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Abstract

In this paper we study abstract shapes of k-noncrossing, σ-canonical RNA
pseudoknot structures. We consider lv

1

k- and lv
5

k-shapes, which represent a
generalization of the abstract π′- and π-shapes of RNA secondary structures
introduced by Giegerich et al. [4]. Using a novel approach we compute the
generating functions of lv1k- and lv

5

k-shapes as well as the generating functions
of all lv

1

k- and lv
5

k-shapes induced by all k-noncrossing, σ-canonical RNA
structures for fixed n. By means of singularity analysis of the generating
functions, we derive explicit asymptotic expressions.

Key words:
k-noncrossing RNA structure, σ-canonical, shape, singularity analysis,
generating function, core

1. Introduction

Pseudoknots have long been known as important structural elements [33],
see Fig. 1. They represent cross-serial interactions between RNA nucleotides
and are an important functionally in tRNAs, RNaseP [15], telomerase RNA
[25], and ribosomal RNAs [14]. Pseudoknots in plant virus RNAs mimic
tRNA structures, and in vitro selection experiments have produced pseu-
doknotted RNA families that bind to the HIV-1 reverse transcriptase [27].
Import general mechanism, such as ribosomal frame shifting, are dependent
upon pseudoknots [1].
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Figure 1: The pseudoknot structure of the PrP-encoding mRNA.

Despite their biological importance, pseudoknots are typically excluded
from large-scale computational studies. Although the problem has attracted
considerable attention in the last decade, and several software tools [8, 23]
have become available, the required resources have remained prohibitive for
applications beyond individual molecules.

An RNA molecule is a sequence of the four nucleotides A, G, U and C
together with the Watson-Crick (A-U, G-C) and U-G base pairing rules.
The sequence of bases is called the primary structure of the RNA molecule.
Two bases in the primary structure which are not adjacent may form hy-
drogen bonds following the Watson-Crick base pairing rules. Three decades
ago Waterman et al. [13, 22, 31] analyzed RNA secondary structures. Sec-
ondary structures are coarse grained RNA contact structures. They can be
represented as diagrams, planar graphs as well as Motzkin-paths, see Fig. 2.
Diagrams are labeled graphs over the vertex set [n] = {1, . . . , n} with ver-
tex degrees ≤ 1, represented by drawing its vertices on a horizontal line
and its arcs (i, j) (i < j), in the upper half-plane, see Fig. 2 and Fig. 3.
Here, vertices and arcs correspond to the nucleotides A, G, U and C and
Watson-Crick (A-U, G-C) and (U-G) base pairs, respectively. In a dia-
gram two arcs (i1, j1) and (i2, j2) are called crossing if i1 < i2 < j1 < j2
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Figure 2: The Sprinzl tRNA RD7550 secondary structure represented as a planar
graph (top), 2-noncrossing diagram (middle) and Motzkin-path (bottom), where
up/down/horizontal-steps correspond to start/end/unpaired vertices, respectively.

holds. Accordingly, a k-crossing is a sequence of arcs (i1, j1), . . . , (ik, jk) such
that i1 < i2 < · · · < ik < j1 < j2 < · · · < jk, see Fig. 3. We call diagrams
containing at most (k − 1)-crossings, k-noncrossing diagrams (k-noncrossing
partial matchings).

An important observation in this context is that RNA secondary struc-
tures have no crossings in their diagram representation, see Fig. 3 (l.h.s.)
and Fig. 2, and are therefore 2-noncrossing diagrams. The length of an arc
(i, j) is given by j − i, characterizing the minimal length of a hairpin loop.
A stack of length σ is a sequence of “parallel” arcs of the form

((i, j), (i+ 1, j − 1), . . . , (i+ (σ − 1), j − (σ − 1))). (1)

In the context of minimum-free energy pseudoknot structures [8] a minimum
stack length σ or either two or three is stipulated. We remark that RNA sec-
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ondary structures are 2-noncrossing, 2-canonical diagrams, whose numbers
are asymptotically given by [6]

S2,2(n) ∼ c n−3/2 1.96798n, c > 0. (2)

We call an arc of length one a 1-arc. A k-noncrossing, σ-canonical RNA struc-
ture is a k-noncrossing diagram without 1-arcs, having a minimum stack-size
of σ.

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 13

1

11

5

6

1

13

5

Figure 3: A 2-noncrossing, 2-canonical RNA structure (left) and a 3-noncrossing,
2-canonical RNA structure (right).

