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LOOPS IN CANONICAL RNA PSEUDOKNOT STRUCTURES

MARKUS E. NEBEL†, CHRISTIAN M. REIDYS∗ AND RITA R. WANG ∗

Abstract. In this paper we compute the limit distributions of the numbers of hairpin-loops,

interior-loops and bulges in k-noncrossing RNA structures. The latter are coarse grained RNA

structures allowing for cross-serial interactions, subject to the constraint that there are at most

k − 1 mutually crossing arcs in the diagram representation of the molecule. We prove central

limit theorems by means of studying the corresponding bivariate generating functions. These

generating functions are obtained by symbolic inflation of lv5k-shapes [11].

1. Introduction

An RNA molecule is a sequence of the four nucleotides A, G, U, C together with the Watson-Crick

(A-U, G-C) and U-G base pairing rules. The sequence of bases is called the primary structure

of the RNA molecule. Two bases in the primary structure which are not adjacent may form

hydrogen bonds following the Watson-Crick base pairing rules. Three decades ago Waterman et

al. [9, 10, 13] analyzed RNA secondary structures. Secondary structures are coarse grained RNA

contact structures. They can be represented as diagrams and planar graphs, see Fig. 1. Diagrams

are labeled graphs over the vertex set [n] = {1, . . . , n} with vertex degrees ≤ 1, represented by

drawing its vertices on a horizontal line and its arcs (i, j) (i < j), in the upper half-plane, see

Fig. 1 and Fig. 2. Here, vertices and arcs correspond to the nucleotides A, G, U, C and Watson-

Crick (A-U, G-C) and (U-G) base pairs, respectively. In a diagram two arcs (i1, j1) and (i2, j2)

are called crossing if i1 < i2 < j1 < j2 holds. Accordingly, a k-crossing is a sequence of arcs

(i1, j1), . . . , (ik, jk) such that i1 < i2 < · · · < ik < j1 < j2 < · · · < jk, see Fig. 2. We call diagrams

containing at most (k − 1)-crossings, k-noncrossing diagrams (k-noncrossing partial matchings).
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Figure 1. The Sprinzl tRNA RD7550 secondary structure represented as 2-noncrossing

diagram (top) and planar graph (bottom).

The length of an arc (i, j) is given by j − i, characterizing the minimal length of a hairpin loop. A

stack of length τ is a sequence of “parallel” arcs of the form

(1.1) ((i, j), (i+ 1, j − 1), . . . , (i + (τ − 1), j − (τ − 1))),

and we denote it by Sτ
i,j . We call an arc of length one a 1-arc. A k-noncrossing, τ -canonical RNA

structure is a k-noncrossing diagram without 1-arcs, having a minimum stack-size of τ , see Fig. 2.

Let Tk,τ (n) denote the set of k-noncrossing, τ -canonical RNA structures of length n and let Tk,τ (n)

denote their number.

We next introduce the following structural elements of k-noncrossing, τ -canonical RNA structures,

see Fig. 3 and Fig. 4. Let [i, j] denote an interval, i.e. a sequence of consecutive isolated vertices

(i, i+ 1, . . . , j − 1, j). We consider, see Fig. 4

(1) a hairpin-loop is a pair

((i, j), [i + 1, j − 1]).

(2) an interior-loop is a sequence

((i1, j1), [i1 + 1, i2 − 1], (i2, j2), [j2 + 1, j1 − 1]),
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Figure 2. A 2-noncrossing, 2-canonical RNA structure (left) and a 3-noncrossing, 2-

canonical RNA structure (right) represented as planer graphs (top) and diagrams (bot-

tom).
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Figure 3. 3-noncrossing, 6-canonical structures: the pseudoknot structure of the PrP-

encoding mRNA represented as diagrams (top) and planer graphs (bottom)..

where (i2, j2) is nested in (i1, j1).

(3) a bulge is a sequence

((i1, j1), [i1 + 1, i2 − 1], (i2, j1 − 1)) or ((i1, j1), (i1 + 1, j2), [j2 + 1, j1 − 1]).

(4) a stem is a sequence of stacks

(
Sτ1
i1,j1

, Sτ2
i2,j2

, . . . , Sτs
is,js

)
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where the stack Sτm
im,jm

is nested in S
τm−1

im−1,jm−1
, 2 ≤ m ≤ s and there are no arcs of the

form (i1 − 1, j1 + 1) and (is + τs, js − τs).

