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ABSTRACT

The secondary structure of an ncRNA molecule is known to play an important role in its
biological functions. Aligning a known ncRNA to a target candidate to determine the se-
quence and structural similarity helps in identifying de novo ncRNA molecules that are in
the same family of the known ncRNA. However, existing algorithms cannot handle complex
pseudoknot structures which are found in nature. In this article, we propose algorithms to
handle two types of complex pseudoknots: simple non-standard pseudoknots and recursive
pseudoknots. Although our methods are not designed for general pseudoknots, it already
covers all known ncRNAs in both Rfam and PseudoBase databases. An evaluation of our
algorithms shows that it is useful to identify ncRNA molecules in other species which are in
the same family of a known ncRNA.
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1. INTRODUCTION

Anon-coding RNA (ncRNA) is a RNA molecule that does not translate into a protein. It has been shown

to be involved in many biological processes (Frank and Pace, 1998, Nguyen et al., 2001, Yang et al.,

2001). The number of ncRNAs within the human genome was underestimated before, but recently some

databases reveal over 212,000 ncRNAs (He et al., 2007) and more than 1,300 ncRNA families (Griffiths-

Jones et al., 2003). Large discoveries of ncRNAs and their families show the possibilities that ncRNAs may

be as diverse as protein molecules (Eddy, 2001). Identifying ncRNAs is an important problem in biological

study.

It is known that the secondary structure of an ncRNA molecule usually plays an important role in its

biological functions. Some researches attempted to identify ncRNAs by considering the stability of sec-

ondary structures formed by the substrings of a given genome (Le et al., 1990). This method is not

effective because a random sequence with high GC composition also allows an energetically favorable

secondary structure (Rivas and Eddy, 2000). A more promising direction is comparative approach which

makes use of the idea that if a DNA region from which a RNA is transcribed has similar sequence and

structure to a known ncRNA, then this region is likely to be an ncRNA gene whose corresponding ncRNA

is in the same family of the known ncRNA. Thus, to locate ncRNAs in a genome, we can use a known
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ncRNA as a query and search along the genome for substrings with similar sequence and structure to the

query. The key of this approach is to compute the structural alignment between a query sequence with

known structure and a target sequence with unknown structure. The alignment score represents their

sequence and structural similarity. RSEARCH (Klein and Eddy, 2003) and FASTR (Zhang et al., 2005)

belong to this category.

However, these tools do not support pseudoknots. Given two base pairs at positions (i, j) and (i0, j0),
where i< j and i0< j0, pseudoknots are base pairs crossing each other, i.e., i< i0< j< j0 or i0< i< j0< j. In

some studies, secondary structures including pseudoknots are found involved in some functions such as

telomerase (Chen and Greider, 2005), catalytic functions (Dam et al., 1992), and self-splicing introns

(Adams et al., 2004). The presence of pseudoknots makes the problem computationally harder. Usually, the

large time complexity and considerable memory required for these algorithms make it impractical to search

long pseudoknotted ncRNA along the genome.

Recently, Han et al. (2008) developed PAL to solve the problem that supports secondary structures with

standard pseudoknot of degree k and their algorithm runs in O(kmnk) where m is the length of the query

sequence and n is the length of the target sequence. Their algorithm cannot handle more complex pseu-

doknot structures such as one with 3 base pairs mutually crossing each other (i.e., any two of them are

crossing) as in Figure 1a or the structure allowing recursive pseudoknots (i.e., pseudoknot/regular structures

exist within another pseudoknot structure) as in Figure 1b. In Rfam 9.1 database (Griffiths-Jones et al.,

2003), among 71 pseudoknotted families, 18 of them have complex pseudoknot structure. In the Pseu-

doBase database (van Batenburg et al., 2000), among 304 pseudoknot RNAs, 8 of them have complex

pseudoknot structures. It is possible that more and more ncRNAs with complex pseudoknots will be

discovered later.

In this paper, we consider more complex pseudoknot structures which are found in nature. We define a

class of pseudoknots called simple non-standard pseudoknot which allows some restricted cases with 3 base

pairs mutually crossing each other. Our algorithm can apply to this complex structure using the same time

complexity as the PAL algorithm (Han et al., 2008) for standard pseudoknot structure (i.e., O(kmnk) for

degree k). Then, we propose an algorithm to handle a special type of 2-level recursive pseudoknot structure

which runs in O(kmnkþ1) time. The algorithm can be extended to handle other recursive pseudoknot

structures with the worst case time complexity of O(kmnkþ2).