The efficient minimum free energy (mfe) folding of secondary structures
is a consequence of the following relation of the numbers of RNA secondary
structures over n nucleotides, S2(n), [31]

S2(n) = S2(n− 1) +

n−2∑

j=0

S2(n− 2− j)S2(j), (3)

where S2(n) = 1 for 0 ≤ n ≤ 2. Accordingly, RNA secondary structures
satisfy a constructive recursion. As mentioned above, this relation is the
key for deriving the fundamental DP-recursions used for the polynomial time
folding of secondary structures [7, 22] and has therefore profound algorithmic
implications. In addition, eq. (3) is of central importance for the analysis of
abstract shapes [21]. In addition, for a given RNA sequence, we have not
only one but an ensemble of structures, quantified via the partition function
generated by the (Boltzman weighted) probability space of all structures
[19]. In view of the fact that the number of the mfe and suboptimal foldings
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of an RNA sequence is large, Giegerich et al. [4] introduced the notion of
abstract shapes of secondary structures. Two particularly important shape
levels are the important level-1 (π′-) and level-5 (π-) shapes were studied in
[4]. In [28], the authors compute the probability of a shape by means of the
partition function, where the probability of a shape is the induced probability
of all the structures inducing it.

The problem with pseudoknotted structures is, that they do not satisfy
a recursion of the type of eq. (3), rendering the ab initio folding into mfe
configurations [8, 17] as well as the derivation of any other properties a
nontrivial task. Here, we generalize the π′- and π-shapes of [4], by introducing
lv

1

k- and lv
5

k-shapes, see Fig. 4. Our results are not new in case of k = 2,

Figure 4: lv
1

k- and lv
5

k-shapes: a 3-noncrossing, 2-canonical RNA structure (top),
its lv13-shape (bottom left) and its lv53-shape (bottom right).

since we have lv
1

2 = π′ and lv
5

2 = π. In two beautiful papers [16, 21] π′-
and π-shapes have been analyzed. The results of [16, 21] explicitly make
use of the constructive recurrence relation given in eq. (3). Their approach
can consequently not be generalized to RNA pseudoknot structures, as the
latter are genuinely nonrecursive. Our framework therefore identifies the
combinatorial “heart” of the results of [16, 21] and provides a new approach
avoiding any notion of grammar or recursiveness. The key idea behind the
construction of lv1k- and lv

5

k-shapes is a projection onto so called k-noncrossing
core-structures [11].

The paper is organized as follows: after introducing all necessary back-
ground we give a detailed computation of the generating functions and study
their singularities. We derive simple asymptotic expressions for the numbers
of lv1k- and lv

5

k-shapes as well as the numbers of theses shapes, induced by
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k-noncrossing, σ-canonical RNA structures of fixed length n. Finally we put
our results into context.

2. Some basic facts

Let fk(n, ℓ) denote the number of k-noncrossing diagrams on n vertices
having exactly ℓ isolated vertices. A diagram without isolated points is called
a matching. The exponential generating function of k-noncrossing matchings
satisfies the following identity [2, 5, 9]

∑

n≥0

fk(2n, 0) ·
z2n

(2n)!
= det[Ii−j(2z)− Ii+j(2z)]|k−1

i,j=1 (4)

where Ir(2z) =
∑

j≥0
z2j+r

j!(j+r)!
is the hyperbolic Bessel function of the first kind

of order r. Eq. (4) allows to conclude that the ordinary generating function

Fk(z) =
∑

n≥0

fk(2n, 0)z
n

is D-finite [24], i.e. there exists some e ∈ N such that

q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + · · ·+ qe,k(z)Fk(z) = 0, (5)

where qj,k(z) are polynomials. Since Ir(2z) is D-finite by its definition and
D-finite power series are algebraic closed [24]. The key point is that any
singularity of Fk(z) is contained in the set of roots of q0,k(z) [24], which we
denote by Rk. For 2 ≤ k ≤ 9, we give the polynomials q0,k(z) and their roots
in Table 1.

In [12] we showed that for arbitrary k

fk(2n, 0) ∼ c̃k n
−((k−1)2+(k−1)/2) (2(k − 1))2n, c̃k > 0 . (6)

in accordance with the fact that Fk(z) has the unique dominant singularity
ρ2k, where ρk = 1/(2k − 2).

Let Tk,σ(n) denote the set of k-noncrossing, σ-canonical RNA structures
of length n and let Tk,σ(n) denote their number. Tk,σ(n) can be identified
with the set of k-noncrossing RNA structures with each stack size ≥ σ.
Furthermore, let Tk,σ(n, h) denote the set of k-noncrossing, σ-canonical RNA

6



k q0,k(z) Rk

2 (4z − 1)z {1
4
}

3 (16z − 1)z2 { 1
16
}

4 (144z2 − 40z + 1)z3 {1
4
, 1
36
}

5 (1024z2 − 80z + 1)z4 { 1
16
, 1
64
}

6 (14400z3 − 4144z2 + 140z − 1)z5 {1
4
, 1
36
, 1
100

}
7 (147456z3 − 12544z2 + 224z − 1)z6 { 1

16
, 1
64
, 1
144

}
8 (2822400z4 − 826624z3 + 31584z2 − 336z + 1)z7 {1

4
, 1
36
, 1
100

, 1
196

}
9 (37748736z4 − 3358720z3 + 69888z2 − 480z + 1)z8 { 1

16
, 1
64
, 1
144

, 1
256

}

Table 1: We present the polynomials q0,k(z) and their nonzero roots obtained by
the MAPLE package GFUN.

structures of length n with h arcs, and set Tk,σ(n, h) = |Tk,σ(n, h)|. The
bivariate generating function of Tk,1(n, h) (k ≥ 2) has been computed in [10]

∑

n≥0

⌊n
2
⌋∑

h=0

Tk,1(n, h)v
hyn =

1

vy2 − y + 1
Fk

(
vy2

(vy2 − y + 1)2

)
(7)

and the generating function for k-noncrossing, σ-canonical RNA structures
is given by [11]

∑

n≥0

Tk,σ(n)y
n =

1

u0y2 − y + 1
Fk

(( √
u0y

u0y2 − y + 1

)2
)

, (8)

where u0 =
(y2)σ−1

(y2)σ−y2+1
.