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1

11

1

13

1 2 3 4 5 6 7 8 9 10 11 12

1

12

Figure 4. The loop-types: hairpin-loop (top), interior-loop (middle) and bulge (bottom).

2. Preliminaries

Let fk(n, ℓ) denote the number of k-noncrossing diagrams on n vertices having exactly ℓ isolated

vertices. A diagram without isolated points is called a matching. The exponential generating

function of k-noncrossing matchings satisfies the following identity [2, 4, 5]

(2.1) Hk(z) =
∑

n≥0

fk(2n, 0) ·
z2n

(2n)!
= det[Ii−j(2z)− Ii+j(2z)]|k−1

i,j=1

where Ir(2z) =
∑

j≥0
z2j+r

j!(j+r)! is the hyperbolic Bessel function of the first kind of order r. Eq. (2.1)

allows us to conclude that the ordinary generating function

Fk(z) =
∑

n≥0

fk(2n, 0)z
n

is D-finite [12]. This follows from the fact that Ir(2z) is D-finite and D-finite power series form

an algebra [12]. Consequently, there exists some e ∈ N such that

(2.2) q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + · · ·+ qe,k(z)Fk(z) = 0,

where qj,k(z) are polynomials and q0,k(z) 6= 0. The ordinary differential equations (ODE) for Fk(z),

where 2 ≤ k ≤ 7 are obtained by the MAPLE package GFUN from the exact data of fk(2n, 0). They
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k q0,k(z) Rk

2 (4z − 1)z { 1

4
}

3 (16z − 1)z2 { 1

16
}

4 (144z2 − 40z + 1)z3 { 1

4
, 1

36
}

5 (1024z2 − 80z + 1)z4 { 1

16
, 1

64
}

6 (14400z3 − 4144z2 + 140z − 1)z5 { 1

4
, 1

36
, 1

100
}

7 (147456z3 − 12544z2 + 224z − 1)z6 { 1

16
, 1

64
, 1

144
}

Table 1. We present the polynomials q0,k(z) and their nonzero roots obtained by the

MAPLE package GFUN.

are verified by first deriving the corresponding P -recursions [12] for fk(2n, 0) second transforming

these P -recursions into P -recursions of fk(2n, 0)/(2n)! and third deriving the corresponding ODEs

forHk(z) and verifying that the RHS of eq. (2.1) is a solution. The key point is that any singularity

of Fk(z) is contained in the set of roots of q0,k(z) [12], which we denote by Rk. For 2 ≤ k ≤ 7, we

give the polynomials q0,k(z) and their roots in Table 1. In [8] we showed that for arbitrary k

(2.3) fk(2n, 0) ∼ c̃k n
−((k−1)2+(k−1)/2) (2(k − 1))2n, c̃k > 0

in accordance with the fact that Fk(z) has the unique dominant singularity ρ2k, where ρk = 1/(2k−
2).

We next introduce a central limit theorem due to Bender [1]. It is proved by analyzing the

characteristic function by the Lévy-Cramér Theorem (Theorem IX.4 in [3]).

Theorem 1. Suppose we are given the bivariate generating function

(2.4) f(z, u) =
∑

n,t≥0

f(n, t) zn ut,

where f(n, t) ≥ 0 and f(n) =
∑

t f(n, t). Let Xn be a r.v. such that P(Xn = t) = f(n, t)/f(n).

Suppose

(2.5) [zn]f(z, es) ∼ c(s)nα γ(s)−n

uniformly in s in a neighborhood of 0, where c(s) is continuous and nonzero near 0, α is a constant,

and γ(s) is analytic near 0. Then there exists a pair (µ, σ) such that the normalized random variable

(2.6) X
∗
n =

Xn − µn√
nσ2
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has asymptotically normal distribution with parameter (0, 1). That is we have

(2.7) lim
n→∞

P (X∗
n < x) =

1√
2π

∫ x

−∞

e−
1
2
c2dc

where µ and σ2 are given by

(2.8) µ = −γ
′(0)

γ(0)
and σ2 =

(
γ′(0)

γ(0)

)2

− γ′′(0)

γ(0)
.

The crucial points for applying Theorem 1 are (a) eq. (2.5)

[zn]f(z, es) ∼ c(s)nα γ(s)−n,

uniformly in s in a neighborhood of 0, where c(s) is continuous and nonzero near 0 and α is a

constant and (b) the analyticity of γ(s) in s near 0. In the following, we have generating functions

of the form Fk(ψ(z, s)). In this situation, Theorem 2 below guarantees under specific conditions

[zn]Fk(ψ(z, s)) ∼ A(s)n−((k−1)2+(k−1)/2)

(
1

γ(s)

)n

, A(s) continuous,

for 2 ≤ k ≤ 7. The analyticity of γ(s) is guaranteed by the analytic implicit function theorem [3].