Although our method is not designed for generic pseudoknots, we found that our method already covers

all ncRNAs with complex pseudoknots in both Rfam 9.1 and PseudoBase databases. A preliminary ex-

periment shows that our algorithms are useful in identifying ncRNAs from other species which are in the

same family of a known ncRNA.

FIG. 1. (a) The secondary structure of RF00140 from Rfam 9.1 database (Griffiths-Jones et al., 2003). Consider three

base pairs: one from region 1, one from region 2 and one from region 4, they are mutually crossing each other (i.e., any

two of them are crossing). (b) The secondary structure of self-cleaving ribozymes of hepatitis delta virus from Ferré-

D’Amaré et al. (1998) (i.e., RF00094 from Rfam 9.1 database).
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2. PSEUDOKNOT DEFINITIONS

Let A¼ a1a2 . . . am be a length-m ncRNA sequence and M be the secondary structure of A. M is

represented as a set of base pair positions. i.e., M¼ {(i, j)j1� i< j�m,(ai, aj) is a base pair}. Let Mx, y � M

be the set of base pairs within the subsequence axaxþ 1 . . . ay, 1� x< y�m, i.e., Mx, y¼
f(i, j) 2 Mjx � i5 j � yg, with M¼M1,m. We assume that there is no two base pairs sharing the same

position, i.e., for any (i1, j1), (i2, j2) 2 M, i1= j2, i2= j1, and i1¼ i2 if and only if j1¼ j2.

Definition 1. Mx,y is a regular structure if there does not exist two base pairs (i, j), (k, l) 2 Mx, y such

that i< k< j< l or k< i< l< j. An empty set is also considered as a regular structure.

A regular structure is one without pseudoknots. A structure is a standard pseudoknot of degree k if the

RNA sequence can be divided into k consecutive regions (Fig. 2a) such that base pairs must have end points

in adjacent regions and base pairs that are in the same adjacent regions do not cross each other. The formal

definition is as follows.

Definition 2. Mx,y is a standard pseudoknot of degree k� 3 if there exists a set of pivot points

x1, x2, . . . , xk� 1(x¼ x0 5 x1 5 x2 5 . . . 5 xk� 1 5 xk ¼ y) that satisfy the following. Let Mw(1

� w � k� 1)¼f(i, j) 2 Mx, yjxw� 1 � i5 xw � j5 xwþ 1g. Note that we allow j¼ xk for Mk�1 to resolve

the boundary case.

� For each (i, j) 2 Mx, y, (i, j) 2 Mw for some 1�w� k� 1.
� Mw(1�w� k� 1) is a regular structure.

A standard pseudoknot of degree 3 is usually referred as a simple pseudoknot. Now, we define a simple

non-standard pseudoknot to include some structures with three base pairs crossing each other. For a simple

non-standard pseudoknot of degree k, similar to a standard pseudoknot, the RNA sequence can be divided

into k regions with the region at one of the ends (say, the right end) designated as the special region. Base

pairs with both end points in the first k� 1 regions have the same requirements as in a standard pseudoknot.

And there is an extra group of base pairs that can start in one of the first k� 2 regions and end at the last

special region and again these pairs do not cross each other (Fig. 2b). See the formal definition below.

FIG. 2. (a) Standard pseudoknot of degree k. (b) Simple non-standard recursive pseudoknot of degree k (Type I). (c)

Simple non-standard recursive pseudoknot of degree k (Type II). (d) Recursive pseudoknot (the region [a1, b1] is a

recursive region).
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Definition 3. Mx,y is a simple non-standard pseudoknot of degree k� 4 (Type I) if there exist

x1, . . . , xk� 1 and t where x¼ x0 5 x1 5 . . . 5 xk� 1 5 xk ¼ y and 1� t� k� 2 that satisfy the following.

