (2)

Finally, conservation of cytoskeleton implies that the rate of change of network concentration at a given

point in space (Eulerian derivative) is the sum of an advective transport term describing the net inflow of

network, and a source term J which represents the net rate of in situ cytoskeletal production by poly-

merization:
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qhn

qt
¼ �r � (hnvn)þJ : (3)

Obviously J depends on a prescription for local chemical activity that needs to be provided separately. Eq.

3 has a counterpart for the solvent

qhs

qt
¼ �r � (hsvs)�J : (4)

which, when taken together with Eq. 1 unsurprisingly reduces to Eq. 2. As a result, only Eqs. 1, 2, and 3 are

needed and Eq. 4 is redundant.

2.2. Momentum conservation

The momentum equations for the solvent and network phases are simplified by two observations.

Because of the small dimensions and velocities involved, inertial terms can be neglected. Second, the

essentially aqueous nature of the cytosol implies that its characteristic viscosity is not very different from

that of water (0.02 poise). Since this is much less than typical cytoplasmic viscosities (*1000 poise), the

viscous stress is carried by the cytoskeletal (network) phase while the cytosolic (solvent) phase is nearly

inviscid. Given these approximations, the only two forces that act on the solvent are pressure gradients and

solvent-network drag—that is, the drag force due to solvent flow through the network when velocities are

mismatched. In the spirit of Darcy’s law, the solvent momentum equation can be written

� hsrPþHhshn(vn� vs)¼ 0: (5)

P is the cytoplasmic pressure and it is assumed that, as for the partial pressures of a mixture of gases, it is

shared by the cytosolic and cytoskeletal phases according to concentration (volume fraction). H is the

solvent-network drag coefficient more familiar as the product hnH representing the hydraulic resistance

that appears in the usual form of Darcy’s equation. Theory (Scheidegger, 1960) as well as experiments on

polymer networks (Tokita and Tanaka, 1991) give estimates of H that lead to small drag forces compared

to other forces acting within the cytoplasm, chief among them the cytoskeletal viscosity. This is not

surprising since H is roughly proportional to the solvent viscosity which is small compared to the network

viscosity. The smallness of H in turn implies that pressure gradients are small, or that pressure is close to

uniform inside the cell; although, for a different view point, see Mitchison et al. (2008) and Charras et al.

(2009). Thus, from the point of view of overall cell shape and motion as determined by cytoskeletal

dynamics (Eq. 6 below), the precise value H does not matter as long as it is sufficiently small. However,

from the point of view of internal cytosolic flow, which can play an important transport role, the value ofH
does matter, and pressure gradients, even though small are not negligible.

It is in the network (cytoskeleton) momentum equation that the rich complexity of cell mechanics

becomes evident. Aside from pressure gradients and solvent-network drag, the network is also subject to

viscous, elastic, and interaction forces, and the network momentum equation can therefore be written

� hnrP�Hhshn(vn� vs)þr � [�(rvnþ (rvn)T )]�r �WþFext¼ 0: (6)

Here, n is the network viscosity, C is the part of the network stress tensor remaining under static conditions,

and Fext is an external body force. The term C can include inter-filament interactions (such as contractility

due to myosin activity or swelling due to colloid osmotic effects), filament-membrane interactions, elastic

forces due to deformations, etc.

2.3. Remarks on protrusive forces due to cytoskeleton-membrane interactions

Current ideas about cellular protrusion give a central role to the interaction of polymerizing filaments

with the plasma membrane (Hill and Kirschner, 1982; Peskin et al., 1993; Dickinson and Purich, 2002;

Kovar and Pollard, 2004). A comprehensive discussion of how such mechanisms can be described within a

continuum mechanical framework is beyond the scope of this outline and will be the subject of a separate

article, but we briefly mention key principles. As is always the case in the low Reynolds number regime, we

require no net forces, so that any force on the membrane (e.g., for protrusion) must be balanced by an equal

and opposite force on the network. This can be enforced automatically if the force is derived from the
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divergence of a tensor field CnM. In addition, because the membrane is fluid, cytoskeleton-membrane

interactions cannot generate a shear stress in a patch of free membrane (this may change at adherent

membrane). Then, at a patch of free membrane, the stress will be typically of the form:

WnM ¼wnMnn, (7)

where nn is the dyadic of the unit vector outward normal to the membrane and where cnM is a scalar which

may, for instance, be a function of local network density and/or polymerization at the membrane. In this

work and elsewhere, we have essentially used a d-function at the boundary which embodies the stress times

its range dM away from the membrane (Herant et al., 2003; Herant and Dembo, 2006) and set CnM¼ 0

elsewhere inside the cell. In a forthcoming work we will describe a more complete approach to the

cytoskeleton-membrane interaction stress fields where the definition CnM at the boundary of the cell with

condition Eq. 7 can be extended to define a more physical generalized membrane-network stress field in the

intracellular space.

2.4. Boundary conditions

As partial differential equations, the evolution equations must be complemented by boundary conditions

and this is where characteristics of the plasma membrane come into play. For mass conservation, we

assume that the membrane remains impermeable to the cytoskeleton (which may even be anchored to the

membrane) so that:

vM � n¼ vn � n (8)

where vM is the velocity of the boundary and n is the outward normal unit vector. If we also assume that the

membrane is impermeable to the cytosol (which appears to be true in some cases and not in others) we also

have

vM � n¼ vs � n (9)

but this condition can be relaxed to allow a net volume flux through the boundary.

For momentum conservation, there are two main possibilities: (1) the boundary is constrained by in-

teraction with a solid surface as in the case of the cell/substratum interface, or (2) the boundary is free

membrane bathed by an inviscid external medium. In (1), the boundary condition reduces to a constraint on

the normal component of the velocity (which must be 0), and, if a no slip condition also applies, there are

additional constraints on tangential components of the velocity. In (2), the boundary condition amounts to a

stress continuity requirement:

�(rvnþ (rvn)T ) � n�W � n�Pn¼ � 2cjn�Pextnþ r, (10)

where g is the surface tension, k is the mean curvature of the membrane, n the outward normal to the

membrane, and s an externally imposed traction vector. This kind of boundary condition typically applies

to the free back surface of the cell.

2.5. Constitutive equations

As presented, the mass and momentum conservation equations are cast in a general framework that

must be defined by further prescriptions to provide closure of the system. Thus, the constitutive

equations embody most of what one usually thinks of as the biological and regulatory aspects of

cellular dynamics. These can be made complicated and detailed or simple and schematic depending on

the specific modeling objective. As an example, it is plausible that the cytoskeletal viscosity n (ap-

pearing in Eq. 6) should approach zero when the network volume fraction approaches zero. A simple

scheme to satisfy this requirement would suggest that viscosity be determined by a constitutive law

such as

�¼ �0hn (11)

prescribing a linear relation between viscosity and network concentration. A more complex idea designed

to account for the possibility of network gelation may be expressed by
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�¼ �0hn exp
hn

hgel

� �
, (12)

where ygel is a parameter that stipulates the volume fraction at which the probability of inter-filament

crosslinking exceeds a percolation threshold for gelation. In principle, the form of the constitutive law for

cytoskeletal viscosity could be verified empirically by investigating the rheology of the cytoplasm at

various cytoskeletal concentrations; however, in general such experimental evidence is sparse and often

difficult to interpret so that constitutive laws such as Eq. 12 are educated guesses.

The considerable uncertainties and complexities of physiological feedback and regulation make it likely

that for the foreseeable future, progress in modeling cell motility will generally require a process of trial

and error. It will be necessary to formulate various plausible constitutive relations, carry out computations

to work out their consequences, and compare these consequences with experimental observations. It is in

large measure to enable this process that we have created Cytopede, and it is also the reason why Cytopede

is designed to allow maximum latitude for constitutive laws of every possible sort. Thus, the code allows

the user freedom to set the constitutive laws that govern J (the network formation or cytoskeletal poly-

merization rate), H (the resistance to solvent flow through the network), C (the network stress due to

elasticity and static interactions), n (the network viscosity), g (the tension of the cortical membrane), along

with other parameters that may govern behavior such as diffusion and transport of reactants, etc. In

addition, it is also possible to define rules for attachment to and detachment from the substratum, processes

that clearly play a key role in cell spreading and migration. The main advantage of this open and modular

formalism is that one can start with a minimal and schematic approach and test the results and then

gradually build complexity and detail step by step to virtually unlimited levels.

3. COMPUTATIONAL ALGORITHMS

Although we have tried to make it as self-contained as possible, this section presupposes a passing

familiarity with the finite element method for which many textbooks exist; our favorite is Hughes (2000). In

what follows, we outline the ideas behind Cytopede as well as key computational components. Algebraic

developments are found in the Appendix. The Cytopede code itself is written in Fortran 90, and can be

compiled and run on standard linux desktop PC workstations. For most of our visualization needs, we use

gmv (General Mesh Viewer, freely available).

3.1. Numerical method and mesh structure

We use a Galerkin finite element method for several reasons. First, it is a well-established method for

solving partial differential equation with solid theoretical underpinnings and with a considerable track

record in many practical applications. We demand a conservative method that does not in itself add

additional layers of uncertainty to computational results. Second, it is well-suited for free boundary

problems and capable of accommodating the complex shapes and deformations observed in migrating cells.

Third, it allows a straightforward and precise way of implementing the range of boundary conditions

encountered in studies of cell motility despite a complex and dynamic boundary geometry.

For three-dimensional finite element simulations on an evolving computational domain, the management

of the mesh represents the most arduous challenge, mainly because of the necessity to perform reliable

automatic rezoning over a volume whose evolving shape cannot be predicted in advance. In addition,

visualization and debugging difficulties increase exponentially with mesh complexity. This is why the

overriding consideration in the selection of a mesh structure is for the maximum simplicity still compatible

with a reasonably accurate simulation. This is also the reason why prior efforts to model spread cells have

previously generally been limited to two-dimensional computations (Bottino et al., 2002; Rubinstein et al.,

2005) or to semi-analytical calculations in the lubrication approximation (Oliver et al., 2005).

A spread cell on a substratum essentially represents a thin flat body. For this configuration, a pavement

consisting of a single layer of 8-node brick elements is probably the simplest mesh structure possible but it

has a drawback. In classic viscous film flow over a surface, the lower contact boundary has v¼ 0 while the

upper free boundary has qv/qz¼ 0, leading to a classic parabolic (Poiseuille) profile with height. The same

probably holds true for certain cytoskeletal flows, in particular for centripetal flow where there may be
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anchoring at the substratum and retrograde flow higher up. For these types of flow, the linear resolution

afforded by two nodes in height is inadequate. Instead we make use of a single layer of 12-node elements

with quadrilateral ventral and dorsal faces and with 4 intermediate nodes located between the ventral and

dorsal nodes (Fig. 1). This leads to quadratic accuracy vertically (sufficient to reproduce a Poiseuille type

flow) and linear accuracy horizontally. However, horizontal resolution can be increased by mesh refinement

while vertical resolution cannot.

We define as a stack a series of three nodes connected vertically. Thus each element is made up of four

stacks, and in a given stack, the first node is the ventral node (usually with z¼ 0), the third node is the

dorsal node, and the second node is the middle node. A stack is termed an edge stack if it lies at the edge of

the mesh structure. The ventral nodes of edge stacks make up the contact line. The ventral surface of the

domain consists of all the ventral faces of the elements. The back surface of the domain consists of all the

dorsal faces of the elements together with the all the edge faces linking two edge stacks. Both these surfaces

meet and are bounded by the contact line (Fig. 2).

