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Alignment-Free Sequence Comparison (II): Theoretical

Power of Comparison Statistics
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ABSTRACT

Rapid methods for alignment-free sequence comparison make large-scale comparisons be-
tween sequences increasingly feasible. Here we study the power of the statistic D2, which
counts the number of matching k-tuples between two sequences, as well as D2

*, which uses
centralized counts, and D2

S, which is a self-standardized version, both from a theoretical
viewpoint and numerically, providing an easy to use program. The power is assessed under
two alternative hidden Markov models; the first one assumes that the two sequences share a
common motif, whereas the second model is a pattern transfer model; the null model is that
the two sequences are composed of independent and identically distributed letters and they
are independent. Under the first alternative model, the means of the tuple counts in the
individual sequences change, whereas under the second alternative model, the marginal
means are the same as under the null model. Using the limit distributions of the count
statistics under the null and the alternative models, we find that generally, asymptotically D2

S

has the largest power, followed by D2
*, whereas the power of D2 can even be zero in some

cases. In contrast, even for sequences of length 140,000 bp, in simulations D2
* generally has

the largest power. Under the first alternative model of a shared motif, the power of D2
*

approaches 100% when sufficiently many motifs are shared, and we recommend the use of
D2

* for such practical applications. Under the second alternative model of pattern transfer,
the power for all three count statistics does not increase with sequence length when the
sequence is sufficiently long, and hence none of the three statistics under consideration can
be recommended in such a situation. We illustrate the approach on 323 transcription factor
binding motifs with length at most 10 from JASPAR CORE (October 12, 2009 version),
verifying that D2

* is generally more powerful than D2. The program to calculate the power of
D2, D2

* and D2
S can be downloaded from http://meta.cmb.usc.edu/d2. Supplementary Ma-

terial is available at www.liebertonline.com/cmb.
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1. INTRODUCTION

Alignment-free sequence comparisons have received extensive attention recently (Burden et al.,

2006; Forêt et al., 2006, 2009a,b; Ivan et al., 2008; Kantorovitz et al. 2007a,b). One widely used statistic

for alignment free sequence comparison is the D2 statistic that counts the number of matching k-tuples (also

referred as k-words or k-grams) between the two sequences. Throughout this paper, we use tuples and words

interchangeably. It was pointed out in Lippert et al. (2002) that D2 is not appropriate for the comparison of

two sequences because it is dominated by the deviation of the word counts from the corresponding expec-

tations in each sequence. In Reinert et al. (2009), two new variants of the D2 word count statistics, referred to

as D�2 and DS
2, were proposed. The statistic D�2 is based on centered counts, divided by the square root of their

means, whereas DS
2 is a self-standardized statistic. More specifically, let Xw and Yw be the numbers of

occurrences of word w in the first and the second sequences, respectively. The D2 statistic is defined as

D2 �
X

w2Ak

XwYw:

To define D�2 and DS
2 as in [9], we first introduce the centralized count variables by

~XXw¼Xw� npw and ~YYw¼ Yw� npw,

where pw is the probability of word w under the null model. Then we put

DS
2¼

X
w2Ak

~XXw
~YYwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~XX
2

wþ ~YY
2

w

q , and D�2¼
X

w2Ak

eXXw
eYY w

npw
:

Here we set 0
0
¼ 0.

The power of those statistics under two alternative models were explored via simulation approaches. The

first alternative model is that the two sequences contain random instances of a common motif, whereas the

second alternative model is a pattern transfer model, where randomly chosen DNA segments in the first

sequence are used to replace corresponding segments in the second sequence.

It has been shown that, under the first alternative model, the power of both D�2 and DS
2 is an increasing

function of the sequence length for any tuple size k� 2, while the power of D2 does not necessarily increase

with sequence length and sometimes can even be smaller than the pre-specified type I error. In almost all

the simulations considered, the power of D�2 is higher than that of DS
2. Under the second alternative model,

the power of both D�2 and DS
2 quickly reaches their plateau and does not seem to change with sequence

length. The power of D2 can decrease with sequence length in some examples.