Let Mw(1 � w � k� 2)¼f(i, j) 2 Mx, yjxw� 1 � i5 xw � j5 xwþ 1g. Let X¼f(i, j) 2 Mx, yjxt� 1 � i

5 xt, xk� 1 � j � yg.
� For each (i, j) 2 Mx, y, either (i, j) 2 Mw(1 � w � k� 2) or (i, j) 2 X.
� Mw and X are regular structures.

Type II simple non-standard pseudoknots (Fig. 2c) are symmetric to Type I simple non-standard

pseudoknots with the special region on the left end. In the rest of the paper, we only consider Type I simple

non-standard pseudoknots and simply refer it as simple non-standard pseudoknots.

Lastly, we define what a recursive pseudoknot is (Fig. 2d).

Definition 4. Mx,y is a recursive pseudoknot of degree k� 3 if Mx,y is either regular, standard pseu-

doknot of degree k or simple non-standard pseudoknot of degree k (if k� 4), or 9a1, b1, . . . ,

as, bs(x � a1 5 b1 5 . . . 5 as 5 bs � y) that satisfy the followings. Each Mai , bi
is called a recursive re-

gion.

� Mai , bi
, for 1� i� s, is a recursive pseudoknot of degree� k.

� For each Mai;bi
; 1 � i � s, there does not exist (i; j) 2 M that i 2 [ai; bi] but j 62 [ai; bi], or i 62 [ai; bi]

but j 2 [ai; bi].
� (Mx, y�

S
1�i�s Mai , bi

) is either regular structure, standard pseudoknot of degree� k or simple non-

standard-pseudoknot of degree� k.

3. ALGORITHM FOR SIMPLE NON-STANDARD PSEUDOKNOTS

3.1. Structural alignment

Let S[1 . . . m] be a query sequence with known secondary structure M, and T[1 . . . n] be a target sequence

with unknown secondary structure. S and T are both sequences of {A,C,G,U}. A structural alignment

between S and T is a pair of sequences S0[1 . . . r] and T 0[1 . . . r] where r�m, n, S0 is obtained from S and T 0

is obtained from T with spaces inserted to make both of the same length. A space cannot appear in the same

position of S0 and T 0. The score of the alignment, which determines the sequence and structural similarity

between S0 and T 0, is defined as follows (Zhang et al., 2005).

score¼
Xr

i¼ 1

c(S0[i], T 0[i])þ
X

i, j s:t:g(i), g(j)2M,

S0 [i], S0[j], T 0 [i], T 0[j] 6¼‘ ’

d(S0[i], S0[j], T 0[i], T 0[j]) (1)

where Z(i) is the corresponding position in S according to the position i in S0; g(t1, t2) and d(x1, y1, x2, y2)

where t1, t2 2 fA, C, G, U, ‘ ’g and x1, x2, y1, y2 2 fA, C, G, Ug, are scores for character similarity and for

base pair similarity, respectively. The problem is to find an alignment to maximize the score.

3.2. Substructure of simple non-standard pseudoknot

We solve the problem using dynamic programming. The key is to define a substructure to enable us to

find the solution recursively. For ease understanding of what a substructure is, we draw the pseudoknot

structure using another approach (Fig. 3).

We use simple non-standard pseudoknots with degree 4 for illustration. The result can be easily extended

to general k. Figure 3b shows the same pseudoknot structure as in Figure 3a. By drawing the pseudoknot

structure this way, the base pairs can be drawn without crossing and can be ordered from the top to bottom.

According to this ordering, we can define a substructure based on four points on the sequence (Fig. 3c,

substructure is highlighted in bold) such that all base pairs are either with both end points inside or outside

the substructure. Note that in Figure 3c, t¼ 1 (t is odd), if t¼ 2 (t is even), we have to use a slightly

different definition for substructures, otherwise base pairs cannot be ordered from top to bottom without

crossing each other (Fig. 3d,e). Note that the two base pairs that cross in Figure 3d is due to the way we

draw the pseudoknot, they do not actually cross each other.). These are the only cases we need to consider.
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Now, we formally define what a substructure is. Let S[x..y] be an RNA sequence with known simple non-

standard pseudoknot structure M of degree 4. Note that x1, x2, x3 and t are known. Let v¼ ( p, q, r, s) be a

quadruple with x� p< x1� q< x2� r� x3< s� y. If t is odd, define the subregion Rodd(S, v)¼
[p, q] [ [r, s]. Otherwise, define the subregion Reven(S, x3, v)¼ [p, q] [ [r, x3� 1] [ [s, y]. Note that x3 is not

a parameter, but a fixed value for S. Let Struct(Rx)¼f(i, j) 2 Mji, j 2 Rxg where Rx is a subregion.