According to Pringsheim’s Theorem [3, 26], each power series f(z) =∑
n≥0 an z

n with nonnegative coefficients and a radius of convergence R > 0
has a positive real dominant singularity at z = R. This singularity plays
a key role for the asymptotics of the coefficients. The class of theorems
that deal with such deductions are called transfer-theorems [3]. One key
ingredient in this framework is a specific domain in which the functions in
question are analytic, which is “slightly” bigger than their respective radius
of convergence. It is tailored for extracting the coefficients via Cauchy’s
integral formula. Details on the method can be found in [3, 24]. In case
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of D-finite functions we have analytic continuation in any simply connected
domain containing zero [29] and all prerequisites of singularity analysis are
met. We use the notation

{f(z) = O (g(z)) as z → ρ} ⇐⇒
{
f(z)

g(z)
is bounded as z → ρ

}
. (9)

Let [zn]f(z) denote the n-th coefficient of the power series f(z) at z = 0.

Theorem 2.1. [3] Let f(z), g(z) be D-finite functions with unique dominant
singularity ρ and suppose

f(z) = O(g(z)) as z → ρ . (10)

Then we have

[zn]f(z) = C

(
1− O(

1

n
)

)
[zn]g(z) (11)

where C is a constant.

Theorem 2.1 implies the following result, tailored for our functional equa-
tions. It is a particular instance of the supercritical paradigm, where we have
the following situation: we are given a D-finite function, f(z) and an alge-
braic function g(u) satisfying g(0) = 0. Furthermore we suppose that f(g(u))
has the unique real valued dominant singularity γ and g is regular in a disc
with radius slightly larger than γ. The supercritical paradigm then stipulates
that the subexponential factors of f(g(u)) at u = 0 coincide with those of
f(z).

Proposition 1. Suppose ϑσ(z) is an algebraic function, analytic for |z| < δ
and satisfies ϑσ(0) = 0. Suppose further γk,σ < δ is the real unique dominant
singularity of Fk(ϑσ(z)) and satisfies ϑσ(γk,σ) = ρ2k. Then

[zn]Fk(ϑσ(z)) ∼ ck n
−((k−1)2+(k−1)/2)

(
γ−1
k,σ

)n
. (12)

Let Gk(n,m) denote the set of the k-noncrossing matchings of length 2n
with m 1-arcs. In our first lemma, we will compute the bivariate generating
function of gk(n,m), i.e. the number of k-noncrossing matchings of length 2n
with exactly m 1-arcs.
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Lemma 2.2. Suppose k, n,m ∈ N, k ≥ 2, 0 ≤ m ≤ n. Then gk(n,m)
satisfies the recursion

(m+1)gk(n+1, m+1) = (m+1)gk(n,m+1)+ (2n+1−m)gk(n,m). (13)

Furthermore, the generating function Gk(x, y) =
∑

n≥0

∑n
m=0 gk(n,m)xnym

is given by

Gk(x, y) =
1

x+ 1− yx
Fk

(
x

(x+ 1− yx)2

)
. (14)

Proof. Choose a k-noncrossing matching δ ∈ Gk(n+1, m+1) and label one
1-arc. We have (m+ 1)gk(n+ 1, m+ 1) different such labeled k-noncrossing
matchings. On the other hand, in order to obtain such a labeled matching, we
can also insert one labeled 1-arc in a k-noncrossing matching δ′ ∈ Gk(n,m+1).
In this case, we can only put it inside one original 1-arc in δ′ in order to
preserve the number of the 1-arcs. We may also insert a labeled 1-arc in
a k-noncrossing matching δ′′ ∈ Gk(n,m). In this case, we can only insert
the 1-arc between two vertices not forming a 1-arc. Therefore, we arrive at
(m+1)gk(n,m+1)+ (2n+1−m)gk(n,m) different such labeled matchings
and

(m+1)gk(n+1, m+1) = (m+1)gk(n,m+1)+ (2n+1−m)gk(n,m). (15)

This recursion implies the following partial differential equation for the gen-
erating function

x−1∂Gk(x, y)

∂y
=

∂Gk(x, y)

∂y
+ 2x

∂Gk(x, y)

∂x
+Gk(x, y)− y

∂Gk(x, y)

∂y
, (16)

whose general solution is given by

Gk(x, y) =
F
(

yx−1−x√
x

)