Simulation studies can only explore very limited ranges of parameter values to compare the power of

detecting the relationship between two sequences or genomes. To compare the performance of the different

statistics under a broad range of evolutionary scenarios, theoretical studies of the power of these statistics

are needed. In addition, it should be very useful to have an easy to use program for calculating the power of

sequence comparisons using the various statistics without resorting to time consuming simulations. In this

article, we achieve the following objectives: (1) to study the limiting distributions of D2, D�2, and DS
2 under

the two alternative models; (2) to compare the theoretical approximate mean, variance, and power of D2,

D�2, and DS
2 with the corresponding simulated values (we show that the approximations are reliable for D2

and D�2. However, for the approximations of DS
2 to be reasonable, very long sequences are usually needed);

(3) and to develop a program to calculate the power of detecting the relationship between two sequences

using D2, D�2, as well as DS
2. As our calculations are based on approximations, we note that the power in this

article is approximate. For easier exposition we omit the word ‘‘approximate’’; any power is understood to

be approximate.

The organization of the article is as follows. In Section 2, we give details of the alternative model I, and

show that the distributions of D2=n2, D�2=n and DS
2=n converge to normal distributions as the sequence

length tends to infinity. Formulas for the approximate mean and variance of D2=n2, D�2=n and DS
2=n are

presented, and they are put to use to calculate the power of D2, D�2 and DS
2. In Section 3, we give details of

alternative model II and develop a new hidden Markov model (HMM) for generating pairs of sequences

related through alternative model II. The approximate distributions of D2, D�2, and DS
2 under alternative

model II are then derived. These approximate distributions are not normal and are complicated. We show
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that the power of D2, D�2, and DS
2 converges rapidly and does not change much as sequence length n

increases, a phenomenon observed in the simulation studies of Reinert et al. (2009). Under the second

model, we do not have an efficient method for calculating the mean and variance of DS
2, but we are able to

present methods for calculating the approximate mean of D2 and D�2. In Section 4, we first describe a web-

based and a R program package for calculating the power of D2, D�2 and DS
2 to detect the relationships

between two sequences under alternative model I. We then evaluate the program by comparing the

theoretical mean, variance, and power derived in this study with the corresponding simulated quantities

presented in Reinert et al. (2009) and show that the approximate mean and variance are generally close to

their corresponding true values when the sequence length is very large. We find that convergence for DS
2 is

considerably slower than for D�2 and for D2. This also affects the power of the statistic—the power

approximation for DS
2 is poor in the parameter regimes we considered. Hence, we concentrate on D2 and D�2

for the remainder of the article. Moreover, D2 has zero power under some models, and hence cannot be

used to infer the relationship between sequences under such models. For D2 and D�2, the program developed

in this study can be readily used to study the power of comparing sequences using k-tuples. We then extend

our study to 323 transcription factor (TF) binding motifs and show the superiority of D�2 compared to D2 for

sequence comparison for general motif patterns although there are a few exceptions where D2 is more

powerful than D�2. For alternative model II, we study how the means of D2 and D�2 change with the word

length k in order to explain the observation that the power of D�2 using k¼ 10 is much higher than the power

using k¼ 5 in the simulation studies reported in Reinert et al. (2009). The article concludes with some

discussion and potential extensions to more general background sequence models.

The results regarding the approximate distributions of D2, D�2, and DS
2 and the power of detecting the

relationships between the sequences using these statistics can be easily extended to sequence pairs with

different background letter frequencies, sequence lengths, and motif densities. However, the notation and

presentation will be more complicated. For notational simplicity and clarity of presentation, we present the

results for two sequences having the same background probability distribution, sequence length, and motif

density. The results for the general situations are given in the Appendix. As the proofs are very similar to

the ones presented in the article, they are omitted.