We say that a subregion Rx defines a valid substructure (Struct(Rx)) of M if there does not exist (i, j) 2 M

such that one endpoint of (i, j) is in Rx and the other is outside the region. Obviously, Struct(Rx) is also a

simple non-standard pseudoknot structure.

3.3. Dynamic programming

Let S[1, m] be the query sequence with known structure M and T[1, n] be the target sequence with

unknown structure. Note that the pivot points x1, x2, x3 and t for S is known. We can apply the definitions of

Rodd and Reven to T. If t is odd, for any v0 ¼ (e, f, g, h) such that 1� e< f< g< h� n, we define the

subregion Rodd(T , v0)¼ [e, f ] [ [g, h]. If t is even, for any v0 ¼ (e, f, g, h) and x03 such that 1 � e5
f 5 g5 x03 � h � n, we define the subregion Reven(T , x03, v0)¼ [e, f ] [ [g, x03� 1] [ [h, n]. Note that since

the structure of T is unknown, x03 is a parameter.

Define C(Rx, Ry) be the score of the optimal alignment between a subregion Rx in S with substructure

Struct(Rx) and a subregion Ry in T. The score of the optimal alignment between S and T can be obtained as

follows. If t is odd, setting v*¼ (1, x2� 1, x2, m) includes the whole query sequence S, the entry

maxx0
2
fC(Rodd(S, v�), Rodd(T , v0 ¼ (1, x02� 1, x02, n)))g provides the answer. On the other hand, if t is

even, setting v*¼ (1, x2� 1, x2, x3), the entry maxx0
2

maxx0
3
4 x0

2
fC(Reven(S, x3, v�), Reven(T , x03, v0 ¼

(1, x02� 1, x02, x03)))g provides the optimal score.

The value of C(Rx, Ry) can be computed recursively. Assume that t is odd. Let Rx¼Rodd(S, ( p, q, r, s))

and Ry¼Rodd(T, (e, f, g, h)). If ( p, q) is a base pair in Struct(Rx), there are four cases to consider. Case 1:

MATCHboth - aligning the base pair ( p, q) of S with (e, f) of T; Case 2: MATCHsingle - aligning only one of

the bases in ( p, q) with the corresponding base in (e, f); Case 3: INSERT - insert a space on S; Case 4:

DELETE - delete the base-pair ( p, q) from S. Lemma 1 summarizes these cases.

The other cases, (q, r) is a base pair or ( p, s) is a base pair, are similar. Note that if more than one such

base pair exists (e.g. both (q, r) and ( p, s) are base pairs), we only need to follow the recursion on one of the

pairs. However, you cannot pick any of them in an arbitrary manner, otherwise, when we fill the dynamic

FIG. 3. (a) An example of simple non-standard pseudoknot when t = 1 (t is odd). (b) Another view of the same

structure when t is odd. (c) Definition of substructure of a simple non-standard pseudoknot when t is odd. (d) An

illustration that the same definition of substructure cannot be used when t is even due to the cross-looking of base pairs.

(e) Definition of substructure of a simple non-standard pseudoknot when t is even.
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programming table, we need to fill all entries for all possible subregions of S. We will address this issue in

the later part of this section.

Lemma 1. Let v¼ ( p, q, r, s) and v0 ¼ (e, f, g, h). Let t be odd. And Rx¼Rodd(S, v), Ry¼Rodd(T, v0). If

( p, q) is a base pair, then C(Rx, Ry)¼max

==MATCHboth

C(Rodd(S, (pþ 1, q� 1, r, s)), Rodd(T , (eþ 1, f � 1, g, h)))

þ c(S[p], T[e])þ c(S[q], T[f ])þ d(S[p], S[q], T[e], T[f ]);
==MATCHsingle

C(Rodd(S, (pþ 1, q� 1, r, s)), Rodd(T , (eþ 1, f , g, h)))þ c(S[p], T[e])þ c(S[q], ‘ ’),