√
x

, (17)

where F (z) is an arbitrary function. By definition, we have
∑n

m=0 gk(n,m) =
fk(2n, 0) and

Gk(x, 1) =
∑

n≥0

fk(2n, 0)x
n. (18)

Using eq. (16) and eq. (18) we derive

Gk(x, y) =
1

x+ 1− yx

∑

n≥0

fk(2n, 0)

(
x

(x+ 1− yx)2

)n

, (19)

whence the lemma.
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3. Combinatorics of lv5
k
-shapes

We now show how to derive the lv
5

k-shape of a given k-noncrossing, σ-
canonical RNA structures. This construction is based on the notion of k-
noncrossing cores [11]. A k-noncrossing core is a k-noncrossing RNA struc-
ture in which each stack has size exactly one. The cores of a k-noncrossing,
σ-canonical RNA structure, δ, denoted by c(δ) is obtained in two steps: first
we map arcs and isolated vertices as follows:

∀ℓ ≥ σ−1; ((i−ℓ, j+ℓ), . . . , (i, j)) 7→ (i, j) and j 7→ j if j is isolated (20)

and second we relabel the vertices of the resulting diagram from left to right
in increasing order, see Fig.5. We are now in position to define lv

5

k-shapes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 101 3 4 6 7 9 10 12 13 14

Figure 5: A 3-noncrossing core structure is obtained from a 3-noncrossing, 1-
canonical RNA structure in two steps.

Definition 1. (lv5k-shape) Given a k-noncrossing, σ-canonical RNA struc-
ture δ, its lv5k-shape, lv

5

k(δ), is obtained by first removing all isolated vertices
and second apply the core-map c.

Alternatively the lv5k-shape can also be derived as follows: we first project
into the core c(δ), second, we remove all isolated vertices and third we apply
the core-map c again, see Fig.6. The second step is a projection from k-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

Figure 6: Two methods for generating the lv
5

3-shape. A 3-noncrossing, 2-canonical
RNA structure (top-left) is mapped in two ways into its lv53-shape (top-right).
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noncrossing cores to k-noncrossing matchings and surjective, since for each
k-noncrossing matching α, we can obtain a core structure by inserting isolated
vertices between any two arcs contained in some stack. By construction, lv5k
shapes do not preserve stack-lengths, interior loops and unpaired regions.

Let Ik(n,m) (ik(n,m)) denote the set (number) of the lv5k-shapes of length
2n with m 1-arcs and

Ik(z, u) =
∑

n≥0

n∑

m=0

ik(n,m)znum (21)

be the bivariate generating function. Furthermore, let ik(n) denote the num-
ber of the lv

5

k-shapes of length 2n with generating function

Ik(z) =
∑

n≥0

ik(n)z
n. (22)

Since any lv
5

k-shape is in particular the core of some k-noncrossing matching,
Lemma 2.2 allows us to establish a relation between the bivariate generating
function of ik(n,m) and the generating function of Fk(z).

Theorem 3.1. Let k, n,m be natural numbers where k ≥ 2, then the follow-
ing assertions hold
(a) the generating functions Ik(z, u) and Ik(z) satisfy

Ik(z, u) =
1 + z

1 + 2z − zu
Fk

(
z(1 + z)

(1 + 2z − zu)2

)
(23)

Ik(z) = Fk

(
z

1 + z

)
. (24)

(b) for 2 ≤ k ≤ 9, the number of lv5k-shapes of length 2n is asymptotically
given by

ik(n) ∼ ckn
−((k−1)2+(k−1)/2)

(
µ−1
k

)n
, (25)

where µk is the unique minimum positive real solution of z
1+z

= ρ2k and ck is
some positive constant.

Proof. We first prove (a). For this purpose we define a map between
k-noncrossing matchings with m 1-arcs and lv

5

k-shapes

g : Gk(n,m) →
⋃̇

0≤b≤n−m

[
Ik(n− b,m)×

{
(aj)1≤j≤n−b |

n−b∑

j=1

aj = b, aj ≥ 0

}]
,

11



where n ≥ 1. Here, for every δ ∈ Gk(n,m), we have g(δ) = (c(δ), (aj)1≤j≤n−b),
where c(δ) is the core structure of δ obtained according to eq. (20) and where
(aj)1≤j≤n−b keeps track of the deleted arcs. It is straightforward to check that
the map g is well defined, since all the 1-arcs of c(δ) are just the 1-arcs of δ.
By construction, g is a bijection and we have

|{(aj)1≤j≤n−b |
n−b∑

j=1

aj = b, aj ≥ 0}| =
(
n− 1

b

)
.

Then we derive

gk(n,m) =
n−m∑

b=0

(
n− 1

b

)
ik(n− b,m), for n ≥ 1, (26)

which implies

∑

n≥0

n∑

m=0

gk(n,m)xnym =
∑

n≥1

n∑

m=0

n−m∑

b=0

(
n− 1

b

)
ik(n− b,m)xnym + 1.