2. ALTERNATIVE MODEL I

2.1. The model and the count statistics

The alternative model I renders the two sequences dependent through a common motif which is ran-

domly distributed across the two sequences. As in Reinert et al. (2009), we model the background sequence

as independent identically distributed (IID) random variables taking different letters from finite alphabet A
with probability pa(a 2 A). For notational convenience, we also denote p(0)

a ¼ pa. For nucleotide sequences,

A¼fA, C, G, Tg and for amino acid sequences, the A is the set of 20 amino acids. In general, we assume

that A contains L letters and write A¼f0, 1, 2, � � � , L� 1g. For the motif instances, we use the model in

Zhai et al. (2010), which is more general than the model used in Reinert et al. (2009), where fixed motifs

were used. In this article and in Zhai et al. (2010), a position weight matrix (PWM) is used to describe the

distribution of the nucleotides at the different positions of a motif (Stormo, 2000). For a given motif of

length M, and at the m-th position of the motif, the probability that the base takes value a from A is

p(m)
a , m¼ 1, 2, � � � , M. The motif instances are randomly distributed across the sequence with density 1� l

(0< l< 1). That is, at each position in the sequence which is not already covered by an instance of a motif,

with probability l, a base with the background distribution is generated, and with probability 1�l, an

instance of the motif of length M is generated based on the PWM for the motif. Once an instance of a motif

is generated, we move to the end of the instance of the motif to repeat this process.

For the model in more detail, see Zhai et al. (2010). The sequences with random motif instances were

modeled by an HMM (Rabiner, 1989). The underlying Markov chain (MC) of each sequence is denoted as

Q1Q2 � � �Qi � � �Qnþ k� 1 (i is the position index of the sequence with length nþ k� 1) which take values in

f0, 1, 2, � � � , Mg. The 0 indicates that the state of the sequence is the background sequence while m

(1�m�M) indicates the state at the m-th position of the motif. Under each state, the emission probability

of each letter from A is denoted as p(m)
a (a 2 A and m¼ 0, 1, 2, � � � , M). The transition matrix for the

underlying MC Q1Q2 � � �Qi � � �Qnþ k� 1 is given by T ¼ (tmm0 )(Mþ 1) · (Mþ 1), where t00¼ tM0¼ k,

t01¼ tM1¼ 1� k, tm, mþ 1¼ 1, m¼ 1, 2, � � � , M� 1, and all the other t’s are 0. The MC has as stationary
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distribution p¼ 1
kþM(1� k)

(k, 1� k, 1� k, � � � , 1� k) (Zhai et al., 2010). Therefore, in stationarity, the

expected fraction of the sequence that is covered by the motif instances is M(1� l)/(lþM(1� l)). Unless

l is close to 1, the expected fraction of the sequence covered by inserted motif instances can be un-

realistically large (Table S1; for Supplementary Material, see www.liebertonline.com/cmb). Hence we only

study values of l which are no smaller than 0.9.

Now we consider two sequences of length nþ k� 1 generated by the above HMM, A¼A1A2 � � �Anþ k� 1

and B¼B1B2 � � �Bnþ k� 1. We let the sequence length be nþ k� 1 for notational simplicity in the re-

mainder of the paper. Given a k-tuple w¼ (w1, w2, . . . , wk) 2 Ak, let Xw and Yw be the numbers of

occurrences of w within A and B, respectively; within each sequence, the occurrences could overlap.

Assume that the Markov process starts in the stationary distribution. Based on Proposition 2.2 in Zhai et al.