C(Rodd(S, (pþ 1, q� 1, r, s)), Rodd(T , (e, f � 1, g, h)))þ c(S[p], ‘ ’)þ c(S[q], T[f ]);
==INSERT

C(Rodd(S, (p, q, r, s)), Rodd(T , (eþ 1, f , g, h)))þ c(‘ ’, T[e]),

C(Rodd(S, (p, q, r, s)), Rodd(T , (e, f � 1, g, h)))þ c(‘ ’, T[f ]),

C(Rodd(S, (p, q, r, s)), Rodd(T , (e, f , gþ 1, h)))þ c(‘ ’, T[g]),

C(Rodd(S, (p, q, r, s)), Rodd(T , (e, f , g, h� 1)))þ c(‘ ’, T[h]),

==DELETE

C(Rodd(S, (pþ 1, q� 1, r, s)), Rodd(T , (e, f , g, h)))þ c(S[p], ‘ ’)þ c(S[q], ‘ ’)

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

On the other hand, if none of these are base pairs, assume that pþ 1< x1 and S[p] is a single base, then

we can compute C(Rx, Ry) recursively according to another three cases. Case 1: Match - aligning S[p] with

T[e]; Case 2: INSERT - insert a space on S; Case 3: Delete - delete S[p].

Lemma 2. Let v¼ ( p, q, r, s) and v0 ¼ (e, f, g, h). Let t be odd. And Rx¼Rodd(S, v), Ry¼Rodd(T, v0). If

pþ 1< x1 and S[p] is a single base, then C(Rx, Ry)¼max

C(Rodd(S, (pþ 1, q, r, s)), Rodd(T , (eþ 1, f , g, h)))þ c(S[p], T[e])==MATCH

==INSERT: same as the one defined in Lemma 1

C(Rodd(S, (pþ 1, q, r, s)), Rodd(T , (e, f , g, h)))þ c(S[p], ‘ ’)==DELETE

8<
:

For t is even, we consider whether ( p, q),(q, r), and (q, s) are base pairs in Struct(Rx) and we need to

consider all possible cases for x03 since the structure of T is unknown (i.e., the pivot points are unknown).

To fill the dynamic programming table, not all entries for all possible subranges of S needs to be filled.

For any given subregion v¼ ( p, q, r, s) in S, we first define pairmin(v) and singlemin(v) as follow. If there

exists a set of base pairs, say f(i1, j1), . . . , (id, jd)g, such that all ik, jk(1� k� d) equals to p (if x� p< x1), q

(if x1� q< x2), r (if x2� r< x3) or s (if x3� s� y), then pairmin(v) is the pair with minimum value of i.

Also, if there exists a set of single bases (i.e. the positions which do not belong to any base pair), say

fu1, . . . , udg, such that all uk(1� k� d) equals to p (if x� p< x1), q (if x1� q< x2), r (if x2� r< x3) or s (if

x3� s� y), then singlemin(v) is the one with minimum value.

Now, we define a function z(v) to determine for which subregions in S, we need to fill the corresponding

C entires.

Case 1. If (i, j)¼ pairmin(v) exists, then

f(v)¼

(pþ 1, q� 1, r, s), if (i, j)¼ (p, q)

(p, q� 1, rþ 1, s), if (i, j)¼ (q, r)

(pþ 1, q, r, s� 1), if (i, j)¼ (p, s) i:e: t is odd

(p, q� 1, r, sþ 1), if (i, j)¼ (q, s) i:e: t is even

8><
>:

(2)

Case 2. If pairmin(v) does not exist, then u¼ singlemin(v) should exist and

f(v)¼

(pþ 1, q, r, s), if u¼ p

(p, q� 1, r, s), if u¼ q

(p, q, rþ 1, s), if u¼ r

(p, q, r, s� 1), if u¼ s and t is odd

(p, q, r, sþ 1), if u¼ s and t is even

8>>><
>>>:

(3)
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It is obvious that if v defines a subregion with a valid substructure, z(v) also defines a valid substructure.