3.2. Shape functions

We use standard isoparametric shape functions corresponding to the mapping of an element from real

coordinates (x, y, z) to natural coordinates (x, Z, z; Fig. 1):

Hkl¼
1

8
(1 – n)(1 – g)f(f – 1), (13)

for ventral (l¼ 1, z¼�1) or dorsal (l¼ 3, z¼þ 1) nodes belonging to stack k where the signs are chosen

such that the shape function is unity at node kl and vanishes at all others, and:

Hk2¼
1

4
(1 – n)(1 – g)(1� f2), (14)

for middle nodes (l¼ 2, z¼ 0), and again the signs are chosen such that the shape function is unity at node

k, 2 and vanishes at all other nodes of the element. Any field F defined at the nodes can be interpolated to

an arbitrary position jxj, jZj, jzj � 1 within an element as

�(n, g, f)¼
X4

k¼ 1

X3

l¼ 1

�klHkl(n, g, f)¼
X
i2e

�iHi(n, g, f), (15)

where i runs over all the nodes of a given element e. In particular, the mapping from natural coordinates to

real coordinates is given by expressions of the type:

x(n, g, f)¼
X
i2e

xiHi(n, g, f): (16)

The Jacobian of the coordinate transformation is given by:

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,3

4,3

z=0

x=-1
z=-1

z=+1

h=+1

x=+1
h=-1

3,2 FIG. 1. An element in real (left)

and natural (right) space. On the

left, the nodes are labeled by stack

and level.
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J¼
qx=qn qx=qg qx=qf
qy=qn qy=qg qy=qf
qz=qn qz=qg qz=qf

0
@

1
A, (17)

with for instance

qx

qn
¼
X
i2e

xi

qHi

qn
: (18)

Partial derivatives of the field F can be computed, e.g.:

q�

qx
¼
X
i2e

�i

qHi

qx

¼
X
i2e

�i

qHi

qn
qn
qx
þ qHi

qg
qg
qx
þ qHi

qf
qf
qx

� �
(19)

where terms such as qx/qx are computed by inverting the Jacobian J.

Surface shape functions S are defined in a way analogous to the volume shape function H. However, the

form of an S depends on whether a quadrilateral (ventral or dorsal) or a hexalateral (edge) surface is

considered. In the first case

Si¼
1

4
(1 – n)(1 – g) (20)

where the signs are chosen such that the shape function is unity at node i and vanishes at the other 3 nodes

that belong to the quadrilateral. In the second case,

Si¼
1

4
(1 – n)f(f – 1), (21)

if node i is a ventral or dorsal node and

Si¼
1

2
(1 – n)(1� f2), (22)

if node i is a middle node. Signs are determined as before.

For a quadrilateral surface with natural coordinates x, Z, the surface mapping from natural coordinates to

real coordinates is then given by expressions of the type

FIG. 2. A slice through a Cy-

topede simulation. Two elements

are marked with those of their

nodes that are visible. The in-

ternal element has a dorsal and

ventral surface. The edge ele-

ment has a dorsal and ventral

quadrilateral surface, and an

edge hexalateral surface.
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x(n, g)¼
X
i2e4

xiSi(n, g) (23)

where i runs over the 4 nodes of the quadrilateral e4. The Jacobian of the coordinate transformation (which

is not square) is given by

JS¼
qx=qn qx=qg
qy=qn qy=qg
qz=qn qz=qg

0
@

1
A, (24)

with for instance

qx

qn
¼
X
i2e4

xi

qSi

qn
: (25)

Similar expressions are obtained for edge surfaces by substituting z for Z and running i over the 6 nodes of

the hexalateral e6.

3.3. Quadratures

In our evaluation of volume integrals we use Gaussian quadrature with 12 Gauss points per element

located at natural coordinates n¼ –
ffiffiffi
3
p

=3, g¼ –
ffiffiffi
3
p

=3, and f¼ �
ffiffiffiffiffiffiffiffi
3=5

p
, 0, þ

ffiffiffiffiffiffiffiffi
3=5

p
:

Z
element

dV �(x, y, z)¼
Z þ 1

� 1

df
Z þ 1

� 1

dg
Z þ 1

� 1

dn �(n, g, f) det (J)

~
X
GP2e

wGP det (JGP)�(nGP, gGP, fGP)

¼
X
GP2e

wGP det (JGP)
X
i2e

�iHi(nGP, gGP, fGP) (26)

where wGP is the weight of the Gauss points (5/9 for f¼ –
ffiffiffiffiffiffiffiffi
3=5

p
and 8/9 for z¼ 0) and where det(JGP) is

the determinant of the Jacobian for the map xyz(x, Z, z) evaluated at the Gauss points. The quantity

VGP¼wGP det (JGP) (27)

can be assimilated to the volume associated with a Gauss point, and the total volume of an element is

therefore the sum of the volumes of its 12 Gauss points.

The evaluation of volume integrals of gradients is as follows:

Z
element

dVrxyz�(x, y, z)¼
Z þ 1

� 1

df
Z þ 1

� 1

dg
Z þ 1

� 1

dnrxyz�(n, g, f) det (J)

~
X
GP2e

VGP

X
i2e

�irxyzHi(nGP, gGP, fGP) (28)

where the real coordinate derivatives of the shape function Hi are evaluated at a Gauss point by inversion of

the Jacobian JGP (see Eqs. 17–19).

To compute surface integrals, we use 4 Gauss points for ventral or dorsal quadrilaterals, and 6 Gauss

points for edge hexalaterals. The surface normal at a Gauss point is given (in the case of a quadrilateral) by

NGP¼
qx=qn
qy=qn
qz=qn

0
@

1
A ^ qx=qg

qy=qg
qz=qg

0
@

1
A: (29)

The area AGP associated with a surface Gauss point is then given by

AGP¼wGPkNGPk¼wGP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

x þN2
y þN2

z

q
(30)

where wGP¼ 1 for quadrilaterals. For hexalaterals, wGP¼ 5/9 for the four f¼ –
ffiffiffiffiffiffiffiffi
3=5

p
Gauss points and

wGP¼ 8/9 for the two z¼ 0 Gauss points.
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The integral of a surface field is thenZ
surface

dr �(x, y, z) ~
X

GP2e4

AGP

X
i2e4

�iSi(nGP, gGP) (31)

where the index i runs over the four nodes of the quadrilateral e4 (or the hexalateral e6 with substitution of

zGP for ZGP).

The integral of the gradient of a scalar surface field can similarly be evaluated:Z
surface

drrS�(x, y, z) ~
X

GP2e4

AGP

X
i2e4

�irSSi(nGP, gGP) (32)

Details on how the surface gradient of a shape function (!SSi) is computed are provided in the Appendix.

3.4. Basic computational sequence

Given a network velocity field at time t, the simulation is advanced to tþDt by means of five sequential

operations:

1. Mesh Advection: An advected domain geometry is calculated by moving all mesh nodes with the local

network velocity over the time interval Dt. If this motion causes a contact constraint to be violated

(e.g., if the mesh motion causes a currently free surface to contact the substrate), then the contact line

is advanced or retracted accordingly.

2. Rezoning: Nodes of the advected mesh are repositioned so that the distortion of volume and surface

elements is minimized. The node movements during rezoning are constrained so as to preserve

domain geometry (e.g., the contact line and the mesh surface contour and volume). The rezoning also

maintains topology and number of elements.

3. Material Advection: The network, and all optional node attributes representing mass concentration of

one kind or another are advected with the appropriate Lagrangian motion over the time interval Dt.

The resulting fields are then interpolated to the new mesh generated by steps 1 and 2 (this approach is

sometimes called a general Euler-Lagrangian advection scheme).

4. Diffusion and Reaction: All user-supplied constitutive rules controlling diffusion and reactions are

evaluated for whatever chemical species may be included in the model. This usually involves de-

termination of reaction rates, diffusion coefficients, and surface flux rates. Concentration of the

various chemical species is then evolved on the new mesh over the interval Dt according to diffusive

transport, chemical reactions and boundary fluxes.

5. Momentum Transport: All user-supplied constitutive rules controlling momentum transport are eval-

uated. This may involve the network viscosity, the surface tension of the plasma membrane, and many

other parameters. The momentum equations, the incompressibility condition and applicable boundary

conditions are solved to determine the pressure, network velocity and solvent velocity on the new mesh.

The above computational cycle is repeated until the desired termination condition is reached (i.e., a pre-

specified evolution time, or a prespecified behavior endpoint). Note that a simulation typically begins without

an initial velocity solution, so that operation 5 must be performed first before entering the sequence 1–5.

The time step Dt is determined by the strongest of two constraints. First a Courant condition; given a

velocity field the time step should not be more than 5% of the element crossing time. Second, a chemistry/

diffusion constraint set by the monitoring of numerically estimated second time derivatives of the evolved

species, and requiring 1% accuracy.

The overall approach is first-order accurate in time. We note that a higher order integration method

would be an obstacle to the modularization of the individual tasks listed above that enables a relatively

tractable computational process.

3.5. Step 1. Mesh advection

The basic requirement for the mesh is that its boundaries must follow the evolution of the boundaries of

the cell, which is itself determined by the prior configuration and the cytoskeletal velocity field. For this

reason it is desirable to have the mesh nodes move with the network velocity. However, without further

intervention, such an approach would rapidly lead to severe distortion of the mesh with misshapen ele-
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ments, and eventually, a computationally fatal folding of the mesh structure. Taking this into account, the

mesh is evolved in a sequence of steps:

1. The mesh nodes move following the network flow, e.g., for node i

xa
i ¼ xo

i þDt vni, (33)

where the superscript a designates the advected mesh, and the superscript o designates the old mesh.

2. The ventral node positions are readjusted vertically to have z¼ 0. This is necessary because ventral

boundary conditions on the velocity are implemented with a penalty method that leads to very small,

but nonzero vertical velocities (< 10�6 of the typical velocities in the problem). The readjustment to

the z¼ 0 plane therefore has minimal impact on the calculation but makes life simpler.

3. The nodes of the contact line are shifted forward (and occasionally backward) if necessary. This is

discussed in detail below, but the idea is that when the contact angle becomes >1808, the contact line

advances. Similarly, it is possible to set a minimum contact angle below which the contact line

retreats.

3.5.1. Forward motion of the contact line when the boundary condition is stick. When the

velocity boundary condition at the substratum allows slippage, the contact line is simply advected with

the matter as per Eq. 33. However when the velocity boundary condition at the substratum is no slip (v¼ 0),

the situation demands more care. Our approach consists in letting the leading edge simply pivot down

around the contact line and make contact with the substratum in a natural way. Note that this is only

possible because the elements are quadratic in height.

Consider an edge boundary stack of three nodes 1, 2, and 3 (Fig. 3). The parametrized equation of the

edge curve is given by:

x¼ x1L1(f)þ x2L2(f)þ x3L3(f), (34)

and similarly for y and z where the L’s are one-dimensional shape functions:

L1(f)¼ 1
2
f(f� 1), L2(f)¼ 1� f2, and L3(f)¼ 1

2
f(fþ 1). Let t be the tangent to this edge curve. We have

tx¼ x1

qL1

qf
þ x2

qL2

qf
þ x3

qL3

qf

¼ x1(f� 1

2
)þ x2(� 2f)þ x3(fþ 1

2
) (35)

and similarly for ty and tz. At the contact line (which coincides with node 1), we have z¼�1, and

z1¼ 0:

2

3

1 1’
2

2’

3

1

t

n

a

FIG. 3. Side view of the contact

line. t is the leading edge tangent at

the contact point, a is the contact

angle (left), and n is the outward

normal to the contact line. When the

middle node 2 descends below one

quarter of the height of the dorsal

node 3, the contact angle become

larger than 1808, and the leading

edge effectively penetrates the sub-

stratum. Node 1 is then moved to

position 1’, and node 2 is moved up

along the leading edge to one quar-

ter of the height of the dorsal node 3

so as to restore a contact angle of

1808 exactly.
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tx¼ �
3

2
x1 þ 2x2�

1

2
x3

ty¼ �
3

2
y1 þ 2y2�

1

2
y3 (36)

tz¼ 2z2�
1

2
z3:

We now define nCL, the outward normal to the contact line. The contact angle a is then given by:

if nCL � t�0 then

a¼ p� arctan
tz

(t2
x þ t2

y )1=2

else (37)

a¼ arctan
tz

(t2
x þ t2

y )1=2
:

It is clear that if tz< 0 or equivalently z2 5 1
4

z3, the contact angle is <08 (rare) or > 1808 (common in

spreading) and the contact line node needs to move.

The procedure is thus as follows (Fig. 3): if for an edge stack, we have z2 5 1
4

z3 this means that there

exists z1>�1 such that z(z1)¼ 0 (i.e., the edge curve crosses the substratum twice, once at z¼�1 which

corresponds to node 1, and once at z¼ z1). We therefore displace node 1 to position 10:

x01¼ x1H1(f1)þ x2H2(f1)þ x3H3(f1)

y01¼ y1H1(f1)þ y2H2(f1)þ y3H3(f1)

z01¼ 0: (38)

We also move 2 to 20 at the position determined by z2 such that z(f2)¼ 1
4

z3:

x02¼ x1H1(f2)þ x2H2(f2)þ x3H3(f2)

y02¼ y1H1(f2)þ y2H2(f2)þ y3H3(f2)

z02¼ z1H1(f2)þ z2H2(f2)þ z3H3(f2)

¼ 1

4
z3: (39)

This returns the contact angle to 1808.