We next observe

∑

n≥1

n∑

m=0

n−m∑

b=0

(
n− 1

b

)
ik(n−b,m)xnym =

∑

b≥0

∑

m≥0

∑

n≥n0

(
n− 1

b

)
ik(n−b,m)xnym,

where n0 = max{m+ b, 1} and setting s = n− b,

∑

n≥1

n∑

m=0

n−m∑

b=0

(
n− 1

b

)
ik(n−b,m)xnym =

∑

b≥0

∑

m≥0

∑

s≥s0

(
s + b− 1

b

)
ik(s,m)xs+bym,

where s0 = max{m, 1}. In view of

∑

b≥0

(
s+ b− 1

b

)
xb =

1

(1− x)s

and interchanging the terms of summation, we derive

∑

n≥1

n∑

m=0

n−m∑

b=0

(
n− 1

b

)
ik(n− b,m)xnym =

∑

s≥1

s∑

m=0

ik(s,m)

(
x

1− x

)s

ym

12



and arrive at

∑

n≥0

n∑

m=0

gk(n,m)xnym =
∑

n≥0

n∑

m=0

ik(n,m)

(
x

1− x

)n

ym.

According to Lemma 2.2, we have

∑

n≥0

n∑

m=0

gk(n,m)xnym =
1

x+ 1− yx

∑

n≥0

fk(2n, 0)

(
x

(x+ 1− yx)2

)n

,

setting z = x
1−x

and u = y,

∑

n≥0

n∑

m=0

ik(n,m)znum =
1 + z

1 + 2z − zu

∑

n≥0

fk(2n, 0)

(
z(1 + z)

(1 + 2z − zu)2

)n

.

In particular, setting u = 1, we derive

∑

n≥0

ik(n)z
n =

∑

n≥0

fk(2n, 0)

(
z

1 + z

)n

,

whence (a) follows.
Assertion (b) is a direct consequence of the supercritical paradigm, see Propo-
sition 1. As mentioned before, the ordinary generating function Fk(z) =∑

n≥0 fk(2n, 0)z
n is D-finite [24] and the inner function ϑ(z) = z

1+z
is alge-

braic, satisfies ϑ(0) = 0 and is analytic for |z| < 1. By direct calculation,
using the fact that all singularities of Fk(z) are contained within the set of
zeros of q0,k(z), see Tab. 1, we can then verify that Fk(ϑ(z)) has the unique
dominant real singularity µk < 1 satisfying ϑ(µk) = ρ2k for 2 ≤ k ≤ 9. In
view of fk(2n, 0) ∼ c̃kn

−((k−1)2+(k−1)/2) (2(k− 1))2n, Proposition 1 guarantees
eq. (25)

ik(n) ∼ ckn
−((k−1)2+(k−1)/2)

(
µ−1
k

)n
.

This proves (b) completing the proof of the theorem.
We next studying the number of lv5k-shapes induced by k-noncrossing,

σ-canonical RNA structures of fixed length n, lv5k,σ(n), setting

Lv5

k,σ(x) =
∑

n≥0

lv
5

k,σ(n)x
n. (27)

13



Theorem 3.2. Let k, σ ∈ N, where k ≥ 2. Then the following assertions
hold
(a) the generating function Lv5

k,σ(x) is given by

Lv5

k,σ(x) =
(1 + x2σ)

(1− x)(1 + 2x2σ − x2σ+1)
Fk

(
x2σ(1 + x2σ)

(1 + 2x2σ − x2σ+1)2

)
. (28)

(b) for 2 ≤ k ≤ 9 and 1 ≤ σ ≤ 10

lv
5

k,σ(n) ∼ ck,σn
−((k−1)2+(k−1)/2)

(
ζ−1
k,σ

)n
, (29)

where ck,σ > 0 and ζk,σ is the unique minimum positive real solution of

x2σ(1 + x2σ)

(1 + 2x2σ − x2σ+1)2
= ρ2k. (30)

σ/k 2 3 4 5 6 7 8
1 1.51243 3.67528 5.77291 7.82581 9.85873 11.88118 13.89746
2 1.26585 1.93496 2.41152 2.80275 3.14338 3.44943 3.72983
3 1.17928 1.55752 1.80082 1.98945 2.14693 2.28376 2.40567

Table 2: The exponential growth rates ζ−1
k,σ of lv5k-shapes induced by k-noncrossing,

σ-canonical RNA structures of length n.