For t is odd, let v*¼ (1, x2� 1, x2, m). We only need to fill in the entries for C provided v can be obtained

from v* by applying z function repeatedly. If t is even, let v*¼ (1, x2� 1, x2, x3). Intuitively, z guides which

recursion formula to use. And there are only O(m) such v values. The following lemma summarizes the

time complexity for this algorithm.

Lemma 3. For any sequence S[1..m] with simple non-standard pseudoknot of degree 4 and any

sequence T[1..n], let c be the max length of [x03, n], the optimal alignment score between S[1..m] and T[1..n]

can be computed in O(cmn4).

Note that the factor c is only needed when t is even due to the extra parameter x03. We examined all

sequences in Rfam and PseudoBase, we found that usually the length of the final segment c is short (<15)

and the average length is only 5.4 with most of the cases having lengths from 5 to 7. So, we can assume that

c is a constant. The algorithm can be extended to simple non-standard pseudoknot of degree k easily.

Theorem 1. For any sequence S[1..m] with simple non-standard pseudoknot of degree k and any

sequence T[1...n], the optimal alignment score between S[1..m] and T[1..n] can be computed in O(kmnk).

4. ALGORITHM FOR 2-LEVEL RECURSIVE PSEUDOKNOT

In this section, we describe the algorithm for handling a special type of recursive pseudoknots in which

each recursive region is a regular structure and after excluding all recursive regions, the remaining base

pairs form a simple pseudoknot or a simple non-standard pseudoknot. We refer this recursive pseudoknot as

2-level pseudoknot with regular recursive regions. We use a recursive pseudoknot of degree 4 to illustrate

the algorithm. We show the case for simple non-standard pseudoknot. The algoirthm for simple pseudoknot

is simpler and the approach can be easily extended to general k.

Let S[1..m] be the query sequence with recursive pseudoknot structure M. Recall the definition of a

recursive pseudoknot. There can be disjoint recursive regions, namely Ma1, b1
, . . . , Mas, bs

, in M. By re-

moving all these recursive regions, the remaining structure M� (Ma1, b1
[ . . . [Mas, bs

) together with the

remaining sequence S[1::a1� 1]S[b1þ 1::a2� 1] . . . S[bsþ 1::m] are referred as level-0. For each removed

recursive region Mai, bi
, we can apply the same procedure to define level-1, level-2, … , level-‘ structures. In

our case, we only have level-1 structures (Fig. 4).

Let T[1..n] be the target sequence. Define H[ai, bi, x0, y0] be the score of the optimal alignment between

the recursive region S[ai, bi] with structure Mai, bi
and T[x0::y0], where 1� x0< y0 � n. We now show how to

compute the score of the optimal alignment between S and T recursively for Type I simple non-standard

pseudoknot (i.e., t is odd). The case for even value of t is similar. Let v¼ ( p, q, r, s) be a quadruple that

FIG. 4. (a) An example of a level-2 simple non-standard pseudoknot with regular recursive regions. (b) Level-0 and

level-1 structures. (c) Another view for the same example.
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defines a substructure of S. Let S[p..yp] be a recursive region. The following lemma shows how to compute

C(Rx, Ry), the score of the optimal alignment between Rx and Ry where Rx¼Rodd(S, v) and Ry¼Rodd(T, v0).

Lemma 4. Let v¼ ( p, q, r, s) and v0 ¼ (e, f, g, h). Assume that t is odd. Rx¼Rodd(S, v) and Ry¼Rodd(T,

v0). If S[p..yp] is a recursive region, then

C(Rx, Ry)¼ max

==MATCH

maxe�w�f fC(Rodd(S, (ypþ 1, q, r, s)), Rodd(T , (wþ 1, f , g, h)))þH(p, yp, e, w)g
==INSERT

same as INSERT defined in Lemma 1

==DELETE

C(Rodd(S, (ypþ 1, q, r, s)), Rodd(T , (e, f , g, h)))þ
P

p�w�yp
c(S[w], ‘ ’)

8>>>>>><
>>>>>>:

Other cases, where S[xq..q] or S[r..yr] or S[xs..s] is a recursive region, can be handled in a similar way.

Again, we do not need to compute C for all possible values of ( p, q, r, s). We need to determine for which

subregions in S, we need to fill in the corresponding C entries. So, we enhance z function as follows.