3.6. Step 2. Rezoning

1. The nodes are repositioned to optimize the mesh configuration without changing the boundaries.

(a) The nodes on the contact line are rezoned to be equidistant from one another. The procedure is

described in Figure 4.

(b) The dorsal edge and middle edge nodes are shifted along their tangent planes so as to lie in the

plane perpendicular to the substrate z¼ 0 and containing the contact line normal. The displace-

ment keeps the elevation of the edge nodes above the substratum (z) constant and prevents

distortions of the edge of the mesh.

(c) The interior ventral nodes are rezoned to minimize the two-dimensional Winslow functional (see

below).

(d) The dorsal nodes and middle edge nodes are rezoned to minimize the two-dimensional Winslow

functional (see below).

(e) The interior middle nodes are rezoned to minimize the three-dimensional TTM functional (see

below).

The end-result of this sequence is a new rezoned mesh xr
i .

2. The nodes belonging to the back surface of the rezoned mesh xr
i are projected onto the surface of the

advected mesh xa
i to obtain a ‘‘projected mesh’’ x

p
i (for all other nodes, x

p
i ¼ xr

i ).

3. The final new mesh is obtained by a linear combination of the rezoned mesh and projected mesh:
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x
f
i ¼ 0:9 xr

i þ 0:1 x
p
i (40)

The reason we do not use the rezoned mesh directly is to attempt to avoid the accordion effect described in

Figure 4.

3.6.1. Rezoning of the ventral surface. Once the positions of the ventral edge nodes of the contact

line have been set, the interior ventral nodes of the mesh (but not the edge ventral nodes which make up the

contact line!) are rezoned to optimize the ventral mesh. Our general approach follows that described in

Knupp and Steinberg (1993). It is variational in that the ventral nodes interior to the contact line are

repositioned to minimize a functional integral I over the entire ventral surface:

I¼
X
ventral
quads

Z þ 1

� 1

dn
Z þ 1

� 1

dg W (41)

where W is the Winslow functional, a local measure of two-dimensional mesh distortion:

W ¼ 1

det (J2D)
[g11þ g22] (42)

where gkl are the components of the Riemann metric tensor of the ventral surface;

gkl¼
qkx

qky

� �
� qlx

qly

� �
(43)

and the indices k and l run over the natural surface coordinates x and Z. The determinant of the two-

dimensional surface Jacobian det(J2D) (see Eq. A-3) essentially corresponds to an elementary surface area

(see Eq. 30) so that the functional is dimensionless. Details on the computation of W and derivatives are

provided in the Appendix.

We minimize I by Newton’s method. Let

qI

qxi

¼ I, x¼
X
ventral
quads

Z Z
dndg W, x (44)

denote the derivative of I with respect to displacement dx of ventral node i. Note that in the sum, only the

few quadrilaterals to which node i actually belongs make a nonzero contribution. An estimate of the

displacements of Dxi and Dyi of node i that minimize I is given by the system

I, xxDxiþ I, xyDyi¼� I, x,

I, xyDxiþ I, yyDyi¼� I, y:

�
(45)

In practice however, all the nodes are coupled so it is prudent to damp the motion while iterating to

minimize I (we use a factor of 1/2 and further constrain the motion to 10% of the local element length

scale).

FIG. 4. Accordion effect during

rezoning. Left: top down view of

three ventral contact line nodes la-

beled 1,2,3. Node 2 needs to move

closer to node 3. Let m be the me-

dian between node 1 and 3, and t the

volume tangent at node 2. A volume conserving rezone would move node 2 along t towards the intersection with m

(solid arrow). A boundary rezone would be to move node 2 along the boundary line (23), but this is not volume

conserving. In practice we use a weighted average of the two (90% volume rezone and 10% boundary rezone). The

boundary rezone contribution is to avoid an accordion instability as described on the right, where tangent node motion

to even out inter-nodal distances only worsens the situation.

2

1 3
m

t
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3.6.2. Rezoning of the back surface. Rezoning of the back nodes follows the same principles as for

the ventral surface. Once again, edge nodes that belong to the contact line are not moved, but there are

some additional complexities from the fact that the surface is not planar and that we have to deal with

dorsal quadrilaterals and edge hexalaterals. Thus, the functional integral I is now

I¼
X
dorsal
quads

Z þ 1

� 1

dn
Z þ 1

� 1

dg W þ
X
edge

hexalaterals

Z þ 1

� 1

dn
Z þ 1

� 1

df W (46)

where, as before, W is the Winslow functional defined in Eq. 42 and the components of the metric tensor are:

gkl¼
qkx

qky

qkz

0
@

1
A � qlx

qly

qkz

0
@

1
A (47)

where the indices k and l run over the natural surface coordinates (x, Z for dorsal quadrilaterals and x, z for

edge hexalaterals).

Minimizing I by Newton’s method with respect to the displacement of node i involves a 3 · 3 system:

I, xxDxi þ I, xyDyi þ I, xzDzi ¼ � I, x

I, xyDxi þ I, yyDyi þ I, yzDzi ¼ � I, y

I, xzDxi þ I, yzDyi þ I, zzDzi ¼ � I, z:

8<
: (48)

This time however we need to add constraints. First the displacement of a node must be restricted to the

plane tangent to the surface, or more precisely, to the plane along which node motion preserves volume. Let

NVi be the normal to the volume tangent plane at a node i (see Appendix for the calculation of NVi, Eq. A-

13), the rezoning of node i must be in that plane and so must satisfy

NVi � Dxi¼ 0: (49)

Second, to preserve the contact angle during the motion of the middle and dorsal edge nodes (here labeled 2

and 3) the displacement must satisfy:

Dz2

Dz3

¼ z2

z3

: (50)

These two constraints can be implemented via the method of Lagrange multipliers.

3.6.3. Rezoning of the interior nodes. Once all the surface nodes have been rezoned, the middle

nodes belonging to interior stacks need to be repositioned. This is also accomplished via a variational

principle on a functional:

I¼
X

elements

Z þ 1

� 1

dn
Z þ 1

� 1

dg
Z þ 1

� 1

df T (51)

where T is a three-dimensional extension of the Winslow functional generally known at the TTM functional

Knupp and Steinberg (1993):

T ¼ 1

det (J)
[g11g22þ g11g33þ g22g33� g2

12� g2
13� g2

23] (52)

where the gkl’s are as before (Eq. 47) and the indices k and l run over the intrinsic coordinates x, Z, and z,

and det(J) is simply the determinant of the three-dimensional Jacobian (Eq. 17).

As for surface nodes, we compute the derivatives of I with respect to the motion of individual nodes and

minimize I using Newton’s method and solving the system given by Eq. 48 (the necessary derivatives of T

are provided in the Appendix). There are no constraints on the displacement of interior nodes.

Here an attentive reader may ask why not simply use the TTM functional for all nodes with appropriate

constraints for the boundary nodes? We have attempted this and found it to lead to poor mesh structure at

the edge of the mesh, an obviously critical region in studies of thin films.
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3.7. Step 3. Material advection

We use a Lagrangian-Eulerian method to update the network concentrations yn from t to tþDt.

First comes the Lagrangian step which corresponds to the advection of the mesh with the flow of network

(Eq. 33):

ha
n¼ ho

n�Dtr � vn (53)

where ho
n is the original network concentration at a given node, and ha

n is the network concentration at that

same node after the node has been advected with the network velocity. If one considers a reference volume

Vo around the original node and advects it with the network flow to Va, then obviously

ha
n¼ ho

n

Vo

Va
(54)

(which is the same as saying Dt!�vn¼ (Vo�Va)/Vo). A given node belongs to several elements, and for

each of these elements, it has a nearest Gauss point (each element has 12 nodes and 12 ‘‘matching’’ Gauss

points). We choose as our reference volume the sum of the VGP corresponding to the Gauss points

associated with a node so that

ha
n¼ ho

n

P
Vo

GPP
Va

GP

, (55)

where the volumes VGP are computed for the original and advected mesh xo
i and xa

i through Eq. 27.

Second comes an Eulerian step which corresponds to the rezoning of the mesh from xa
i to x

f
i . Here, the

procedure is simply to interpolate h f
n from ha

n. Given an interior node in the final mesh, the element ea of the

advected mesh that contains it is determined along with the natural coordinates xa, Za, za of the node in ea.

We then have

h f
n ¼

X
12 nodes2ea

ha
n(node)Hnode(na, ga, fa): (56)

For boundary nodes in the final mesh, the closest point on the surface of the advected mesh is determined

with natural coordinates xa, Za or xa, za as the case may be. We then have:

h f
n ¼

X
4=6 nodes2sa

ha
n(node)Snode(na, ga=fa): (57)

It is possible to advect chemical species in the solvent phase by using the same procedure as outlined above,

except that the advected mesh is now the result of node motion according to the solvent flow field vs.

However, we have found that advection of chemical species in the solvent (cytosolic) phase is most often

negligible compared to diffusion (i.e., the Peclet number is small) so that usually, the only important step is

interpolation from the original to the final mesh.

3.8. Step 4. Diffusion and reaction

Diffusion-reaction problems are standard fare and we will limit ourselves to a brief outline of an implicit

backward Euler scheme with finite element treatment of spatial derivatives and boundary conditions. For a

chemical species c, we need to evolve

qc

qt
¼r � Drcþ _cc (58)

between t and tþDt, where D is the diffusion coefficient, and ċ is the rate at which the species is created by

chemical reaction. We will assume that at time t, we know D, co, ċo, and qċo/qc (evaluated via appropriate

constitutive laws when necessary). Discretizing in time, we can then write:

c� co

Dt
¼r � Drcþ _ccoþ q _cco

qc
(c� co), (59)

where c is the species concentration at the end of the time step. Rearranging the terms we obtain
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1�Dt
q _cco

qc
�Dtr � Dr

� �
c¼ coþDt _cco�Dt

q _cco

qc
co: (60)

Following the canonical Galerkin finite element approach—which is beyond the scope of this work and is

described in standard texts (Hughes, 2000)—Eq. 60 can be recast in a weak (variational) form while

simultaneously expanding c over a set of trial functions (the shape functions). This leads to a linear system

determining the vector ci where i runs over the all the nodes (and corresponding shape functions):

Q c¼ f (61)

where Q is a square ‘‘stiffness’’ matrix, and f is a ‘‘load’’ or ‘‘force’’ vector. Two nodes i and j belonging to

the same element e contribute to the stiffness matrix and to the load vector via their associated shape

functions Hi and Hj:

Qij, e¼ 1�Dt
q _cco

qc

� �Z
e

dV HiHjþDt D

Z
e

dV rHi � rHj (62)

and

fj, e¼
X
i2e

Z
e

dV HiHj co
i þDt _cco

i �Dt
q _cco

i

qc
co

i

� �
(63)

So that in the end Qij¼SeQij,e and fj¼Sefj,e.

Dirichlet and Neumann boundary conditions lead to modifications of the diffusion equation Eq. 58 that

look like:

qc

qt
¼ � � � þP(c� cext)þ _ss (64)

where cext is an external reference concentration and P is an effective permeability (the higher P, the

stricter the Dirichlet boundary condition c¼ cext), and where _ss is a source term corresponding to a

Neumann boundary condition. For a Dirichlet condition, both the stiffness matrix and the load vector must be

modified:

Qij, e ! Qij, eþPe

Z
e4=e6

dr SiSj (65)

fj, e ! fj, eþDt cextPe

Z
e4=e6

dr Sj: (66)

To take into account an external chemical gradient, one can easily make cext a function of coordinates (e.g.,

to model chemotaxis).

For a Neumann condition, only the load vector changes

fj, e ! fj, eþDt

Z
e4=e6

dr _ssjSj: (67)

In practice, we solve Eq. 61 through the conjugate gradient method with preconditioning (simple diagonal

matrix of (1/Qii)’s), although for problems with a small number of nodes, direct LU decomposition is

feasible.