(2010), the means of Xw(n) and Yw(n) can be calculated as

EkXw¼ EkYw¼ nPk(w),

where Pk(w)¼
PM

m¼ 0 a(w)
k (m) is the probabiltiy of the word w under the alternative model I. The

a(w)
i (m)¼P(Aj¼wj, j¼ 1, 2, � � � , i; Qi¼m), i¼ 1, 2, � � � , k, are calculated recursively using the standard

forward procedure for calculating the probability of an observation sequence based on HMM (Zhai et al.,

2010; Rabiner, 1989) for i¼ 1, 2 � � �:

a(w)
iþ 1(0)¼ (a(w)

i (0)þ a(w)
i (M))kp(0)

wiþ 1
,

a(w)
iþ 1(1)¼ (a(w)

i (0)þ a(w)
i (M))(1� k)p(1)

wiþ 1
,

a(w)
iþ 1(m)¼ a(w)

i (m� 1)p(m)
wiþ 1

, (m¼ 2, 3, . . . , M),

and

a(w)
1 (0)¼

kp(0)
w1

kþM(1� k)
,

a(w)
1 (m)¼

(1� k)p(m)
w1

kþM(1� k)
, (1 � m � M):

In particular, P1(w)¼ pw¼ pw1
pw2
� � � pwk

.

2.2. The expectations of D2, D�2 and DS
2 under alternative model I

It is easy to see that Ek( eXXw)¼ n(Pk(w)� pw), where Pl(w) is the probability of word w under the

alternative model I. However, for the mean of
~XXw

~YYwffiffiffiffiffiffiffiffiffiffiffiffi
~XX

2

w þ ~YY
2

w

p , it is in general only known that it is non-negative,

and when ~XXw and ~YYw are IID, the mean is zero if and only if the distribution of ~XXw is symmetric (Novak,

2007). Note that the two sequences A and B are independent under the alternative model I. Then, we have

the following theorem.

Theorem 2.1. Assume alternative model I for the two sequences A and B, and let Pk(w)¼
P(A1A2 � � �Ak ¼w1w2 � � �wk) be as calculated in Subsection 2.1. Then for the expectations of D2, D�2 and

DS
2, we have

E(D2)¼ n2
X

w2Ak

(Pk(w))2,

E(D�2)¼ n
X

w2Ak

(Pk(w)� pw)2

pw
,

and lim
n!1

E(DS
2)

n
¼ 1ffiffiffi

2
p

X
w2Ak

jPk(w)� pwj:
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Further,

lim
n!1

n

 
E(DS

2)

n
� 1ffiffiffi

2
p

X
w2Ak

jPk(w)� pwj
!
¼ � 3

ffiffiffi
2
p

8

X
w2Ak

r2
k(w)

jPk(w)� pwj
,

where r2
k(w)¼ limn!1

Var(Xw)
n

; see also (1) below.

The first two equations can be easily proven by the independence of the two sequences. The last two limit

expressions can be proven by Taylor expansion (the delta method); see the proof of Theorem 2.4 for details.

2.3. The approximate distributions of D2, D�2, and DS
2 under alternative model I

The variances of D2 and its variants are complicated. Under the null model of IID sequences, upper and

lower bounds for the variance of D2 were first explored in Lippert et al. (2002). In Kantorovitz et al.

(2007b), an explicit formula for the variance of D2 is given in the IID case. To study the power of D2, D�2,

and DS
2 in detecting the relationship between two sequences, we explore the approximate distributions of

these statistics as the sequence length goes to infinity. Note that the distributions of D2 and D�2 under the

null model when (p(0)
A , p(0)

C , p(0)
G , p(0)

T )¼ (1=4, 1=4, 1=4, 1=4) have been carefully studied in Reinert et al.

(2009). Therefore, in the rest of the article, we assume that (p(0)
A , p(0)

C , p(0)
G , p(0)

T ) 6¼ (1=4, 1=4, 1=4, 1=4).

For 0< l< 1, the values of

r2
k(w)¼ lim

n!1

Var(Xw)

n
and rk(w, w0)¼ lim

n!1

Cov(Xw, Xw0)

n
(1)

can be calculated using the method in Zhai et al. (2010), Proposition 2.3; for l¼ 1, the corresponding

values can be found, for example, in Reinert et al. (2009), Corollary 6.1. We denote the asymptotic variance

of
P

w2Ak Pk(w)Xw=
ffiffiffi
n
p

in one sequence by

(Rk)2¼
X

w2Ak

P2
k(w)r2

k(w)þ
X
w6¼w0

Pk(w)Pk(w0)rk(w, w0): (2)

The following theorem gives the approximate distributions of D2 under the null and the alternative model I.