Consider a quadruple v¼ ( p, q, r, s) in a region S[x..y] where the structure is a simple non-standard

pseudoknot of degree 4 if all the next-level subregions inside are excluded. Let us define subregionmin(v) as

follows: if there exists a set of next-level subregions, say f[i1, j1], . . . , [id, jd]g where x� ik< jk� y for all

1� k� d such that either ik or jk equals to p (if x� p< x1), q (if x1� q< x2), r (if x2� r< x3) or s (if

x3� s� y), then let subregionmin(v) be the region with minimum value of i. We add the following case to z
function. Note that the t value refers to the structure for S[x..y] excluding all next-level subregions.

Case 0 of f(v): If [i, j]¼ subregionmin(v) exists, then

f(v)¼

( jþ 1, q, r, s), if i¼ p

( p, i� 1, r, s), if j¼ q

( p, q, jþ 1, s), if i¼ r

( p, q, r, i� 1), if j¼ s ==i:e: t is odd

( p, q, r, jþ 1), if i¼ s ==i:e: t is even

8>>><
>>>:

There are at most O(m) v values we need to consider. So, assuming all H() values have been computed, it

takes O(mn5) time to fill all C entries. For H(), since the recursive region is a regular structure, we can make

use of the algorithm in (Zhang et al., 2005) algorithm to compute all H() values for all possible subregions of T

in O(mn3) time. The following theorem summarizes the result of this section. The algorithm presented in this

section can be extended to general recursive pseudoknots with more than 2 levels and with recursive regions

having other structures as defined in Definition 4 with an increase of O(n) factor in the time complexity.

Theorem 2. To compute the optimal alignment score between a query sequence S[1..m] with a 2-level

pseudoknot of degree k� 4) with regular recursive regions and a target sequence T[1..n], it can be done in

O(kmnkþ1) time.

5. EXPERIMENTAL RESULTS

We implemented both algorithms for simple non-standard pseudoknot and the 2-level pseudoknot with

regular recursive regions in Cþþ. By inputting a query ncRNA sequence (Q) and its secondary structure,

the program can scan a long DNA sequence (T ) and output the score for every region in T. Higher score

indicates that the sequence and the structure of the region is more similar to those of Q. To evaluate the

effectiveness of our algorithm, we selected a set of families in Rfam 9.1 database for which the structures of

the ncRNAs in these families are either simple non-standard pseudoknot or recursive pseudoknot. For each

family, we selected one of the seed members (in Rfam 9.1 database, for each family, there is a set of

reliable members which are regarded as seed members) as the query sequence Q. To demonstrate the power

of structural alignment, the query sequence selected has the lowest sequence similarity with the other seed

members. The details of the families including the sequence selected as the query, the length of this

sequence, and the number of members in each family are given in Table 1.

We constucted a long random genome sequence of length about 300 times the length of the query sequence.

Then, we embed all the ncRNA sequences (seed members or non-seed members) of the family, except the

query sequence, into this long random sequence in arbitrary positions. The resulting sequence is our T. For
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every region in T with length similar to that of the query sequence,1 we compute the structural alignment score

of the region and the query sequence. We use the same scoring scheme as in Klein and Eddy (2003).

We assume that regions other than the real members of the family are false hits as they are likely not to

be members of the family. Figure 5 shows the distribution of the alignment scores of the true hits (real

members) and false hits. It is quite clear that based on the structural alignment scores, the real members can

be easily distinguished from the false hits except for the family RF00176. We have investigated why the

approach does not work well for RF00176. We found that the length of the query sequence is much longer

than those of the other member sequences. Since our current tool is designed for global alignment, the big

differences in length lead to a big penalty score in our method and thus the resulting structural alignment

scores becomes very low. To verify this observation, we identified a conserved region inside the multiple

sequence alignment of the family. Then we only use the corresponding conserved region (the length is 37

while the total length of the sequence is 91) of the selected query sequence as the new query sequence. The

result has been improved substantially (Fig. 6). From this observation, we believe that developing a tool for

local structural alignment is desirable and would be our next step.