Proof. In order to proof of (a) we observe that we can always inflate a
structure by adding arcs to stacks or isolated vertices without changing its
lv

5

k-shape. In fact, for any given lv
5

k-shape, β, adding the minimal number
of arcs to each stack such that every stack has σ arcs, and inserting one
isolated vertex in any 1-arc, we derive a k-noncrossing, σ-canonical structure
having arc-length≥ 2, of minimal length. We can therefore derive Lv5

k,σ(x),
see eq.(27), from the bivariate generating function Ik(z, u) as follows

Lv5

k,σ(x) =
∑

n≥0

⌊ n
2σ

⌋∑

s=0

min{s,n−2σs}∑

m=0

ik(s,m)xn =
∑

s≥0

s∑

m=0

∑

n≥2σs+m

ik(s,m)xn,

14



whence

Lv5

k,σ(x) =
1

1− x

∑

s≥0

s∑

m=0

ik(s,m)x2σs+m

and in view of eq. (23), Ik(z, u) =
1+z

1+2z−zu
Fk

(
z(1+z)

(1+2z−zu)2

)
, we derive

Lv5

k,σ(x) =
(1 + x2σ)

(1− x)(1 + 2x2σ − x2σ+1)
Fk

(
x2σ(1 + x2σ)

(1 + 2x2σ − x2σ+1)2

)
.

As for (b), we observe that the factor

ϕσ(x) =
(1 + x2σ)

(1− x)(1 + 2x2σ − x2σ+1)

does not induce a dominant singularity of Lv5

k,σ(x). Therefore all dominant

singularities of Lv5

k,σ(x) stem from Fk

(
x2σ(1+x2σ)

(1+2x2σ−x2σ+1)2

)
. Indeed, assume a

contrario that there were some dominant singularity of Lv5

k,σ(x), ζ , that is
induced by ϕσ(x). This would imply that ζ is also a dominant singularity of

Fk

(
x2σ(1+x2σ)

(1+2x2σ−x2σ+1)2

)
which immediately leads to a contradiction.

We next verify that for 2 ≤ k ≤ 9 and 1 ≤ σ ≤ 10, the minimum positive
real solution of eq. (30), ζk,σ, is the unique dominant singularity of Lv5

k,σ(x)
and Proposition 1 implies

lv
5

k,σ(n) ∼ ck,σn
−((k−1)2+(k−1)/2)

(
ζ−1
k,σ

)n
,

where ck,σ is some positive constant and the proof of the theorem is complete.

4. Combinatorics of lv1
k
-shapes

Definition 2. (lv1k-shape) Given a k-noncrossing, σ-canonical RNA struc-
ture, δ, its lv

1

k-shape, lv
1

k(δ), is derived as follows: first we apply the core
map, second we replace a segment of isolated vertices by a single isolated
vertex and third relabel the vertices of the resulting diagram, see Fig.7.

More formally, a lv
1

k-shape is obtained as follows: if we have a maximal
sequence of isolated vertices (i, i + 1, . . . , i + ℓ′) (i.e. i − 1, i + ℓ′ + 1 are
not isolated), then we map (i, i+ 1, . . . , i+ ℓ′) 7→ i and if (i, j) is a arc, it is
mapped identically.

15



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9

Figure 7: lv
1

k-shapes via the core map and subsequent identification of unpaired
nucleotides: A 3-noncrossing, 1-canonical RNA structure (top-left) is mapped into
its lv13-shape (top-right).

Let Ck(n, h) (Ck(n, h)) denote the set (number) of k-noncrossing core-
structures of length n with exactly h-arcs. Let Jk(n, h) (jk(n, h)) denote
the set (number) of lv1k-shapes of length n with h-arcs, and let jk(n) be the
number of all lv1k-shapes of length n and set

Jk(z, u) =
∑

h≥0

4h+1∑

n=2h

jk(n, h)z
nuh and Jk(z) =

∑

n≥0

jk(n)z
n. (31)

Theorem 4.1. For k, n, h ∈ N, k ≥ 2, the following assertions hold
(a) the generating functions Jk(z, u) and Jk(z) are given by

Jk(z, u) =
(1 + z)(1 + uz2)

uz3 + 2uz2 + 1
Fk

(
(1 + z)2(1 + uz2)uz2

(uz3 + 2uz2 + 1)2

)
(32)

Jk(z) =
(1 + z)(1 + z2)

z3 + 2z2 + 1
Fk

(
(1 + z)2(1 + z2)z2

(z3 + 2z2 + 1)2

)
. (33)

(b) for 2 ≤ k ≤ 9, the number of lv1k-shapes of length n satisfies

jk(n) ∼ c′kn
−((k−1)2+(k−1)/2)

(
µ′−1
k

)n
, (34)

where c′k > 0 and µ′
k is the unique minimum positive real solution of

(1 + z)2(1 + z2)z2

(z3 + 2z2 + 1)2
= ρ2k. (35)
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Proof. For (a) we consider the map between k-noncrossing cores having
exactly h arcs and lv

1

k-shapes, for 0 ≤ h ≤ ⌊n−1
2
⌋,

ℓ : Ck(n, h) →
⋃̇

b0≤b≤n−2h−1

[
Jk(n− b, h)×

{
(ej)1≤j≤n−2h−b |

n−2h−b∑

j=1

ej = b, ej ≥ 0

}]
,

where b0 = max{0, n− 4h− 1}. For every β ∈ Ck(n, h), (ej)1≤j≤n−2h−b keeps
track of the multiplicities of the deleted isolated vertices. The map ℓ is a
(well defined) bijection and

|{(ej)1≤j≤n−2h−b |
n−2h−b∑

j=1

ej = b, ej ≥ 0}| =
(
n− 2h− 1

b

)
.