Theorem 2. [7] Suppose 2 ≤ k ≤ 7. Let ψ(z, s) be an analytic function in a domain

(2.9) D = {(z, s)||z| ≤ r, |s| < ǫ}

such that ψ(0, s) = 0. In addition suppose γ(s) is the unique dominant singularity of Fk(ψ(z, s))

and analytic solution of ψ(γ(s), s) = ρ2k, |γ(s)| ≤ r, ∂zψ(γ(s), s) 6= 0 for |s| < ǫ. Then Fk(ψ(z, s))

has a singular expansion and

(2.10) [zn]Fk(ψ(z, s)) ∼ A(s)n−((k−1)2+(k−1)/2)

(
1

γ(s)

)n

for some continuous A(s) ∈ C,

uniformly in s contained in a small neighborhood of 0.

To keep the paper selfcontained we give a direct proof of Theorem 2 in Section 5. This avoids

calling upon generic results, such as the uniformity Lemma of singularity analysis [3].
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3. The generating function

In this section we compute the bivariate generating functions of hairpin-loops, interior-loops and

bulges. Let hk,τ (n, t), ik,τ (n, t) and bk,τ (n, t) denote the numbers of k-noncrossing, τ -canonical

RNA structures of length n with t hairpin-loops, interior-loops and bulges. We set

Hk,τ (z, u1) =
∑

n≥0

∑

t≥0

hk,τ (n, t)z
n ut1,(3.1)

Ik,τ (z, u2) =
∑

n≥0

∑

t≥0

ik,τ (n, t)z
n ut2,(3.2)

Bk,τ (z, u3) =
∑

n≥0

∑

t≥0

bk,τ (n, t)z
n ut3.(3.3)

In order to derive the above generating functions we use symbolic enumeration [3]. A combinatorial

class is a set of finite size with the definition of size function of its elements, whose elements are

all finite size and the number of certain size elements is finite. Suppose C be a combinatorial class

and c ∈ C. We denote the size of c by |c|. There are two special combinatorial classes E and Z

which respectively contains only an element of size 0 and an element of size 1. The subset of C

which contains all the elements of size n in C is denoted by Cn. Then the generating function of a

combinatorial class C is

(3.4) C(z) =
∑

c∈C

z|c| =
∑

n≥0

Cn z
n,

where Cn ⊂ C and Cn = |Cn|. In particular the generating functions of E and Z are given by

E(z) = 1 and Z(z) = z. For any two combinatorial classes C, D, we have the following operations:

• C+D := C ∪D, if C ∩D = ∅

• C×D := {(c, d)|c ∈ C, d ∈ D} and Cm :=
∏m

i=1 C

• Seq(C) = E+ C+ C2 + · · · .

We have the following relations between the operations of combinatorial classes and the operations

of their generating functions:

A = C+D ⇒ A(z) = C(z) +D(z)(3.5)

A = C×D ⇒ A(z) = C(z) ·D(z)(3.6)

A = Seq(C) ⇒ A(z) = (1 −C(z))−1,(3.7)
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where A(z), C(z), D(z) is the generating function of A, C and D.

Given a k-noncrossing, τ -canonical RNA structure δ, its lv5k-shape, lv
5

k(δ) [11], is obtained by first

removing all isolated vertices and second collapsing any stack into a single arc, see Fig.5. By

construction, lv5k-shapes do not preserve stack-lengths, interior loops and unpaired regions. In the

following, we shall refer to lv5k-shape simply as shape. Let Tk,τ denote the set of k-noncrossing,

τ -canonical structures and Ik the set of all k-noncrossing shapes and Ik(m) those having m 1-arcs,

see Figure 5. Each stem of a k-noncrossing, τ -canonical RNA structure is mapped into an arc

in its corresponding shape and all hairpin-loops are mapped into 1-arcs. Therefore we have the

surjective map,

(3.8) ϕ : Tk,τ → Ik.

Indeed, for a given shape γ in Ik, we can derive a k-noncrossing, τ -canonical structure having

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 616 17 18 19 20

Figure 5. A 3-noncrossing, 2-canonical RNA structure (top-left) is mapped into its

shape (top-right) in two steps. A stem (blue) is mapped into a single shape-arc (blue).