Two-dimensional surface diffusion is implemented in a similar manner except that elements are now

quadrilaterals and hexalaterals, surface shape functions are used instead of volume shape functions, and

boundary conditions apply to lines (e.g., the contact line) instead of surfaces.

3.9. Step 5. Momentum transport

Because of the multiphase nature of the flow (one has to solve the triplet vn, vs, and P rather than just for

v and P) some modifications are required compared to the usual single phase viscous flow finite element

treatment.
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Recall the solvent and network momentum equations

� hsrPþHhshn(vn� vs)¼ 0 (68)

and

� hnrP�Hhshn(vn� vs)þr � [�(rvnþ (rvn)T )]�r �WþFext¼ 0: (69)

By adding the solvent and network momentum equation together, vs can be eliminated to obtain a ‘‘bulk’’

cytoplasmic momentum equation

�r � [�(rvnþ (rvn)T )]¼ �r �W�rPþFext (70)

which we call the ‘‘velocity equation.’’ The boundary conditions can be free or contact. For free membrane,

stress continuity requires

[�(rvnþ (rvn)T )] � n�W � n�Pn¼ � 2cjn�Pextnþ r (71)

where Pext is the external pressure, g and k the surface tension and mean curvature, and s is the boundary

traction. For contact boundaries, Dirichlet conditions are imposed on the velocity.

The solvent momentum equation (Eq. 68) gives an expression for vs:

vs¼ vn�
rP

Hhn

(72)

which can then be substituted in the incompressibility condition to yield:

r � 1

H
hs

hn

rP¼r � vn (73)

or, if we relabel hs=(Hhn)¼ 1=�

r � rP

�
¼r � vn (74)

which we call the ‘‘pressure equation.’’ In situations where there is zero membrane permeability (i.e., no

trans-membrane solvent flow), the boundary condition simplifies to:

rP¼ 0: (75)

The general strategy to obtain a solution follows Uzawa’s algorithm: an initial guess for the pressure field

(which is usually good since obtained from the previous time step) allows the computation of the network

velocity field by Eq. 70. This velocity field can then be used to update the pressure field by Eq. 74, and so

on through iterations between the two equations. Once the network velocity field vn and pressure field P

have converged to a self-consistent solution, the solvent velocity field vs can be trivially extracted through

the use of Eq. 72 with automatic enforcement of the incompressibility condition.

To solve the velocity equation (Eq. 70), we wish to compute the vector u which assembles the three

velocity components of every node (i.e., u has 3N components where N is the number of nodes):

K u¼ f (76)

where K is a square stiffness matrix, and f is usually known as the ‘‘force’’ vector. Expressions for the

contributions by individual elements to the stiffness matrix and the force vector can be derived from Eq. 70.

If i and j are two nodes that belong to element e, they make the following contributions to the stiffness

matrix:

Kixjx, e¼
Z

e

dV � 2
qHi

qx

qHj

qx
þ qHi

qy

qHj

qy
þ qHi

qz

qHj

qz

� �
(77)

Kixjy, e¼
Z

e

dV �
qHi

qx

qHj

qy
(78)

and to the load vector
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fjx, e¼
X
i2e

Z
e

dV (W � rHi)xþ
X
i2e

Z
e

dV P
qHi

qx
þ
X
i2e

Z
e

dV Fx
extHj (79)

where the last term really amounts to VeFx
ext, where Ve is the volume of the element. In the end, the

components of K and u are given by Kixjx¼SeKixjx,e and fjx¼Sefjx,e.

Once new nodal network velocities have been estimated for a given guess of the pressure field Po

(obtained from the previous cycle of iteration between velocity and pressure equations, or from the prior

time step if this is the first pass), we solve the pressure equation (Eq. 74) to obtain a new pressure field P.

Unfortunately, direct solution of Eq. 74 leads to severe instabilities so that the following damped evolution

equation is solved instead:

r(P�Po)¼r � rP

�

� �
�r � vn (80)

where r> 0 is a relaxation coefficient. Note that since, within a given time step, we iterate back and forth

between the velocity and pressure equations until the velocity and pressure fields have converged to a stable

value, the LHS of Eq. 80 tends to 0 (P and Po will be the same) as we get closer to the solution so that in the

final analysis, it is Eq. 74 that is solved. The relaxation coefficient is taken to be proportional to the

perturbation of the velocity field by a perturbation in pressure:

r¼ b
d(r � vn)

d(P)

����
����: (81)

In the code, r is evaluated numerically using the velocity equation (Eq. 70) and b is set to 102 for small F
(typical cytoplasmic condition) and 103 for large F (single phase viscous flow condition). We can rewrite

Eq. 80 as:

r�r � r
�

� �
P¼ rPo�r � vn (82)

which is to be cast by the finite element approach into a linear system of equations

Q P¼ g (83)

where Q is a square stiffness matrix, P is the vector of nodal pressures that we seek, and g is a load vector.

Individual element contributions from element e to Q and g are given:

Qij, e¼
Z

e

dV rHiHj�
1

�
rHi � rHj

� �
(84)

and

gj, e¼
Z

e

dV (rPoHj� vn � rHj) (85)

so that Qij¼SeQij,e and gj¼Segj,e.

Boundary conditions to these equations can take a multiplicity of forms that cannot all be covered here.

The most important cases are the contact velocity boundary conditions on the ventral surface (substratum),

and the contribution of the surface tension to free boundary dynamics.

For instance, if the x component of vn must be constrained at a surface containing node i, as would be the

case for a ventral quadrilateral with a no-slip velocity boundary condition at the substratum, we add a

diagonal term to the velocity equation stiffness matrix;

Kixix, e ! Kixix, eþ �p

Z
e4=e6

dr Si (86)

where �p¼ 107 ��� is a ‘‘penalty’’ viscosity set many orders of magnitude greater than the average problem

viscosity ���. If a viscous drag between network and substrate is desired instead of a no-slip condition this is

easily implemented by the use of an appropriate viscosity coefficient.
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The load on a given surface node due to the surface tension g is �!i(gA), where A is the surface area and

where the gradient is taken with respect to motion of node i. We therefore add a term to the velocity

equation vector load:

fj, e ! fj, e�ri(cAe): (87)

Details on how to compute this gradient are given in the Appendix.

In practice, we solve both equations through the conjugate gradient method with preconditioning (for the

pressure equation with the diagonal matrix (1/Qii), for the velocity equation with the block diagonal matrix

obtained by local inversions of the 3 · 3 nodal stiffness matrices (K � 1
ii )). Convergence is judged to be

sufficient for relative changes <10�4 in pressure and velocities. For an ongoing simulation where the initial

guess is close to the solution, this typically occurs within 10–20 iterations, but for a new problem, it may

take several hundred iterations. Even when convergence is rapid, solving the momentum equations is

almost always the most computationally intensive part of the simulation.

4. TESTING: THE SESSILE DROP

Consider a hemispheric drop with radius and height a0¼ h0¼ 1, viscosity n¼ 103, and surface tension

g¼ 1 sitting in equilibrium on a non-wetting surface with no-slip boundary condition (v¼ 0). At time t¼ 0,

‘‘gravity’’ is turned on in the form of an external body force Fz¼�102 so that the Bond number becomes

large: B¼ jFzja2
0=c¼ 100. The drop flattens, and after the contact angle becomes 1808 (the substratum is

non-wetting), the contact line begins to advance. Eventually, the gravitational work gained by further

flattening is balanced by the surface tension work of area expansion, and the sessile drop settles in a new

equilibrium shape, still with contact angle 1808. Note that we do not give units—the reader is free to

assume cgs or SI or any other self-consistent units.

We have chosen this problem as a benchmark for several reasons. First it is simply posed and simply

explained. Second, it has received attention for more than a century (Bashforth and Adams, 1883), and

although it cannot be solved analytically, several useful approximations are available. Third, because of the

large Bond number, it leads to a very flat drop with an aspect ratio *20: this is representative of our

intended application of Cytopede to model flattened cells as thin films. Fourth, it has cylindrical symmetry

which allows comparisons with reference two-dimensional numerical simulations performed with another

finite element code that has been previously validated (Dembo, 1994; Drury and Dembo, 1999).

This single phase flow application requires phase locking between the solvent and the network, which

can be achieved by setting a large network-solvent hydraulic resistance H (see Eq. 68). We use

H¼ �

L2
(88)

where L is the local length scale of an element which we have found to be a safe choice, large enough so

that network-solvent slippage is insignificant, but not so big so as to lead to the spurious pressure modes

that appear in finite element calculations when the Babuska-Brezzi condition is violated (Drury and

Dembo, 1999).

The results of the simulations are presented in Table 1 and in Figures 5–7. It is apparent that both two- and

three-dimensional calculations have converged numerically. For the two-dimensional calculations, a low

resolution simulation with 641 nodes (562 elements) gives essentially the same result as a high resolution

simulation with 2405 nodes (2248 elements). For the three-dimensional calculations, a simulation with 1035

nodes (308 elements) gives essentially the same result as a simulation with 3051 nodes (944 elements).

The equilibrium state (t ? ? in the present set up) has been studied extensively and expression for the

ultimate height and radius derived: h?¼ 2(g/Fz)
1/2¼ 0.2; (although there can be a potential correction

factor <5% as is noted in Padday and Pitt (1972), and a2
1¼ (V=2p)(Fz=c)1=2 (Rienstra, 1990) so that

a?¼ 1.83. The three-dimensional (and two-dimensional) simulations converge asymptotically to similar

limits, with a very slightly larger drop size in the 3D simulation which is in part due to a small upward drift

in volume (*2%) over *5000 time steps of the calculation (Table 1).

Looking at the dynamic evolution from the initial configuration toward the equilibrium state, analytic

guidance is unfortunately restricted to an investigation of the dynamic motion of the contact line before

reaching equilibrium which gives a_! a1/7 as an approximation (Hocking, 1983); this is close to our
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calculations. For further insights, we are therefore limited to a comparison between the two-dimensional

and three-dimensional simulations. In both the two-dimensional and three-dimensional calculations, the

contact line radius a initially equal to a0¼ 1 begins to change at t*18; this is the time it takes for the

contact angle to increase from 908 at t¼ 0 to 1808. There is however an early deviation between the time-

dependence of the height and contact line radius as computed by the two-dimensional and three-dimen-

sional codes. Close inspection reveals that, in the early evolution, the height of the drop decreases much

faster in the three-dimensional calculation than in the two-dimensional calculation (Fig. 6). This inaccurate

velocity solution in the three-dimensional calculation is due to limited vertical resolution using only 3 node

(one element) interpolation—we are here far from the thin film regime with an initial aspect ratio of only 2.

Because mass initially flows faster from the top to the sides of the drop, the radius of the contact line a takes

an early lead in the three-dimensional compared to the two-dimensional calculation. As the drop thins, the

three-dimensional calculation becomes more accurate, but the shift in the contact line evolution subsists.

For instance, the drop profile obtained at t¼ 100 with a three-dimensional simulation is significantly

different from that obtained with the two-dimensional calculation at the same time, but exactly matches the

two-dimensional solution at t¼ 160 (Fig. 7). Improvements to the early part of the three-dimensional

calculation would require additional layers of elements. However, in most conditions that pertain to cells on

a substratum, aspect ratios are large and the three-dimensional code should perform adequately.

Table 1. The Spreading Drop: Theory versus Numerical Experiments

Theory 2D calculation 3D calculation

V0 2.094 2.085 2.084

V? 2.094 2.078 2.128

h? 0.2 0.203 0.205

a? 1.83 1.82 1.86

V, h, and a are, respectively, the drop volume, maximum height, and average radius of the contact line. For the numerical

simulations, t¼ 10,000 was taken as t?. Simulation results in 2D and 3D correspond to the high-resolution calculations.

FIG. 5. Meshes for two- and three-

dimensional high-resolution simula-

tions at time t¼ 0 and t¼ 2000. Note

that in the two-dimensional simulation

the actual mesh used in the computa-

tion is half of what is shown. Note also

the three-dimensional mesh consists of

a dorsal layer (shown), a ventral layer,

and an intermediate layer (not shown).
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5. APPLICATION: A MODEL OF THE FIBROBLAST

We now turn to the intended purpose of Cytopede—the simulation of locomoting cells, and present a

basic cytomechanical model consisting in a set of rules (constitutive relations and boundary conditions) that

leads to fibroblast-like behavior. This example is then used to show how contact with quantitative ex-

perimental observations may be achieved. Note that rather than striving for verisimilitude, we have at-

tempted to develop a pedagogical and informative scenario. Nevertheless, while this model represents a

gross simplification of what must be a very complicated collection of physico-chemical processes in a real

cell, it still represents a large increase in complexity over the simple spreading drop.