Theorem 2.2. Assume that in the background model not all letters are equally likely.

a. [Lippert et al. (2002), Theorem 4.2.] Suppose l¼ 1 (the null model that the sequences are IID). Then

lim
n!1

ffiffiffi
n
p
 

D2

n2
�
X

w2Ak

p2
w

!
¼ Z1,

where Z1 has normal distribution N (0, 2(R1)2). Here the asymptotic is valid when the sequence length

tends to infinity with alphabet size, motif length, and word length kept fixed.

b. Suppose 0< l< 1 (the alternative model I). Then

lim
n!1

ffiffiffi
n
p �D2

n2
�
X

w2Ak

(Pk(w))2
�
¼ Zk,

where Zl has normal distribution N (0, 2(Rk)2). Here the asymptotic is valid when the sequence length

tends to infinity with alphabet size, motif length, and word length kept fixed.

On the other hand, under the null model that no motif instances are inserted, D�2 is approximately the sum

of products of dependent mean 0 normal random variables (and thus not normal). However, it is ap-

proximately normally distributed when the sequence length is large under the alternative model I, as long as
(Pk(w)� pw)

pw
is not constant in w, as the following theorem shows. We put

(R�k)2¼
X

w2Ak

(Pk(w)� pw)2

p2
w

r2
k(w)þ

X
w 6¼w0

(Pk(w)� pw)(Pk(w0)� pw0 )

pwpw0
rk(w, w0), (3)

with r2
k(w) and sl(w, w0) given in (1).
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Theorem 2.3. a. Suppose l¼ 1 (the null model that the sequences are IID). Then, in distribution,

lim
n!1

D�2¼ Z�1 ¼
X

w2Ak

Z(1)
w Z(2)

w

pw
,

where fZ(1)
w , w 2 Akg and fZ(2)

w , w 2 Akg are independent and have the same mean 0 normal distribution

(with non-trivial covariance matrix).

b. Suppose 0< l< 1 (the alternative model I), and that (Pk(w)� pw)
pw

is not constant in w. Then, in distri-

bution,

lim
n!1

ffiffiffi
n
p
 

D�2
n
�
X

w2Ak

(Pk(w)� pw)2

pw

!
¼ Z�k ,

where Z�k has normal distribution N (0, 2(R�k)2).

We let

(RS
k)2¼ 1

8

X
w2Ak

r2
k(w)þ

X
w 6¼w0

sign(Pk(w)� pw)sign(Pk(w0)� pw0 )rk(w, w0)

8<:
9=;, (4)

where sign(x)¼ 1 if x> 0, sign(x)¼�1 if x< 0, and sign(0)¼ 0; again r2
k(w) and sl(w, w0) are given in

(1). The following theorem gives the approximate distribution of DS
2 under the null and the alternative

models.

Theorem 2.4. a. Suppose l¼ 1 (the null model that the sequences are IID). Then, in distribution,

lim
n!1

DS
2ffiffiffi
n
p ¼ ZS

1 ¼
X

w2Ak

Z(1)
w Z(2)

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Z(1)

w )2þ (Z(2)
w )2

p (5)

where fZ(1)
w , w 2 Akg and fZ(2)

w , w 2 Akg are independent and have the same mean 0 normal distribution.

b. Suppose 0< l< 1 (the alternative model I), and assume that Pl(w)� p(w) have different sign in w.

Then, in distribution,

lim
n!1

ffiffiffi
n
p �

DS
2

n
�
X

w2Ak

jPk(w)� pwjffiffiffi
2
p

�
¼ ZS

k ,

where ZS
k has normal distribution N (0, 2(RS

k)2).

c. Suppose 0< l< 1 (the alternative model I), and assume that Pl(w)� pw have different sign in w.