A hairpin-loop (red) is mapped into a shape-1-arc (red).

arc-length≥ 2, we can add arcs to each arc contained in the shape such that every resulting stack

has τ arcs and insert one isolated vertex in each 1-arc. Let Ik(s,m) and ik(s,m) denote the set

and number of the lv5k-shapes of length 2s with m 1-arcs and

(3.9) Ik(x, y) =
∑

s≥0

s∑

m=0

ik(s,m)xsym

be the bivariate generating function. Furthermore, let Ik(m) denote the set of shapes γ having m

1-arcs. Let k, s,m be natural numbers where k ≥ 2, then the generating function Ik(x, y) [11] is

given by

(3.10) Ik(x, y) =
1 + x

1 + 2x− xy
Fk

(
x(1 + x)

(1 + 2x− xy)2

)
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Theorem 3. Suppose k, τ ∈ N, k ≥ 2, τ ≥ 1. Then

Hk,τ (z, u1) =
(1− z)(1− z2 + z2τ)

(1− z)2(1 − z2 + z2τ) + z2τ − z2τ+1u1

Fk

(
z2τ (1− z)2(1− z2 + z2τ )

((1− z)2(1− z2 + z2τ ) + z2τ − z2τ+1u1)
2

)
,

(3.11)

Ik,τ (z, u2) =
(1− z2)(1− z)2 − u2z

2τ+2 + (2z2 − 2z + 1)z2τ

(1− z) ((1− z2)(1 − z)2 − u2z2τ+2 + (2z2 − 3z + 2)z2τ )

Fk

(
z2τ
(
(1− z2)(1− z)2 − u2z

2τ+2 + (2z2 − 2z + 1)z2τ
)

((1− z2)(1− z)2 − u2z2τ+2 + (2z2 − 3z + 2)z2τ)
2

)
,

(3.12)

Bk,τ (z, u3) =
(1− z2)(1 − z)− 2u3z

2τ+1 + (z + 1)z2τ

(1− z) ((1− z2)(1− z)− 2u3z2τ+1 + (z + 2)z2τ )

Fk

(
z2τ
(
(1− z2)(1 − z)− 2u3z

2τ+1 + (z + 1)z2τ
)

(1− z) ((1− z2)(1 − z)− 2u3z2τ+1 + (z + 2)z2τ)2

)
.

(3.13)

Proof. We prove the theorem via symbolic enumeration representing a k-noncrossing, τ -canonical

structure as the inflation of a shape, γ. Since a structure inflated from γ ∈ Ik(s,m) has exactly s

stems, (2s+ 1) (possibly empty) intervals of isolated vertices and m nonempty such intervals we

rewrite the generating functions as

Hk,τ (z, u1) =
∑

m≥0

∑

γ∈ Ik(m)

Tγ(z, u1, 1, 1),

Ik,τ (z, u2) =
∑

m≥0

∑

γ∈ Ik(m)

Tγ(z, 1, u2, 1),

Bk,τ (z, u3) =
∑

m≥0

∑

γ∈ Ik(m)

Tγ(z, 1, 1, u3).

where Tγ(z, u1, u2, u3) is the generating function of all k-noncrossing, τ -canonical structures with

shape γ and ui(i = 1, 2, 3) are variables associated with the number of hairpin-loops, interior-loops

and bulges. In order to compute the latter we consider the inflation process: we inflate γ ∈ Ik(m)

having s arcs, where s ≥ m, to a structure as follows:

• we inflate each arc of the shape to a stem of stacks of minimum size τ . Any isolated vertices

inserted during this first inflation step separate the added stacks,

• we insert isolated vertices at the remaining (2s+ 1) positions.
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We inflate any shape-arc to a stack of size at least τ and subsequently add additional stacks. The

latter are called induced stacks and have to be separated by means of inserting isolated vertices, see

Fig. 6. Note that during this first inflation step no intervals of isolated vertices, other than those

necessary for separating the nested stacks are inserted. After the first inflation step we proceed

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1( )

2( )

3( )

1 2 3 4 5 6

Figure 6. The first inflation step a shape (left) is inflated to a 3-noncrossing, 2-

canonical structure. First, every arc in the shape is inflated to a stack of size at least two

(middle), and then the shape is inflated to a new 3-noncrossing, 2-canonical structure

(right) by adding one stack of size two. There are three ways to insert the isolated

vertices.