FIG. 7. Profile of the surface of

the drop. Points correspond to the

three-dimensional high-resolution

simulation at t¼ 100. Solid lines

correspond to the two-dimensional

high-resolution simulation at t¼
100 and t¼ 165.

FIG. 6. Evolution of the con-

tact line radius a (top) and the

drop height h (bottom) with time.

Doted lines represent theoretical

estimates, a?¼ 1.83, a! a7 and

h?¼ 0.2 (see text). Dashed

lines represent output from the

low- and high-resolution three-

dimensional simulations. Solid

lines represent output from the

low- and high-resolution two-

dimensional simulations (indis-

tinguishable for h). The step-like

nature of the a curve for two-

dimensional simulations comes

from the fact that the contact line

advances by a discrete jump

when a new element comes into

contact with the substratum.
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5.1. The model

The key parameters used in the model are listed in Table 2 and fall into two broad categories: diffusion-

reaction parameters that determine in space and time the biochemistry of the cytoskeleton, and mechanical

parameters that determine the dynamical behavior of the cytoskeleton. Choices for many of these pa-

rameters were inspired from previous two-dimensional models of neutrophils (Herant et al., 2003, 2005,

2006).

5.1.1. Biochemical parameters. The baseline volume fraction of network yn is set to y0¼ 10�3, but

must increase several fold near the leading edge (up to yn*2 · 10�2). To achieve this, we set (see Eq. 3)

J¼ heq� hn

sn

· max (m, 1) (89)

where yeq is the local equilibrium network concentration, tn¼ 20 s is a network turnover or equilibration

timescale modulated by the local (dimensionless) concentration m of a polymerization messenger:

heq¼ h0(1þm): (90)

The polymerization messenger species is generated at activated portions of the plasma membrane and

diffuses into the cytoplasm with diffusion coefficient Dm¼ 10�8 cm2 s�1 and lifetime tm¼ 1 s:

qm

qt
¼ � m

sm

þDmr2m (91)

where we neglect advection by the local flow (the Peclet number is small). The Neumann boundary

condition at the membrane is

n � rm¼ �m

Dm

(92)

where �m is the local emissivity of the messenger. In the simulations, �m is set to be maximum near

activated portions of the contact line and zero further in, so that m*20 near the leading edge, and rapidly

decays into the cytoplasm over the penetration depth dm¼ (Dmtm)1/2¼ 1 mm.

Table 2. Parameters Used for the Model Fibroblast

Parameters Symbol Value

Cytoplasmic volume Vc 1080mm3

Biochemical parameters

Baseline network density y0 10�3

Network turnover time tn 20 s

Messenger concentration m —

Equilibrium network yeq¼ y0(1þm) —

Messenger diffusion coefficient Dm 1 mm2 s�1

Messenger decay time tm 1 s

Messenger penetration depth dm

ffiffiffiffiffiffiffiffiffiffiffi
Dm�m

p
1 mm

Messenger emissivitya em 0–20mm s�1

Mechanical parameters

Specific network viscosityb n0 1 · 105 Pa s

Disjoining force strengthc  nM
0 dMm�n (10 · myn) mN m�1

Flattening force strengthc  ns
0 ds"m (�400 · em) mN m�1

Network-solvent drag H 100 pN s mm�4

Slip contact angle as 608
Surface Tension g0 (A/A0)3 0.01 (A/A0)3mN m�1

aUnits are length/time instead of 1/(area time) because m is dimensionless instead of 1/volume.
bBaseline viscosity is thus y0n0¼ 100 Pa s.
cThe dynamically relevant term is the network-membrane potential energy times its range dM or ds.
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The messenger is of course just a way to encode positional information as a driver of cytoskeletal

chemistry and activity. In the real cell, a host of biochemical intermediates perform this task, and so, this

simple ‘‘messenger’’ is not intended to represent any single molecule.

5.1.2. Mechanical parameters. We assume that the viscosity of the cytoskeleton is proportional to

its density so that in the momentum equation (Eq. 6):

�¼ �0hn (93)

with n0¼ 105 Pa s, so that the baseline viscosity is n0y0¼ 100 Pa s, and reaching maximal values of 1000 Pa

s at the leading edge.

To drive protrusion, we implement a network-membrane repulsive stress term which has the form:

WnM ¼wnM
0 mhnnn (94)

where nn is the dyadic of the unit vector outward normal to the membrane. For wnM
0 4 0, a normal stress

pushes the membrane outward and the network experiences an equal an opposite reaction driving it inward,

so that this stress corresponds to a disjoining force that expands the cortical network layer. In a poly-

merization force model such as is used here, there is a linear dependence on the local polymerization rate

(driven by the messenger concentration m) and the network density yn. Note that wnM
0 is set to zero at the

ventral surface of the cell because the network is assumed to be anchored to the substratum.

The actual relevant dynamical parameter is the stress times its range dM away from the membrane (this is

a somewhat subtle point; see discussions in Herant et al., 2003; Herant and Dembo, 2006). With

wnM
0 dM ¼ 10 mN m� 1, the messenger concentration at the leading edge m*20, and taking dM¼ 1 mm, the

stress energy within the layer is *1.8 kBT per actin monomer. The physical origin of this stress is left

unspecified but may involve buckling of filaments against the membrane (Kovar and Pollard, 2004), long-

range electrostatic interactions, or entropic constraints, which transform the chemical energy of poly-

merization into a stress capable of producing mechanical work.

To prevent the protrusive stress from bulging the membrane upward rather than forward, it is necessary

to postulate a compensatory force directed down toward the substratum, or else to assume a planar

geometry of the cytoskeleton that only allows growth in the horizontal direction (so that most of the z terms

in the stress-tensor vanish), something we find implausible. We therefore implement a network-substratum

attractive stress term which has the form

Wns¼wns
0 �mnn (95)

where nn is the dyadic of the unit vector downward normal to the substratum. For wns
0 5 0, the stress

pulls the network down towards the substratum. Again the dynamically relevant quantity is the stress

times its range ds (Herant and Dembo, 2006). With wns
0 ds�m¼ � 0:8 mN m� 1 at the leading edge

(�m~2 10� 3 cm s� 1), and assuming ds¼ 1 mm, this leads to a maximum downward force at the leading

edge of 800 pN per mm2 of ventral membrane. Again, the physical origin of this force is left unspecified, but

may involve molecular motors such as unconventional myosins which are often detected at the leading

edge of locomoting cells (Fukui et al., 1989; Yonemura and Pollard, 1992; Wagner et al., 1992; Sousa and

Cheney, 2005).

We finally note that aside from the flattening force described above, this model of the fibroblast does not

include contractile elements of the kind that might represent the activity of myosin II bundles often detected

in the cell body. Such components could readily be incorporated but for the sake of simplicity, we do not do

so here.

5.1.3. Boundary conditions. We assume impermeability of the plasma membrane to both cytosol

and cytoskeleton (Eqs. 8, 9) so that total volume is conserved. For the ventral interface in contact with the

substratum, the boundary condition on the network velocity is no slip (vn¼ 0): we postulate that adhesion

via transmembrane proteins locally immobilizes the cytoskeleton rigidly (for simplicity, viscous slippage is

not considered but could be implemented easily to match behaviors of the type described by Leibler and

Huse 1993). Thus, when new membrane at the leading edge comes into contact with the substratum we

assume immediate adhesion. The only exception is the trailing edge of the cell where we allow movement

when the contact angle decreases to less than 608.
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For the back surface of the cell, the motion of the free boundary is determined per Eq. 10 with the surface

tension

c¼ c0

A

A0

� �3

(96)

where A is the total surface area of the cell, A0 is the area of a volume-equivalent sphere (a constant since

volume is conserved), and g0¼ 0.01 mN m�1 is a baseline surface tension. We have found that the exact

form does not matter as long as the tension rises steeply with area; what counts is that the tension become

sufficiently strong to limit cell spreading to a plausible extension. In the simulations, once the cell is spread,

A/A0 *2–3 so that g*0.1–0.4 mN m�1.

5.2. The simulation

The initial condition is that of a hemispherical cell with cytoplasmic volume Vc¼ 1080 mm3 (a rea-

sonable estimate of fibroblastic volume without nucleus (Uhal et al., 1998). The entire cell circumference is

activated so that protrusion due to network polymerization drives the contact line out. As the cell flattens

(Fig. 8), the surface area increases and so does surface tension (Eq. 96) thus resisting further extension.

After *100 s, the cell takes on a stable disk shape with diameter of *33 mm, and height of *1.5 mm. The

surface tension at which protrusion stalls is *0.34 mN m�1 and can be readily identified with a force of

protrusion of *700 pN per mm of leading edge (the doubling is due to the fact that both dorsal and ventral

folds of membrane are pulling back).

From this equilibrium disk shape, we break the symmetry by abrogating contact line activation over 85%

of the circumference. Messenger production and therefore network polymerization continues over the

remaining 15% of the contact line. Note that as the overall perimeter length of the cell changes because of

deformation of the contact line, activation is maintained over 15% of that length. In addition, when the

contact angle becomes <608, we force a return of the contact angle to 608 by shifting the contact line which

enables retraction of the trailing edge.

As a result of these changes, a leading edge stretches out ahead while the remainder of the pe-

rimeter slowly retracts and forms a tail (Fig. 8). Eventually, a longitudinally elongated, approximately

triangular cell emerges with length of *40 mm and leading edge migration velocity of order 0.06 mm

s�1.

Because the shape of the model fibroblast is not stable, distortion eventually grows beyond the abilities

of the rezoning algorithm to maintain an adequate mesh. For this particular model, this occurs at t¼ 600 s,

by which time the code has taken *7,000 time steps. The calculation takes approximately 3 hours on a PC

workstation (running on a single CPU).

5.3. Contact with experimental data sets

Four principal aspects of the mechanical characteristics of cells are experimentally accessible and

available in the general literature.

1. The basic contour and motion of the cell,

2. The thickness h of the cell as a function of position x, y and time t,

3. The cytoskeletal density, flow, and turnover,

4. The traction forces exerted by the cell on the substratum.

In our past experience constructing cytomechanical models (He and Dembo, 1997; Herant et al., 2003,

2006), we have found that while it is relatively easy to fit the data from a single type of experiment, dealing

with two data sets is much harder, and matching more is essentially impossible unless and until one is able

to develop insights into the fundamental processes that determine the behavior under study. The devel-

opment of such, yet to be determined, insights in the mechanics of locomoting cells is therefore the

principal motivation for wanting to elaborate models that satisfy (1), (2), (3), and (4) simultaneously.

Using the model fibroblast as an example, we show in the following sections how the output of Cytopede

can be compared to each of the four data sets listed above. Note that the objective here is not to attempt to

create an optimal model of the fibroblast, but rather to discuss how the strengths and weaknesses of a given

cytomechanical model may be interpreted in light of experimental observations.
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5.3.1. Contour and motion of the cell. Determination of the contour and motion of the cell only

requires a time-series of microscopic images and is therefore almost always available. It is also a direct

output of Cytopede simulations (Figs. 8 and 10).

Although the model fibroblast eventually takes on a generally triangular shape, this shape is somewhat

unstable and is in addition sensitive to small perturbations in the conditions of the simulations. This is

mainly due to conditions at the rear: due to slow cytoskeletal disassembly, a viscous plug of swept up

cytoskeleton develops at the rear of the model fibroblast causing the growth of a tail (Fig. 10). Feedback

between rear detachment and frontal progression is provided by the surface tension. However, because of

its elongated nature, the tail is vulnerable to the dripping faucet instability whereby surface tension causes

pinching.

In real fibroblasts several behaviors of the tail are observed (Chen, 1981a,b). Fibroblasts may repeatedly

leave part of their tails behind as they advance over the substrate in a way similar to what would occur in

our model if the mesh were able to follow through such a change in topology. Alternatively, the tail may

FIG. 8. Time series of evolu-

tion of a fibroblast model.