We arrive at

Ck(n, h) =

n−2h−1∑

b=b0

(
n− 2h− 1

b

)
jk(n− b, h), 0 ≤ h ≤ ⌊n− 1

2
⌋.

We compute

∑

n≥0

⌊n
2
⌋∑

h=0

Ck(n, h)w
hxn =

∑

n≥0

⌊n
2
⌋∑

h>⌊n−1

2
⌋

Ck(n, h)w
hxn

︸ ︷︷ ︸
(I)

+

∑

n≥0

⌊n−1

2
⌋∑

h=0

n−2h−1∑

b=b0

(
n− 2h− 1

b

)
jk(n− b, h)whxn

︸ ︷︷ ︸
(II)

,

and rewrite (II) as

∑

n≥0

⌊n−1

2
⌋∑

h=0

n−2h−1∑

b=b0

(
n− 2h− 1

b

)
jk(n− b, h)whxn

=
∑

h≥0

∑

b≥0

4h+b+1∑

n=2h+b+1

jk(n− b, h)

(
n− 2h− 1

b

)
whxn.

17



We derive, setting s = n− b,

=
∑

h≥0

∑

b≥0

4h+1∑

s=2h+1

jk(s, h)

(
s + b− 2h− 1

b

)
whxs+b

=
∑

h≥0

4h+1∑

s=2h+1

jk(s, h)

(
∑

b≥0

(
s+ b− 2h− 1

b

)
xb

)
whxs

=
∑

h≥0

4h+1∑

s=2h+1

jk(s, h)

(
x

1− x

)s (
(1− x)2w

)h
.

In view of jk(2h, h) = Ck(2h, h), we can interpret (I) as follows

∑

n≥0

⌊n
2
⌋∑

h>⌊n−1

2
⌋

Ck(n, h)w
hxn =

∑

h≥0

jk(2h, h)

(
x

1− x

)2h (
(1− x)2w

)h
,

which allows for extending the parameter range of h

∑

n≥0

⌊n
2
⌋∑

h=0

Ck(n, h)w
hxn =

∑

h≥0

4h+1∑

s=2h

jk(s, h)

(
x

1− x

)s (
(1− x)2w

)h
.

Setting u = (1 − x)2w and z = x
1−x

, we obtain the bivariate generating
function

∑

h≥0

4h+1∑

s=2h

jk(s, h)z
suh =

∑

n≥0

⌊n
2
⌋∑

h=0

Ck(n, h)
(
u(1 + z)2

)h
(

z

1 + z

)n

.

We next consider two power series relations due to [10] and [11]

∑

n≥0

⌊n
2
⌋∑

h=0

Tk,1(n, h)v
hyn =

1

vy2 − y + 1
Fk

(
vy2

(vy2 − y + 1)2

)
(36)

∑

n≥0

⌊n
2
⌋∑

h=0

Tk,1(n, h)v
hyn =

∑

n≥0

⌊n
2
⌋∑

h=0

Ck(n, h)

(
v

1− vy2

)h

yn. (37)

In view of eq. (36) and eq. (37), we can conclude

∑

h≥0

4h+1∑

s=2h

jk(s, h)z
suh =

(1 + z)(1 + uz2)

uz3 + 2uz2 + 1
Fk

(
(1 + z)2(1 + uz2)uz2

(uz3 + 2uz2 + 1)2

)

18



and in particular, setting u = 1,

Jk(z) =
(1 + z)(1 + z2)

z3 + 2z2 + 1
Fk

(
(1 + z)2(1 + z2)z2

(z3 + 2z2 + 1)2

)
,

whence assertion (a).
Assertion (b) follows in complete analogy to the proof of Theorem 3.2. First

we verify that the factor (1+z)(1+z2)
z3+2z2+1

does not introduce a dominant singularity
of Jk(z). Then we verify, using Tab. 1, that the unique dominant singularity

of Fk

(
(1+z)2(1+z2)z2

(z3+2z2+1)2

)
is the minimum positive real solution of (1+z)2(1+z2)z2

(z3+2z2+1)2
=

ρ2k for 2 ≤ k ≤ 9. Now (b) follows from Proposition 1.
We finally compute the number of lv1k-shapes induced by k-noncrossing,

σ-canonical RNA structures of fixed length n, lv1k,σ(n), setting

Lv1

k,σ(x) =
∑

n≥0

lv
1

k,σ(n)x
n. (38)

Theorem 4.2. Let k, σ ∈ N, where k ≥ 2. Then the following assertions
hold
(a) the generating function Lv1

k,σ(x) is given by

Lv1

k,σ(x) =
(1 + x)(1 + x2σ)

(1− x)(x2σ+1 + 2x2σ + 1)
Fk

(
(1 + x)2x2σ(1 + x2σ)

(x2σ+1 + 2x2σ + 1)2

)n

. (39)