inflating further by inserting only additional isolated vertices at the remaining (2s + 1) positions

in which such insertions are possible. For each 1-arc at least one such isolated vertex is necessarily

inserted, see Fig. 7. We proceed by expressing the above two inflations in terms of symbolic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 7. The second inflation step: the structure (left) obtained in (1) in Fig. 6 is

inflated to a new 3-noncrossing, 2-canonical RNA structures (right) by adding isolated

vertices (red).

enumeration. For this purpose we introduce the combinatorial classes M (stems), Kτ (stacks), Nτ

(induced stacks), L (isolated vertices), R (arcs) and Z (vertices), where Z(z) = z and R(z) = z2.
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Let µ1, µ2 and µ3 be the labels for hairpin-loops, interior-loops and bulges, respectively. Then

Tγ = (M)
s × L

2s+1−m × ([Z× L]µ1
)
m
,(3.14)

M = K
τ × Seq (Nτ ) ,(3.15)

N
τ = K

τ ×
(
[Z× L]µ3

+ [Z× L]µ3
+ [(Z× L)

2
]µ2

)
,(3.16)

K
τ = R

τ × Seq (R) ,(3.17)

L = Seq (Z) .(3.18)

and consequently, translating the above relations into generating functions the generating function

Tγ(z, u1, u2, u3) is given by



z2τ

1−z2

1− z2τ

1−z2

(
2u3 z
1−z + u2

(
z

1−z

)2)




s

(
1

1− z

)2s+1−m(
u1 z

1− z

)m

= (1− z)−1

(
z2τ

(1− z2)(1 − z)2 − (2u3 z (1− z) + u2 z2)z2τ

)s

(u1 z)
m,

where the indeterminants ui (i = 1, 2, 3) correspond to the labels µi, i.e. the occurrences of hairpin-

loops, interior-loops and bulges. Accordingly, for any two shapes γ1, γ2 ∈ Ik(m) having s arcs, we

have

(3.19) Tγ1
(z, u1, u2, u3) = Tγ2

(z, u1, u2, u3).

We set

(3.20) η(u2, u3) =
z2τ

(1 − z2)(1 − z)2 − (2u3 z (1 − z) + u2 z2)z2τ
.

and accordingly derive

Hk,τ (z, u1) =
∑

m≥0

∑

γ∈ Ik(m)

Tγ(z, u1, 1, 1) =
∑

s≥0

s∑

m=0

ik(s,m)Tγ(z, u1, 1, 1),

Ik,τ (z, u2) =
∑

m≥0

∑

γ∈ Ik(m)

Tγ(z, 1, u2, 1) =
∑

s≥0

s∑

m=0

ik(s,m)Tγ(z, 1, u2, 1),

Bk,τ (z, u3) =
∑

m≥0

∑

γ∈ Ik(m)

Tγ(z, 1, 1, u3) =
∑

s≥0

s∑

m=0

ik(s,m)Tγ(z, 1, 1, u3).

It now remains to observe

∑

s≥0

s∑

m=0

ik(s,m)xs ym =
1 + x

1 + 2x− xy
Fk

(
x(1 + x)

(1 + 2x− xy)2

)
.
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and to subsequently substitute x = η(1, 1) and y = u1 z for deriving Hk,τ (z, u1). Substituting

x = η(u2, 1) and y = z in we obtain Ik,τ (z, u2) and finally x = η(1, u3) and y = z produce the

expression for Bk,τ (z, u3), whence the theorem. �

4. The central limit theorem

For fixed k-noncrossing, τ -canonical structure, S, let Hn,k,τ (S), In,k,τ (S) and Bn,k,τ (S) denote the

number of hairpin-loops, interior-loops and bulges in S. Then we have the r.v.s

• Hn,k,τ , where P (Hn,k,τ = t) =
hk,τ (n,t)
Tk,τ (n)

• In,k,τ , where P (In,k,τ = t) =
ik,τ (n,t)
Tk,τ (n)

• Bn,k,τ , where P (Bn,k,τ = t) =
bk,τ (n,t)
Tk,τ (n)

.

Here hk,τ (n, t), ik,τ (n, t) and bk,τ (n, t) are the numbers of k-noncrossing, τ -canonical structures of

length n with t hairpin-loops, interior-loops and bulges. The key for computing the distributions

of the above r.v.s are the bivariate generating functions derived in Theorem 3:

Hk,τ (z, u1) =
∑

n≥0

∑

t≥0

hk,τ (n, t)z
n ut1,(4.1)

Ik,τ (z, u2) =
∑

n≥0

∑

t≥0

ik,τ (n, t)z
n ut2,(4.2)

Bk,τ (z, u3) =
∑

n≥0

∑

t≥0

bk,τ (n, t)z
n ut3.(4.3)

The following proposition is based on Theorem 2 and facilitates the application of Theorem 1.