Hemispherical cell (t¼�100 s)

flattened to an equilibrium disc

shape (t¼ 0 s) by activation of

the entire contact line. After 85%

of the contact line is rendered

inactive, an elongated fibroblast

like shape emerges (t¼ 20, 100,

300, 600 s).
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undergo a major detachment event with abrogation of adhesion over a large area (this is interpretable as a

catastrophic chain-reaction by which failure of a few bonds redistributes the load to the remaining bonds

causing further failures, etc.). Such detachment allows retraction of the tail in the cell body and could be

modeled in a straightforward manner. Finally, what is also frequently observed is a filiform tail which is

fairly stable, and which may represent a configuration where the cytoskeleton forms a static bundle of

cables.

5.3.2. Thickness of the cell. Thickness maps of the cell impose important constraints on mechanical

models but unfortunately, experimental data are somewhat sparse, and mostly based on confocal micros-

copy which has limited resolution in height. An alternative way to determine thickness it to measure

fluorescence intensity of a freely diffusible fluorophore which essentially acts as a volume marker. Unless

somehow calibrated, this only yields relative thickness, but can still be useful, especially coupled with an

estimate of the total cell volume.

A map of the thickness of the fibroblast model is shown in Figure 9 and exposes one of its shortcomings:

it does not generate a thin lamellipodium at the leading edge. Instead of a 0.1–0.2-mm-thick ruffling

membrane, the model shows a height of 0.5–1.0 mm very close to the contact line. We note however that

recent evidence has shown that at least in some situations, the lamellipodium is unnecessary for locomotion

and that its role may be more sensory than mechanical (Gupton et al., 2005; Galbraith et al., 2007). In the

simulation, the thickness of the leading edge is determined by the balance of a flattening force (possibly

mediated by unconventional myosins) and a polymerization-driven protrusion force which while pushing

out, also pushes up. Different parameter settings could certainly produce different leading edge geometries.

We note however that the assumed non-nuclear cytoplasmic volume for our model fibroblast is plausible,

and that the model also generates an appropriate spread cell surface area. Therefore in some average sense

the thickness predicted by the model cannot be a gross overestimate.

5.3.3. Cytoskeletal density, flow, and turnover. By replacing somewhat imprecise photo-bleaching

methods, the invention of speckle microscopy has allowed an unprecedented look at cytoskeletal dynamics

(Vallotton et al., 2004). Again, such observations are readily compared with the output of Cytopede through

the network density field yn and the network velocity field vn.

Figure 10 shows the ventral network volume fraction. Enhanced cytoskeletal density is evident at the

leading edge extending approximately 5 mm back, a length scale approximately set by the product of the

retrograde flow velocity in the leading edge frame of vn*0.2 mm s�1 with the cytoskeletal turnover time

scale tn¼ 20 s. Cytoskeleton also accumulates to a density *5 times baseline at the rear of the cell as it is

swept up by the retracting tail.

Figure 11 shows the characteristic centripetal flow of network from the leading edge. Velocities of order

vn*0.1 mm s�1 are in agreement with observations, although the retrograde flow does not persist very far

into the cell body. Figure 12 shows the same flow in the frame of reference of the advancing leading edge.

FIG. 9. Thickness above the sub-

stratum for the model fibroblast at

t¼ 600 s. Black scale bar -10 mm.

Color scale bar-mm.
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5.3.4. Substratum tractions. Cells exert forces on the substratum on which they adhere. On a

compliant substratum, these cellular forces cause the substratum to deform. Conversely, measurement of

the deformations allows the recovery of information about cellular forces. This is the basic idea of traction

microscopy by which cellular traction maps can be obtained (Dembo and Wang, 1999). Likewise, it is

possible to derive a traction map from a Cytopede simulation.

In the model fibroblast described here, substratum tractions have two contributors: viscous stresses and

surface tension force. The viscous tractions on the substratum are due to the shear stress imparted by the

flow of the cytoskeleton:

FIG. 10. Ventral cytoskeletal volume frac-

tion for the model fibroblast at t¼ 0, 20, 100,

300, 600 s. Black scale bar -10mm. Color

scale bar-0-1.5% volume fraction of network.
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T�
x ¼ �

qvx

qz

T�
y ¼ �

qvy

qz
, (97)

where T has the dimension of a force per unit area. For a given segment of the contact line [CL], the surface

tension force load is given by

Fc¼ �
Z

[CL]

dl (1þ cos a)cnCL (98)

where a is the contact angle, and nCL is the outward normal to the contact line (in the substratum plane).

There is also a z component of the surface tension force load, but since it is never measured, we ignore it

here and only consider the load in the substratum plane.

Combining viscous and surface tension contributions to the traction field is not completely straight-

forward because it depends on assumptions about the surface distribution of the surface tension load. For

example, in Figure 13, it is assumed that the force load Fc
e on the contact line contained by a single edge

element e results in a traction Tc
e¼Fc

e=Ae, v, where Ae,v is the area of the ventral face of the element. The

problem here is that the magnitude of the traction depends on the ratio le,CL/Ae,v (le,CL is the length of the

contact line in element e); this depends on the mesh, and in particular, on the resolution (higher resolution

means higher traction because the tension force is applied to a smaller area). An alternative is to plot point

forces which describe the total force due to each element as a d-function load applied to the centroid of its

ventral face. This is shown in Figure 14.

Because the Reynolds number is very small, the sum of the forces exerted on the substratum must vanish

(no inertial acceleration). Indeed, we find that

FIG. 11. Network (cytoskeletal) velocity field

in the laboratory frame for the model fibroblast at

t¼ 600 s. The top and bottom half correspond to

the dorsal and intermediate height velocity fields

respectively (ventral velocities vanish because of

the no-slip boundary condition). The bottom left

reference arrow corresponds to a velocity of

0.1 mm s�1.

FIG. 12. Network (cytoskeletal) velocity field

in the leading edge frame for the front of the

model fibroblast at t¼ 600 s. The top and bottom

half correspond to the dorsal and intermediate

height velocity fields respectively. The bottom

left reference arrow corresponds to a velocity of

0.1 mm s�1.
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Z
dA T

����
����Z

dA Tj j
~ 4%, (99)

where the integrals run over the entire ventral surface. The small residual force is likely the result of

inaccurate integration of the contact angle over the contact line in the surface tension load calculation.

Turning to the actual substratum traction and force maps, we note the following. There are no tractions or

forces due to surface tension at the advancing leading edge (Fig. 14): this is simply because the contact

angle there is 1808. At the narrowing of the tail of the model fibroblast, there are strong pinching tractions

due to surface tension which are a reflection of the dripping faucet instability mentioned above (Fig. 13).

Such tractions are not typically seen experimentally although this does not mean that they are not there;

because these tractions tend to be equal and opposite over short distances, a resolution of a few mm as is

typical for traction microscopy will not show a net effect. Alternatively, it is possible that the waist of the

tail is detached from the substratum forming a bridge between the rearmost portion of the cell and its body,

in which case no traction would register.

The magnitude of the tractions at the leading edge are of order a few 102 pN mm�2 (102 Pa or 103 dyn

cm�2) which is about a factor of two or three smaller than the maximum tractions observed in fibroblasts

(Dembo and Wang, 1999). Since inhibition of the contractile apparatus in fibroblasts significantly decreases

tractions (Beningo et al., 2006), a possible cause for this discrepancy is that we do not consider myosin

mediated (longitudinal) contractility. The total force generated by the cell onto the substratum is of order

20,000 pN, a quantity that is reasonable from the molecular point of view if one considers that the typical

force developed by a molecular engine is 1 pN.

The traction and force maps also illustrate something that should be intuitively obvious, that the tail and

the leading edge are intimately connected; if the tail is sticky, further advance will require large protrusive

tractions. In the present model, this cohesion is ensured by the surface tension, but it is also possible to

conceive part of this role borne by active contractility due to myosin filaments in the cell body.

6. DISCUSSION

The essential motivation for developing Cytopede was to allow the modeling of whole cells crawling on

a surface. This involves two main themes: first, the mechanical characteristics that determine the basic

FIG. 13. Tractions exerted by the model fibroblast on the substratum. Left panel shows tractions due only to shear viscosity.

Right panel shows total tractions including surface tension effects. Reference arrows correspond to a traction of 103 pN

mm�2 (103 Pa or 104 dyn cm�2)—note that the scaling (but not the reference arrow) changes between the two panels.

FIG. 14. Force exerted by the model fibroblast on the substratum displayed as point loads. Left panel shows loads on

the contact line due to surface tension alone. Right shows total load on each ventral element due to viscous stress and

surface tension. Reference arrows correspond to a force of 100 pN.
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velocities and forces implicated in cellular migration; second, the chemical signaling that controls cellular

spatial organization (i.e., where is the front, where is the back, and which way to move). In this article, we

have mainly focused on the former because that is where the greatest technical difficulties in modeling lie

and also because in the absence of a physical understanding of underlying mechanical effector processes of

cell shape and motion, we felt it futile to attempt to create persuasive models of morphogenetic signaling.

Thus, our strategy so far has been to lump the details of the true signal into the simplest diffusion-reaction

models involving only one catch-all messenger species. While it is true that in such an approach, one is

guided by what one wants to get (e.g., a hand-mirror shape for a fibroblast), such minimal models have the

advantage that they can capture the essence of spatial organization without adding in the complexity of

realistic biochemistry. We have recently applied this modus operandi by using Cytopede to develop an

understanding of the key elements that make a motile cell look like a keratocyte versus a fibroblast (Herant

and Dembo, 2010).

The next stage however will be to create models that incorporate signaling in a way that allows for the

natural emergence of morphological properties through mechanisms such as spontaneous symmetry

breaking and stable patterning (Nishimura et al., 2009). Here the difficulty is not technical; diffusion-

reaction networks are comparatively easy to implement numerically. Rather the challenge becomes that the

complexity of the models grows exponentially with the number of biochemical agents and with the number

of interactions between them; this is associated with an enormous expansion of the parameter space that

must be explored and pruned. A probable explanation for this complexity is that it mirrors the noisy, highly

varied circumstances (much noisier and more varied than conditions typically encountered in the labora-

tory) in which cells have to operate in a predictable fashion. Thus, many signaling molecules are simul-

taneously involved to produce robust deterministic cellular responses. (For reviews, Wedlich-Soldner and

Li see (2004) and Parent and Devreotes (1999); for theoretical investigations of specific spatial signaling,

see Rappel et al. (2002) and Postma and Haastert (2001).

One has the choice between attempts at models aiming for full blown realism and encompassing dozens

of species and hundreds of rates (Slepchenko et al., 2003; Gilman et al., 2002), or intermediate approaches

in which various functional subsystems of the biochemistry are lumped into simplified representations

(Mitchison et al., 2008). Our bias is for the latter for we tend to favor illustrative approaches that nourish

physical intuition about the underlying mechanisms involved. In either case, however, Cytopede has the

basic capabilities to perform simulations that meet requirements for varying degrees of signaling detail.

7. APPENDIX

7.1. Evaluation of the gradient of a surface shape function

We will address the case of a quadrilateral with natural coordinates x, Z. At each Gauss point (or any

other point of the surface) one can define two tangent vectors:

qn¼
qx=qn

qy=qn

qz=qn

0
B@

1
CA, qg¼

qx=qg

qy=qg

qz=qg

0
B@

1
CA (A-1)

with for instance

qx

qn
¼
X

i

xi

qSi

qn
: (A-2)

These two vectors are in general neither normalized nor orthogonal but they can be used to construct two

unit vectors e1 and e2 that are tangent and orthonormal. For instance e1¼ qx/jqxj, e3¼ qx ^ qZ /jqx ^ qZj (the

unit vector normal to the surface), and e2¼ e3 ^ e1.