(b) for 2 ≤ k ≤ 9 and 1 ≤ σ ≤ 10, we have

lv
1

k,σ(n) ∼ c′k,σn
−((k−1)2+(k−1)/2)

(
χ−1
k,σ

)n
, (40)

where c′k,σ > 0 and χk,σ is the unique minimum positive real solution of

(1 + x)2x2σ(1 + x2σ)

(x2σ+1 + 2x2σ + 1)2
= ρ2k. (41)

Proof. Obviously, we can inflate any structure by adding arcs into its
stacks or duplicating isolated vertices without changing its lv

1

k-shape. As a
result, we can derive from any lv

1

k-shape by inflating its stacks to σ arcs,
a unique, minimal, k-noncrossing, σ-canonical structure inducing it. This
observation implies

lv
1

k,σ(n) =

⌊ n
2σ

⌋∑

h=0

min{4h+1,n−2(σ−1)h}∑

s=2h

jk(s, h),
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σ/k 2 3 4 5 6 7 8
1 2.09188 4.51263 6.65586 8.73227 10.7804 12.8137 14.8381
2 1.56947 2.31767 2.81092 3.21184 3.55939 3.87079 4.15552
3 1.38475 1.80408 2.05600 2.24968 2.41081 2.55050 2.67477

Table 3: The exponential growth rates χ−1
k,σ of lv1k-shapes induced by k-noncrossing,

σ-canonical RNA structures of length n.

whence we can rewrite the generating function

Lv1

k,σ(x) =
∑

h≥0

4h+1∑

s=2h

∑

n≥2h(σ−1)+s

jk(s, h)x
n =

1

1− x

∑

h≥0

4h+1∑

s=2h

jk(s, h)x
2h(σ−1)+s.

Employing eq. (32), we derive

Lv1

k,σ(x) =
(1 + x)(1 + x2σ)

(1− x)(x2σ+1 + 2x2σ + 1)
Fk

(
(1 + x)2x2σ(1 + x2σ)

(x2σ+1 + 2x2σ + 1)2

)n

and assertion (a) follows. As for assertion (b), we proceed in analogy to the
proof of Theorem 3.2 and verify that for 2 ≤ k ≤ 9 and 1 ≤ σ ≤ 10, the
unique minimum positive real solution, χk,σ, of eq. (41) is the unique domi-
nant singularity of generating function Lv1

k,σ(x). Consequently, Proposition
1 implies that

lv
1

k,σ(n) ∼ c′k,σn
−((k−1)2+(k−1)/2)

(
χ−1
k,σ

)n
,

where c′k,σ is some positive constant, whence (b) and the theorem is proved.

5. Conclusion

lv
1

k- and lv
5

k-shapes of k-noncrossing, σ-canonical RNA pseudoknot struc-
tures provide a significant simplification of complicated molecular configu-
rations with cross-serial interactions. The asymptotic formulas presented in
Theorem 3.2 and Theorem 4.2

lv
5

k,σ(n) ∼ ck,σn
−((k−1)2+(k−1)/2)

(
ζ−1
k,σ

)n

lv
1

k,σ(n) ∼ c′k,σn
−((k−1)2+(k−1)/2)

(
χ−1
k,σ

)n
,
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imply all asymptotic results on abstract shapes of secondary structures in
the literature (note n−((k−1)2+(k−1)/2) = n−3/2).

The growth rates of lv
1

k- and lv
5

k-shapes of k-noncrossing, σ-canonical
structures, are displayed in Tab. 4 and Tab. 5, where they are contrasted
with the exponential growth rates of k-noncrossing, σ-canonical structures,
γk,σ.

k 2 3 4 5 6 7 8
γ−1
k,2 1.96798 2.58808 3.03825 3.41383 3.74381 4.04195 4.31617

χ−1
k,2 1.56947 2.31767 2.81092 3.21184 3.55939 3.87079 4.15552

ζ−1
k,2 1.26585 1.93496 2.41152 2.80275 3.14338 3.44943 3.72983

Table 4: The exponential growth rates of arbitrary k-noncrossing, 2-canonical RNA
structures of length n and the numbers of their induced lv

1

k and lv
5

k shapes.

k 2 3 4 5 6 7 8
γ−1
k,3 1.71599 2.04771 2.27036 2.44664 2.59554 2.72590 2.84267

χ−1
k,3 1.38475 1.80408 2.05600 2.24968 2.41081 2.55050 2.67477

ζ−1
k,3 1.17928 1.55752 1.80082 1.98945 2.14693 2.28376 2.40567

Table 5: The exponential growth rates of arbitrary k-noncrossing, 3-canonical RNA
structures of length n and the numbers of their induced lv

1

k and lv
5

k shapes.

Table 5 shows that the exponential growth rate of lv53-shapes of k-noncrossing
3-canonical structures are significantly smaller than that of all k-noncrossing
3-canonical structures. Therefore, the abstract lv53-shapes represent a mean-
ingful reduction. At http://www.combinatorics.cn/cbpc/paper.html, we
provide supplemental material for our results.
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