Proposition 1. Suppose 2 ≤ k ≤ 7, 1 ≤ τ ≤ 10. There exists a unique dominant Hk,τ (z, e
s)-

singularity, γk,τ (s), such that for |s| < ǫ, where ǫ > 0:

(1) γk,τ (s) is analytic,

(2) γk,τ (s) is the solution of minimal modulus of

(4.4)
z2τ (1− z)2(1 − z2 + z2τ)

((1− z)2(1− z2 + z2τ ) + z2τ − z2τ+1es)
2 − ρ2k = 0.

and

(4.5) [zn]Hk,τ (z, e
s) ∼ C(s)n−((k−1)2+ k−1

2
)

(
1

γk,τ (s)

)n

,
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uniformly in s in a neighborhood of 0 and continuous C(s).

Proof. The first step is to establish the existence and uniqueness of the dominant singularity

γk,τ (s).

We denote

ϑ(z, s) = (1− z)2(1− z2 + z2τ ) + z2τ − z2τ+1es,(4.6)

ψτ (z, s) = z2τ(1 − z)2(1 − z2 + z2τ )ϑ(z, s)−2,(4.7)

ωτ (z, s) = (1− z)(1− z2 + z2τ)ϑ(z, s)−1,(4.8)

and consider the equations

(4.9) ∀ 2 ≤ i ≤ k; Fi,τ (z, s) = ψτ (z, s)− ρ2i ,

where ρi = 1/(2i− 2). Theorem 3 and Table 1 imply that the singularities of Hk,τ (z, e
s) are are

contained in the set of roots of

(4.10) Fi,τ (z, s) = 0 and ϑ(z, s) = 0

where i ≤ k. Let ri,τ denote the solution of minimal modulus of

(4.11) Fi,τ (z, 0) = ψτ (z, 0)− ρ2i = 0.

We next verify that, for sufficiently small ǫi > 0, |z − ri,τ | < ǫi, |s| < ǫi, the following assertions

hold

• ∂
∂zFi,τ (ri,τ , 0) 6= 0

• ∂
∂zFi,τ (z, s) and

∂
∂sFi,τ (z, s) are continuous.

The analytic implicit function theorem, guarantees the existence of a unique analytic function

γi,τ (s) such that, for |s| < ǫi,

(4.12) Fi,τ (γi,τ (s), s) = 0 and γi,τ (0) = ri,τ .

Analogously, we obtain the unique analytic function δ(s) satisfying ϑ(z, s) = 0 and where δ(0)

is the minimal solution of ϑ(z, 0) = 0 for |s| < ǫδ, for some ǫδ > 0. We next verify that the

unique dominant singularity of Hk,τ (z, 1) is the minimal positive solution rk,τ of Fk,τ (z, 0) = 0

and subsequently using an continuity argument. Therefore, for sufficiently small ǫ where ǫ < ǫi

and ǫ < ǫδ, |s| < ǫ, the module of γi,τ (s), i < k and δ(s) are all strictly larger than the modulus
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of γk,τ (s). Consequently, γk,τ (s) is the unique dominant singularity of Hk,τ (z, e
s).

Claim. There exists some continuous C(s) such that, uniformly in s, for s in a neighborhood of 0

[zn]Hk,τ (z, e
s) ∼ C(s)n−((k−1)2+ k−1

2
)

(
1

γk,τ (s)

)n

.

To prove the Claim, let r be some positive real number such that rk,τ < r < δ(0). For sufficiently

small ǫ > 0 and |s| < ǫ,

|γk,τ (s)| ≤ r and |δ(s)| > r.

Then ψτ (z, s) and ωτ (z, s) are all analytic in D = {(z, s)||z| ≤ r, |s| < ǫ} and ψτ (0, s) = 0. Since

γk,τ (s) is the unique dominant singularity of

Hk,τ (z, e
s) = ωτ (z, s)Fk(ψτ (z, s)),

satisfying

(4.13) ψτ (γk,τ (s), s) = ρ2k and |γk,τ (s)| ≤ r,

for |s| < ǫ. For sufficiently small ǫ > 0, ∂
∂zFk,τ (z, s) is continuous and ∂

∂zFk,τ (rk,τ , 0) 6= 0. Thus

there exists some ǫ > 0, such that for |s| < ǫ, ∂
∂zFk,τ (γk,τ (s), s) 6= 0. According to Theorem 2, we

therefore derive

(4.14) [zn]Hk,τ (z, e
s) ∼ C(s)n−((k−1)2+ k−1

2
)

(
1

γk,τ (s)

)n

,

uniformly in s in a neighborhood of 0 and continuous C(s). �

After establishing the analogues of Proposition 1 for Ik,τ (z, u) and Bk,τ (z, u), see the Supplemental

Materials, Theorem 1 implies the following central limit theorem for the distributions of hairpin-

loops, interior-loops and bulges in k-noncrossing structures.