Within the (e1, e2) reference frame one can construct a two-dimensional square Jacobian for the mapping

between x, Z and x, y, z:

J2D¼
e1x e1y e1z

e2x e2y e2z

� � qx=qn qx=qg

qy=qn qy=qg

qz=qn qz=qg

0
B@

1
CA: (A-3)
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Note that det(J2D) evaluated at a Gauss point is the same as AGP in Eq. 30. This Jacobian can then be

inverted to obtain the gradient of a shape function in the reference frame of e1, e2:

q1S

q2S

� �
¼ J� 1

2D

qS=qn
qS=qg

� �
: (A-4)

Finally, all that is left is to recover the surface gradient in the real coordinates (x, y, z):

rSurfaceS¼
e1x e2x

e1y e2y

e1z e2z

0
B@

1
CA q1S

q2S

� �
(A-5)

7.2. Volume conserving rezoning of back surface nodes

The volume of an element e is approximated by (see Eq. 27):

Ve¼
X
GP2e

wGP det (JGP)¼
X
GP2e

VGP (A-6)

where wGP is the weight associated with a Gauss point and det(JGP) is the determinant of the Jacobian

matrix

JGP¼
qx=qn qx=qg qx=qf
qy=qn qy=qg qy=qf
qz=qn qz=qg qz=qf

0
@

1
A (A-7)

evaluated at the Gauss point. Once again recall that for instance

qx

qn
¼
X

i

qHi

qn
xi (A-8)

where i runs over the nodes of the element.

The change in volume of element e due to the change of position of a node i is given by

dVe¼ dri � riVe (A-9)

with

riVe¼
X
GP2e

qVGP=qxi

qVGP=qyi

qVGP=qzi

0
@

1
A (A-10)

where (xi, yi, zi) are the coordinates of node i. The partial derivatives of VGP can be computed explicitly. For

instance we have

qVGP

qxi

¼wGP

qHi=qn qHi=qg qHi=qf
qy=qn qy=qg qy=qf
qz=qn qz=qg qz=qf

������
������
GP

: (A-11)

The total volume change in the computational domain due to the motion of a node i is then given by

dV ¼ dri �
X

e

riVe (A-12)

where e runs over all elements. However, only the elements to which node i belongs make a nonzero

contribution to the sum. For a surface node i we thus define

NV ¼riV ¼
X

e

riVe (A-13)

where NV is the normal to the volume tangent plane along which motion of a boundary node does not

change the total computational volume.
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7.3. Minimization of the Winslow functional for rezoning of the ventral and back surfaces

Here we will give general expressions for the rezoning of the back surface. They are applicable to the

ventral surface as a special case where all the z-labeled quantities disappear. Recall that we would like to

reposition a set of surface boundary nodes so as to minimize the functional I over the total surface:

I¼
X

e4

Z þ 1

� 1

dn
Z þ 1

� 1

dg We4þ
X

e6

Z þ 1

� 1

dn
Z þ 1

� 1

df We6 (A-14)

where the sum runs over all the relevant quadrilaterals (e4) and hexalaterals (e6). We therefore need to

know the change in I with respect to motion dxi of a node i. Node i only belongs to a few quadrilaterals or

hexalaterals so

qI

qxi

¼
X
e4i

Z þ 1

� 1

dn
Z þ 1

�
dg

qWe4

qxi

þ
X
e6i

Z þ 1

� 1

dn
Z þ 1

� 1

df
qWe6

qxi

(A-15)

where the sums now run only on the element surfaces containing i. We will also need the second derivatives to

implement Newton’s method (Eq. 48). Since the integrals will be evaluated by Gaussian quadrature what is

needed is to compute explicitly the derivatives of W at the Gauss points with respect to the motion of node.

This is straightforward, but the algebra is somewhat tedious and must be organized carefully.

Setting J¼ det(J2D) in Eq. 42, the two-dimensional Winslow functional W is

W ¼ 1

J
[g11þ g22] (A-16)

where the components of the metrics are as in Eq. 47. In what follows, the two intrinsic coordinates of the

surface will be x and Z but one only has to change Z to z to recover the hexalateral case.

We wish to compute the derivatives of W with respect to displacement of node i. For this it is convenient

to write W¼F/J. First, we compute the various derivatives of the metric. We will use the notation:

qgkl

qxi

¼ gkl, x (A-17)

to denote the derivative of gkl with respect to displacement dx of node i. Finally, recall once again that:

qx

qn
¼
X
j2e4

xj

qSj

qn
(A-18)

where Sj is the surface shape function contribution from node j.

Metric terms: g’s.

g11¼
qx

qn

� �2

þ qy

qn

� �2

þ qz

qn

� �2

; g22¼
qx

qg

� �2

þ qy

qg

� �2

þ qz

qg

� �2

(A-19)

First derivatives:

g11, x¼ 2
qSi

qn
qx

qn
; g11, y¼ 2

qSi

qn
qy

qn
; g11, z¼ 2

qSi

qn
qz

qn
(A-20)

g22, x¼ 2
qSi

qg
qx

qg
; g22, y¼ 2

qSi

qg
qy

qg
; g22, z¼ 2

qSi

qg
qz

qg
(A-21)

Second derivatives:

g11, xx¼ g11, yy¼ g11, zz¼ 2
qSi

qn

� �2

(A-22)

g22, xx¼ g22, yy¼ g22, zz¼ 2
qSi

qg

� �2

(A-23)

g11, xy¼ g11, xz¼ g11, yz¼ g22, xy¼ g22, xz¼ g22, yz¼ 0 (A-24)
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Numerator terms: F’s.

F¼ g11þ g22 (A-25)

First derivatives:

F, x¼ g11, xþ g22, x; F, y¼ g11, yþ g22, y; F, z¼ g11, zþ g22, z (A-26)

Second derivatives:

F, xx¼ g11, xxþ g22, xx; F, yy¼ g11, yyþ g22, yy; F, zz¼ g11, zzþ g22, zz (A-27)

F, xy¼F, xz¼F, yz¼ 0 (A-28)

Denominator terms: J’s. We have previously found (Eqs. 30 and A-3) that J evaluated as a Gauss point

is given by:

J¼AGP¼ NGPk k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

x þN2
y þN2

z

q
(A-29)

where

Nx¼
qy

qn
qz

qg
� qz

qn
qy

qg

Ny¼
qz

qn
qx

qg
� qx

qn
qz

qg

Nz¼
qx

qn
qy

qg
� qy

qn
qx

qg
: (A-30)

First derivatives of N:

Nx, x¼Ny, y¼Nz, z¼ 0 (A-31)

Nx, y¼
qSi

qn
qz

qg
� qz

qn
qSi

qg
¼ �Ny, x

Nx, z¼
qy

qn
qSi

qg
� qSi

qn
qy

qg
¼ �Nz, x

Ny, z¼
qSi

qn
qx

qg
� qx

qn
qSi

qg
¼ �Nz, y (A-32)

and all the second derivatives of N vanish.

The first derivatives of J are given by:

J, x¼
1

J
[NyNy, xþNzNz, x]

J, y¼
1

J
[NxNx, yþNzNz, y]

J, z¼
1

J
[NxNx, zþNyNy, z]: (A-33)

The second derivatives of J are:

J, xx¼
1

J
[N2

y, xþN2
z, x� J2

, x]

J, yy¼
1

J
[N2

x, yþN2
z, y� J2

, y]

J, zz¼
1

J
[N2

x, zþN2
y, z� J2

, z] (A-34)

J, xy¼
1

J
[Nz, xNz, y� J, xJ,y]

J, xz¼
1

J
[Ny, xNy, x� J, xJ,z]
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J, yz¼
1

J
[Nx, yNx, z� J, yJ, z] (A-35)

Winslow functional terms: W’s.

W ¼ F

J
(A-36)

The first derivatives of W are:

W, x¼
1

J2
[F, xJ�FJ, x] (A-37)

with the y and z derivatives obtained by substituting x with y and z.

The second derivatives of W are:

W, xx¼
1

J3
[F, xxJ2� 2F, xJJ, xþ 2FJ2

, x�FJJ, xx ] (A-38)

with the yy and zz derivatives obtained by substituting x with y and z. We also have

W, xy¼
1

J3
[� (F, xJ, yþF, yJ, x)Jþ 2FJ, xJ, y�FJJ, xy ] (A-39)

with W,xz and W,yz obtained by the substitutions (x, y) ? (x, z) and (x, y) ? (y, z) respectively.

7.4. Minimization of the TTM functional for rezoning of the interior nodes

Recall that we would like to reposition the interior middle nodes so as to minimize the functional I over

the total computational volume:

I¼
X

e

Z þ 1

� 1

dn
Z þ 1

� 1

dg
Z þ 1

� 1

df Te (A-40)

where the sum is carried out over all the elements e. We therefore need to find the change in I with respect

to a motion dxi of interior middle node i. Node i only belongs to a few elements so

qI

qxi

¼
X

ei

Z þ 1

� 1

dn
Z þ 1

� 1

dg
Z þ 1

� 1

df
qTe

qzi

(A-41)

where the sum runs only on the elements containing node i. We will also need the second derivatives to

implement Newton’s method (Eq. 48). Since the integrals will be evaluated by Gaussian quadrature, what is

needed is to compute explicitly the derivatives of T at the Gauss points with respect to the motion of a node.

As for the two-dimensional Winslow case, this is straightforward but the algebra demands care.

The three-dimensional TTM functional is given by:

T ¼ 1

J
[g11g22þ g11g33þ g22g33� g2

12� g2
13� g2

23] (A-42)

where

gkl¼
qkx

qky

qkz

0
@

1
A � qlx

qly

qlz

0
@

1
A (A-43)

and the indices k and l run over the intrinsic coordinates x, Z, and z. Further J is the determinant of the

Jacobian (Eq. 17).

We wish to compute the derivatives of T with respect to displacement of node i. For this it is convenient

to write T¼F/J. First, we compute the various derivatives of the metric. We will use the notation:

qgkl

qxi

¼ gkl, x (A-44)
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to denote the derivative of gkl with respect to displacement dx of node i.

Metric terms: g’s.

g11¼
qx

qn

� �2

þ qy

qn

� �2

þ qz

qn

� �2

(A-45)

g12¼
qx

qn
qx

qg
þ qy

qn
qy

qg
þ qz

qn
qz

qg
(A-46)

and similarly for other permutations of the indices 1, 2, and 3.

First derivatives:

g11, x¼ 2
qHi

qn
qx

qn
; g11, y¼ 2

qHi

qn
qy

qn
; g11, z¼ 2

qHi

qn
qz

qn
; (A-47)

and

g12, x¼
qHi

qn
qx

qg
þ qHi

qg
qx

qn
(A-48)

g12, y¼
qHi

qn
qy

qg
þ qHi

qg
qy

qn
(A-49)

g12, z¼
qHi

qn
qz

qg
þ qHi

qg
qz

qn
(A-50)

with other indicial permutations obtained by permutations of x, Z, and z.

Second derivatives:

g11, xx¼ g11, yy¼ g11, zz¼ 2
qHi

qn

� �2

(A-51)

and

g12, xx¼ g12, yy¼ g12, zz¼ 2
qHi

qn
qHi

qg
: (A-52)

Once again the other indices are obtained by permutations of x, Z, and z.

All the cross derivative terms (e.g. g11,xy or g12,xy) vanish.

Numerator terms: F’s.

F¼ g11g22þ g11g33þ g22g33� g2
12� g2

13� g2
23 (A-53)

First derivatives:

F, x¼ g11, xg22þ g11g22, xþ g11, xg33þ g11g33, xþ g22, xg33þ g22g33, x

� 2g12, xg12� 2g13, xg13� 2g23, xg23

(A-54)

with F,y or F,z obtained by replacing x with y or z.

Second derivatives:

F, xx¼ g11, xxg22þ 2g11, xg22, xþ g11g22, xxþ g11, xxg33þ 2g11, xg33, xþ g11g33, xx

þ g22, xxg33þ 2g22, xg33, xþ g22g33, xx

� 2g2
12, x� 2g12, xxg12� 2g2

13, x� 2g13, xxg13� 2g2
23, x� 2g23, xxg23

(A-55)

with F,yy or F,zz simply obtained by substituting x with y or z

F, xy¼ g11, xg22, yþ g11, yg22, xþ g11, xg33, yþ g11, yg33, xþ g22, xg33, yþ g22, yg33, x

� 2g12, xg12, y� 2g13, xg13, y� 2g23, xg23, y

(A-56)

with F,xz and F,yz obtained by the substitutions (x, y) ? (x, z) and (x, y) ? (y, z), respectively.
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Denominator terms: J’s.