Since there is no existing software which available freely for performing structural alignment for

complex pseudoknot structures, we follow the evaluation method of Han et al. (2008) to compare the

performance of our method with BLAST. That is, we want to compare the effectiveness of considering only

sequence similarity (based on BLAST) and our method which also consider the structural similarity. We

use default parameters for BLAST except that the wordsize is set to 7 to increase its sensitivity. For each

family, we use the same query sequence and the random sequence T as in the above experiment. Again, for

each region in T, we compute a BLAST score between the region and the query sequence. To compute the

effectiveness of our method and BLAST, we set the threshold as the maximum score that can be achieved

by the false hits and a hit is considered to be true positive if the score of the region is larger than this

threshold. By setting the threshold this way, none of the false hits will be considered to be answer, but a real

hit will be missed if the computed score is smaller than or equal to this threshold. In other words, we will

compare how many real hits will be missed by each method. We also try different thresholds and the results

are similar.

Table 2 shows the comparison result. Note that we omit the family RF00176 in this comparison. For

most of the families, our algorithm does not miss as many as BLAST does. For example, in Family

RF01084, our algorithm misses only 22 sequences, while BLAST misses 202 sequences. It is clear that our

method is more effective than BLAST demonstrating that structural similarity is important for aligning

ncRNA sequences.

Figure 7 shows the detailed scores for our method and BLAST for family RF00094. For ease of

illustration, we only show the scores for the seed members. Among 32 seed members (except the one

selected as query sequence), BLAST missed 13 of them. However, all the regions of these 32

members got the highest scores if using our algorithm and thus none of them is missed. To take a

closer look at the missed cases for BLAST, we found that the missed sequence is usually not similar

Table 1. Details of the ncRNA Families Used in the Experiments

Family Pseudoknot Type Query Sequence ID

Length of

Query Sequence

Number

of members

RF00140 Degree-4 simple non-standard AM286690/459188-459298 111 164

RF00094 Degree-4 recursive (non-standard) AB037947/685-775 91 432

RF00622 Degree-4 recursive (non-standard) AAGV01475186/596-519 78 47

RF01084 Degree-3 recursive (simple) AF325738/2039-2167 129 263

RF01075 Degree-3 recursive (simple) AY787207/2721-2816 96 23

RF01085 Degree-3 recursive (simple) K01776/83-200 118 8

RF00176 Degree-3 recursive (simple) D00719/409-499 91 80

The first family is of simple non-standard pseudoknot. All the other families are 2-level pseudoknot with regular recursive regions.

Among these six families, the first two have a simple non-standard pseudoknot in level-0 while the rest have a simple pseudokont in

level-0.

1We set the length of each region equal to the length of the query plus 20.
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to the query sequence in terms of sequence similarity while the corresponding secondary structure is

similar to that of the query sequence. Figure 8 shows some examples of these cases. The top one

circled by red line is the query sequence, and the others are those missed by BLAST but can still be

identified by our algorithm. We can see that although the sequence similarity between the query

sequence and the other sequences may not be very high, all of their secondary structures are highly

conserved.

FIG. 5. The distribution of alignment scores of true hits and false hits.
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FIG. 8. A multiple sequence alignment of some members in the family RF01084 with recursive pseudoknot of degree

3. By using the selected query sequence (which is circled in red), BLAST cannot locate the other member sequences.

However, since both the structure of the query sequence and that of the member sequences are highly conserved, our

method can locate all of them.

FIG. 7. Comparison of resulting scores from our program and BLAST of family RF00094. The squares represent the

positions of real hits, the triangles represent the positions of BLAST hits, and the line represents our scores along

different positions. Among 32 real hits, BLAST missed 13 of them. However, they got the highest scores by our

method, and so our method did not miss any of them.

FIG. 6. The distribution of alignment scores of true hits and false hits for the family RF00176 after considering the

conserved region.

Table 2. Summary of Comparison on Results between BLAST and Our Method

Family No. of real hits BLAST misses, no.

Our method

misses, no.

RF00094 431 334 0

RF00622 46 15 0

RF00140 163 8 9

RF01084 262 202 22

RF01075 22 0 0

RF01085 7 0 0
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6. CONCLUSION

In the article, we provided the first set of algorithms to handle structural alignment of RNA with complex

pseudoknot structures: recursive pseudoknots and simple non-standard pseudoknots. Further directions

include speeding up these algorithms, developing a local structural alignment algorithm, and considering

other more complicated pseudoknot structures.
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