Theorem 4. Let k, τ ∈ N, 2 ≤ k ≤ 7, 1 ≤ τ ≤ 10 and suppose the random variable X denotes

either Hn,k,τ , In,k,τ or Bn,k,τ . Then there exists a pair

(µk,τ,X, σ
2
k,τ,X)

such that the normalized random variable X∗ has asymptotically normal distribution with parameter

(0, 1), where µk,τ,X and σ2
k,τ,X are given by

(4.15) µk,τ,X = −
γ′k,τ,X(0)

γk,τ,X(0)
, σ2

k,τ,X =

(
γ′k,τ,X(0)

γk,τ,X(0)

)2

−
γ′′k,τ,X(0)

γk,τ,X(0)
,

where γk,τ,X(s) represents the unique dominant singularity of Hk,τ (z, e
s), Ik,τ (z, e

s), and Bk,τ (z, e
s),

respectively.



LOOPS IN CANONICAL RNA PSEUDOKNOT STRUCTURES 15

k = 2 k = 3 k = 4

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 1 0.105573 0.032260 0.012013 0.011202 0.003715 0.003641

τ = 2 0.061281 0.018116 0.009845 0.008879 0.003734 0.003602

τ = 3 0.043900 0.012752 0.007966 0.007060 0.003200 0.003060

τ = 4 0.034477 0.009896 0.006680 0.005854 0.002757 0.002622

k = 5 k = 6 k = 7

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 1 0.001626 0.001612 0.000855 0.000852 0.000505 0.000504

τ = 2 0.001897 0.001864 0.001123 0.001111 0.000731 0.000726

τ = 3 0.001693 0.001655 0.001035 0.001021 0.000692 0.000686

τ = 4 0.001486 0.001448 0.000922 0.000907 0.000624 0.000618

Table 2. Hairpin-loops: The central limit theorem for the numbers of hairpin-loops in

k-noncrossing, τ -canonical structures. We list µk,τ and σ2

k,τ derived from eq. (4.15).

k = 2 k = 3 k = 4

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 1 0.015403 0.013916 0.001185 0.001176 0.000264 0.000264

τ = 2 0.012959 0.011395 0.001823 0.001793 0.000603 0.000599

τ = 3 0.011075 0.009570 0.001878 0.001837 0.000693 0.000688

τ = 4 0.009682 0.008261 0.001803 0.001755 0.000700 0.000693

k = 5 k = 6 k = 7

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 1 0.000090 0.000090 0.000039 0.000039 0.000019 0.000019

τ = 2 0.000275 0.000274 0.000149 0.000149 0.000090 0.000090

τ = 3 0.000343 0.000341 0.000198 0.000198 0.000126 0.000126

τ = 4 0.000359 0.000357 0.000214 0.000213 0.000140 0.000140

Table 3. Interior-loops: The central limit theorem for the numbers of interior-loops in

k-noncrossing,τ -canonical structures. We list µk,τ and σ2

k,τ derived from eq. (4.15).

In Tables 2, 3 and 4 we present the values of the pairs (µk,τ,X, σ
2
k,τ,X).



16 MARKUS E. NEBEL†, CHRISTIAN M. REIDYS∗ AND RITA R. WANG ∗

k = 2 k = 3 k = 4

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 1 0.049845 0.042310 0.008982 0.008684 0.003094 0.003058

τ = 2 0.025088 0.021785 0.005789 0.005597 0.002457 0.002422

τ = 3 0.015859 0.013979 0.003936 0.003814 0.001762 0.001737

τ = 4 0.011197 0.009980 0.002878 0.002795 0.001318 0.001301

k = 5 k = 6 k = 7

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 1 0.001422 0.001414 0.000770 0.000767 0.000463 0.000462

τ = 2 0.001326 0.001316 0.000817 0.000813 0.000547 0.000546

τ = 3 0.000991 0.000984 0.000632 0.000629 0.000436 0.000435

τ = 4 0.000755 0.000750 0.000489 0.000486 0.000342 0.000341

Table 4. Bulges: The central limit theorems for the numbers of bulges in k-noncrossing,

τ -canonical structures. We list µk,τ and σ2

k,τ derived from eq. (4.15).