J¼
qx=qn qy=qg qz=qf
qy=qn qy=qg qy=qf
qz=qn qz=qg qz=qf

������
������ (A-57)

First derivatives:

J, x¼
qHi=qn qHi=qg qHi=qf

qy=qn qy=qg qy=qf

qz=qn qz=qg qz=qf

�������

�������
,

J, y¼
qx=qn qx=qg qx=qf

qHi=qn qHi=qg qHi=qf

qz=qn qz=qg qz=qf

�������

�������
,

J, z¼
qx=qn qx=qg qx=qf

qy=qn qy=qg qy=qf

qHi=qn qHi=qg qHi=qf

�������

�������
: (A-58)

Second derivatives all vanish:

J, xx¼ J, yy¼ J, zz¼ J, xy¼ J, xz¼ J, yz¼ 0: (A-59)

TTM functional terms: T’s.

T ¼ F

J
(A-60)

First derivatives:

T, x¼
1

J2
[F, xJ�FJ, x] (A-61)

with T,y and T,z simply obtained by substituting y and z for x.

Second derivatives:

T, xx¼
1

J3
[F, xxJ2� 2F, xJJ, xþ 2FJ2

, x] (A-62)

with T,yy and T,zz simply obtained by substituting y and z for x.

T, xy¼
1

J3
[F, xyJ2� (F, xJ, yþF, yJ, x)Jþ 2FJ, xJ, y] (A-63)

with T,xz and T,yz obtained by the substitutions (x, y) ? (x, z) and (x, y) ? (y, z), respectively.

7.5. Surface tension load at a surface node

When a boundary node i is displaced by dx, the work done against the surface tension is given by

dW¼ d(gA) where dA is the change in surface area of the boundary. By the principle of virtual work, this is

equivalent to having a force Fg¼�!i(gA) acting on node i where !i involves derivatives with respect to

displacements of i. The force Fg is added to the load in the velocity momentum equation (Eqs. 76, 79, 87).

Assume i belongs to a quadrilateral surface e4 (all that follows works also for a hexalateral surface e6

with z replacing Z), the area is approximated by:

Ae4¼
X

GP2e4

wGPAGP (A-64)

where wGP is the weight associated with a Gauss point. Let
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NGP¼
qx=qn
qy=qn
qz=qn

0
@

1
A ^ qx=qg

qy=qg
qz=qg

0
@

1
A (A-65)

where for instance

qx

qn
¼
X
j2e4

qSj

qn
xj: (A-66)

We have

AGP¼ NGPk k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

x þN2
y þN2

z

q
: (A-67)

We need to differentiate AGP with respect to changes in position of node i, but this was already done in Eq.

A-33 with expressions of the type:

qAGP

qxi

¼ 1

AGP

[NyNy, xþNzNz, x]: (A-68)

Putting it together, we have:

riAe4¼
X

GP2e4

wGPrAGP (A-69)

and

ri(cA)¼
X
e4=e6

ce4=e6riAe4=e6 (A-70)

where the summation takes place over all the surface elements e4/e6 to which node i belongs and ge4/e6

represents the (possibly varying) surface tension for each surface element. Note that if g is constant the

vector !i(gA) defines a perpendicular plane which is the surface tangent at node i, i.e., the plane along

which motion does not change the total surface area (the analog of the volume tangent plane discussed

above).

ACKNOWLEDGMENTS

We thank Assad Oberai for assistance with certain fine points of the finite element method, A. Jesse

Connell for performing some confirmatory calculations, and F. Ortega for support of his free gmv visu-

alization package. A current version of the Cytopede code is available by request to interested researchers.

This work was supported by NIH grant RO1 GM72002.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bakal, C., Aach, J., Church, G., et al. 2007. Quantitative morphological signatures define local signaling networks

regulating cell morphology. Science 316, 1753–1756.

Bashforth, F., and Adams, J.C. 1883. An Attempt to Test the Theories of Capillary Action. Cambridge University Press,

New York.

Beningo, K.A., Hamao, K., Dembo, M., et al. 2006. Traction forces of fibroblasts are regulated by the rho-dependent

kinase but not by the myosin light chain kinase. Arch. Biochem. Biophys. 456, 224–231.

CYTOPEDE 1675



Bottino, D., Mogilner, A., Roberts, T., et al. 2002. How nematode sperm crawl. J. Cell. Sci. 115, 367–384.

Charras, G.T., Mitchison, T.J., and Mahadevan, L. 2009. Animal cell hydraulics. J. Cell. Sci. 122, 3233–3241.

Chen, W.T. 1981a. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell. Biol. 90, 187–200.

Chen, W.T. 1981b. Surface changes during retraction-induced spreading of fibroblasts. J. Cell. Sci. 49, 1–13.

Danuser, G., and Waterman-Storer, C.M. 2006. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics.

Annu. Rev. Biophys. Biomol. Struct. 35, 361–387.

Dembo, M., and Harlow, F. 1986. Cell motion, contractile networks, and the physics of interpenetrating reactive flow.

Biophys. J. 50, 109–121.

Dembo, M., Oliver, T., Ishihara, A., et al. 1996. Imaging the traction stresses exerted by locomoting cells with the

elastic substratum method. Biophys. J. 70, 2008–2022.

Dembo, M., and Wang, Y.L. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys.

J. 76, 2307–2316.

Dembo, M. 1994. On Free Boundary and Amoeboid Motion. Nato Advanced Study Institute Series. Springer-Verlag,

New York.

Dickinson, R.B., and Purich, D.L. 2002. Clamped-filament elongation model for actin-based motors. Biophys. J. 82,

605–617.

Drury, J.L., and Dembo, M. 1999. Hydrodynamics of micropipette aspiration. Biophys. J. 76, 110–128.

Fukui, Y., Lynch, T.J., Brzeska, H., et al. 1989. Myosin I is located at the leading edges of locomoting dictyostelium

amoebae. Nature 341, 328–331.

Galbraith, C.G., Yamada, K.M., and Galbraith, J.A. 2007. Polymerizing actin fibers position integrins primed to probe

for adhesion sites. Science 315, 992–995.

Gilman, A.G., Simon, M.I., Bourne, H.R., et al. 2002. Overview of the alliance for cellular signaling. Nature 420, 703–

706.

Gupton, S.L., Anderson, K.L., Kole, T.P., et al. 2005. Cell migration without a lamellipodium: translation of actin

dynamics into cell movement mediated by tropomyosin. J. Cell. Biol. 168, 619–631.

Harris, A.K., Wild, P., and Stopak, D. 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion.

Science 208, 177–179.

He, X., and Dembo, M. 1997. On the mechanics of the first cleavage division of the sea urchin egg. Exp. Cell. Res. 233,

252–273.

Herant, M., and Dembo, M. 2006. Cytoskeletal Mechanics. Cambridge University Press, New York.

Herant, M., and Dembo, M. 2010. Form and function in cell motility: from fibroblasts to keratocytes. Biophys. J. 98,

1408–1417.

Herant, M., Marganski, W.A., and Dembo, M. 2003. The mechanics of neutrophils: synthetic modeling of three

experiments. Biophys. J. 84, 3389–3413.

Herant, M., Heinrich, V., and Dembo, M. 2005. Mechanics of neutrophil phagocytosis: behavior of the cortical tension.

J. Cell. Sci. 118, 1789–1797.

Herant, M., Heinrich, V., and Dembo, M. 2006. Mechanics of neutrophil phagocytosis: experiments and quantitative

models. J. Cell. Sci. 119, 1903–1913.

Hill, T.L., and Kirschner, M.W. 1982. Subunit treadmilling of microtubules or actin in the presence of cellular barriers:

possible conversion of chemical free energy into mechanical work. Proc. Natl. Acad. Sci. USA 79, 490–494.

Hocking, L.M. 1983. The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Math. 36, 55–69.

Hughes, T.J.R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, New

York.

Jaffe, A.B., and Hall, A. 2005. Rho gtpases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269.

Knupp, P., and Steinberg, S. 1993. Fundamentals of Grid Generation. CRC, Boca Raton, FL.

Kovar, D.R., and Pollard, T.D. 2004. Insertional assembly of actin filament barbed ends in association with formins

produces piconewton forces. Proc. Natl. Acad. Sci. USA 101, 14725–14730.

Leibler, S., and Huse, D.A. 1993. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell. Biol. 121,

1357–1368.

Mitchison, T.J., Charras, G.T., and Mahadevan, L. 2008. Implications of a poroelastic cytoplasm for the dynamics of

animal cell shape. Semin. Cell. Dev. Biol. 19, 215–223.

Nishimura, S.I., Ueda, M., and Sasai, M. 2009. Cortical factor feedback model for cellular locomotion and cytofission.

PLoS Comput. Biol. 5, e1000310.

Oliver, J.M., King, J.R., McKinlay, K.J., et al. 2005. Thin-film theories for two-phase reactive flow models of active

cell motion. Math. Med. Biol. 22, 53–98.

Padday, J.F., and Pitt, A.R. 1972. Surface and interfacial tensions from profile of a sessile drop. Proc. R. Soc. Lond. Ser.

A Math. Phys. Sci. 329, 421.

Parent, C.A., and Devreotes, P.N. 1999. A cell’s sense of direction. Science 284, 765–770.

1676 HERANT AND DEMBO



Peskin, C.S., Odell, G.M., and Oster, G.F. 1993. Cellular motions and thermal fluctuations: the Brownian ratchet.

Biophys. J. 65, 316–324.

Postma, M., and Haastert, P.J.V. 2001. A diffusion-translocation model for gradient sensing by chemotactic cells.

Biophys. J. 81, 1314–1323.

Rappel, W.J., Thomas, P.J., Levine, H., et al. 2002. Establishing direction during chemotaxis in eukaryotic cells.

Biophys. J. 83, 1361–1367.

Rienstra, S.W. 1990. The shape of a sessile drop for small and large surface-tension. J. Eng. Math. 24, 193–202.

Rubinstein, B., Jacobson, K., and Mogilner, A. 2005. Multiscale two-dimensional modeling of a motile simple-shaped

cell. Multiscale Model. Simul. 3, 413–439.

Scheidegger, A.E. 1960. The Physics of Flow Through Porous Media. MacMillan, New York.

Slepchenko, B.M., Schaff, J.C., Macara, I., et al. 2003. Quantitative cell biology with the virtual cell. Trends Cell. Biol.

13, 570–576.

Sousa, A.D., and Cheney, R.E. 2005. Myosin-X: a molecular motor at the cell’s fingertips. Trends Cell. Biol. 15, 533–

539.

Tokita, M., and Tanaka, T. 1991. Friction coefficient of polymer networks of gels. J. Chem. Phys. 95, 4613–4619.

Uhal, B.D., Ramos, C., Joshi, I., et al. 1998. Cell size, cell cycle, and alpha-smooth muscle actin expression by primary

human lung fibroblasts. Am. J. Physiol. 275, L998–L1005.

Vallotton, P., Gupton, S.L., Waterman-Storer, C.M., et al. 2004. Simultaneous mapping of filamentous actin flow and

turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl. Acad. Sci. USA 101, 9660–

9665.

Verkhovsky, A.B., Svitkina, T.M., and Borisy, G.G. 1999. Self-polarization and directional motility of cytoplasm.

Curr. Biol. 9, 11–20.

Wagner, M.C., Barylko, B., and Albanesi, J.P. 1992. Tissue distribution and subcellular localization of mammalian

myosin I. J. Cell. Biol. 119, 163–170.

Watanabe, N., and Mitchison, T.J. 2002. Single-molecule speckle analysis of actin filament turnover in lamellipodia.

Science 295, 1083–1086.

Waterman-Storer, C.M., and Danuser, G. 2002. New directions for fluorescent speckle microscopy. Curr. Biol. 12,

R633–R640.

Wedlich-Soldner, R., and Li, R. 2004. Closing the loops: new insights into the role and regulation of actin during cell

polarization. Exp. Cell. Res. 301, 8–15.

Yonemura, S., and Pollard, T.D. 1992. The localization of myosin I and myosin II in acanthamoeba by fluorescence

microscopy. J. Cell. Sci. 102, 629–642.

Zajac, M., Dacanay, B., Mohler, W.A., et al. 2008. Depolymerization-driven flow in nematode spermatozoa relates

crawling speed to size and shape. Biophys. J. 94, 3810–3823.

Zicha, D., Dobbie, I.M., Holt, M.R., et al. 2003. Rapid actin transport during cell protrusion. Science 300, 142–145.

Address correspondence to:

Dr. Marc Herant

Biomedical Engineering Department

Boston University

44 Cummington Street

Boston, MA 02215

E-mail: herantm@bu.edu

CYTOPEDE 1677