5. Proof of Theorem 2

Proof of Theorem 2. We consider the composite function Fk(ψ(z, s)). In view of [zn]f(z, s) =

γn[zn]f( zγ , s) it suffices to analyze the function Fk(ψ(γ(s)z, s)) and to subsequently rescale in order

to obtain the correct exponential factor. For this purpose we set

ψ̃(z, s) = ψ(γ(s)z, s),

where ψ(z, s) is analytic in a domain D = {(z, s)||z| ≤ r, |s| < ǫ}. Consequently ψ̃(z, s) is analytic
in |z| < r̃ and |s| < ǫ̃, for some 1 < r̃, 0 < ǫ̃ < ǫ, since it’s a composition of two analytic functions

in D. Taking its Taylor expansion at z = 1,

(5.1) ψ̃(z, s) =
∑

n≥0

ψ̃n(s)(1 − z)n,

where ψ̃n(s) is analytic in |s| < ǫ̃. The singular expansion of Fk(z), 2 ≤ k ≤ 7, for z → ρ2k, follows

from the ODEs, see eq. (2.2), and is given by

(5.2) Fk(z) =




Pk(z − ρ2k) + c′k(z − ρ2k)

((k−1)2+(k−1)/2)−1 log(z − ρ2k) (1 + o(1))

Pk(z − ρ2k) + c′k(z − ρ2k)
((k−1)2+(k−1)/2)−1 (1 + o(1))
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depending on whether k is odd or even and where Pk(z) are polynomials of degree ≤ (k − 1)2 +

(k−1)/2−1, c′k is some constant, and ρk = 1/2(k−1). By assumption, γ(s) is the unique analytic

solution of ψ(γ(s), s) = ρ2k and by construction Fk(ψ(γ(s)z, s)) = Fk(ψ̃(z, s)). In view of eq. (5.1),

we have for z → 1 the expansion

(5.3) ψ̃(z, s)− ρ2k =
∑

n≥1

ψ̃n(s)(1 − z)n = ψ̃1(s)(1 − z)(1 + o(1)),

that is uniform in s since ψ̃n(s) is analytic for |s| < ǫ̃ and ψ̃0(s) = ψ(γ(s), s) = ρ2k. As for the

singular expansion of Fk(ψ̃(z, s)) we derive, substituting the eq. (5.3) into the singular expansion

of Fk(z), for z → 1,

(5.4)





P̃k(z, s) + ck(s)(1− z)((k−1)2+(k−1)/2)−1 log(1− z) (1 + o(1)) for k odd

P̃k(z, s) + ck(s)(1− z)((k−1)2+(k−1)/2)−1 (1 + o(1)) for k even

where P̃k(z, s) = Pk(ψ̃(z, s)− ρ2k) and ck(s) = c′kψ̃1(s)
((k−1)2+(k−1)/2)−1 and

ψ̃1(s) = ∂zψ̃(z, s)|z=1 = γ(s)∂zψ(γ(s), s) 6= 0 for |s| < ǫ.

Furthermore P̃k(z, s) is analytic at |z| ≤ 1, whence [zn]P̃k(z, s) is exponentially small compared to

1. Therefore we arrive at

(5.5) [zn]Fk(ψ̃(z, s)) ∼





[zn]ck(s)(1 − z)((k−1)2+(k−1)/2)−1 log(1 − z) (1 + o(1))

[zn]ck(s)(1 − z)((k−1)2+(k−1)/2)−1 (1 + o(1))

depending on k being odd or even and uniformly in |s| < ǫ̃. We observe that ck(s) is analytic in

|s| < ǫ̃. Note that a dependency in the parameter s is only given in the coefficients ck(s), that are

analytic in s. Standard transfer theorems [3] imply that

(5.6) [zn]Fk(ψ̃(z, s)) ∼ A(s)n−((k−1)2+(k−1)/2) for some A(s) ∈ C,

uniformly in s contained in a small neighborhood of 0. Finally, as mention in the beginning of the

proof, we use the scaling property of Taylor expansions in order to derive

(5.7) [zn]Fk(ψ(z, s)) = (γ(s))
−n

[zn]Fk(ψ̃(z, s))

and the proof of the Theorem is complete.
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