Then, in distribution,

lim
n!1

ffiffiffi
n
p
 

DS
2

n
�
X

w2Ak

jPk(w)� pwjffiffiffi
2
p þ 3

ffiffiffi
2
p

8n

X
w2Ak

r2
k(w)

jPk(w)� pwj

!
¼ ZS

k ,

where ZS
k has normal distribution N (0, 2(RS

k)2).

Remark 2.1. Since each term on the right hand side of (5) has a normal distribution under the null

model by Reinert et al. (2009), and the terms are jointly normal, the limit of
DS

2ffiffi
n
p is mean zero normally

distributed. The variance can be estimated from the empirical distribution, as illustrated in Reinert et al.

(2009).

Replacing
P

w2Ak
jPk(w)� pwjffiffi

2
p by

P
w2Ak

jPk(w)� pwjffiffi
2
p � 3

ffiffi
2
p

8n

P
w2Ak

r2
k(w)

jPk(w)� pwj can be significant when we

study the power of detecting the relationships between two sequences using DS
2, as we shall see in

Section 4.2.

The proofs of these theorems are presented in the Appendix.
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2.4. The power of detecting the relationship between two sequences under alternative
model I using D2, D�2, and DS

2

Knowing the asymptotic distributions of D2, D�2, and DS
2 under the null and the alternative models, we are

able to approximate the power of detecting the relationships between two sequences using any of the three

statistics. For notational simplicity, let

A(k)¼
X

w2Ak

P2
k(w), A�(k)¼

X
w2Ak

(Pk(w)� pw)2

pw
,

AS(k)¼ 1ffiffiffi
2
p

X
w2Ak

jPk(w)� pwj

denote the (asymptotic) means of D2, D�2, and DS
2 under alternative model I. Let F(�) be the cumulative

distribution for the standard normal distribution. From Theorems 2.2, 2.3, and 2.4, we can show the

following theorem to hold.

Theorem 2.5. Assume that (Pk(w)� pw)2

pw
and Pl(w)� pw are not constant in w. Then, for any given type I

error a, the power of detecting the relationship between two sequences against the null model that l¼ 1

using D2, D�2 and DS
2 can be approximated by 1�F(C(l)), 1�F(C*(l)), and 1�F(CS(l)), respectively,

where

C(k)¼ �
ffiffiffi
n
p

B(k)þ za=(
ffiffiffi
2
p

Rk),

C�(k)¼ �
ffiffiffi
n
p

B�(k)þ z�a=(
ffiffiffiffiffi
2n
p

R�k),

and CS(k)¼ �
ffiffiffi
n
p

BS(k)þ zS
a=(

ffiffiffi
2
p

RS
k)

and

B(k)¼ A(k)�A(1)ffiffiffi
2
p

Rk
, B�(k)¼ A�(k)ffiffiffi

2
p

R�k
, and BS(k)¼ AS(k)ffiffiffi

2
p

RS
k

:

Here, za, z�a, and zS
a are the upper a quantile of Z1, Z�1 , ZS

1 from Theorems 2.2, 2.3, and 2.4, respectively.

Note that we can again replace AS(l) by AS
m(k)¼AS(k)� 3

ffiffi
2
p

8n

P
w2Ak

r2
k(w)

jPk(w)� pwj when we calculate the

power of DS
2 for relative small values of sequence length n. Here the subscript m stands for modified.

Theorem 2.5 indicates that when sequence length n is large, the dominant terms in C(l), C*(l), and CS(l)

are the first term and the second term becomes negligible when n is large. Therefore, the higher the values

of the B’s, the more powerful the corresponding statistic is when n is sufficiently large. In Section 4, we

present some examples for values of the B’s and the C’s.

The tests under alternative model I make extensive use of the fact that the means of our statistics are

different under the alternative model versus the null model. Under alternative model II, this will turn out

not to be the case.

3. ALTERNATIVE MODEL II

In this section, we consider the second alternative model which is inspired by horizontal gene transfer.

We randomly choose a certain number of segments in the first sequence and then replace the corresponding

segments (position-wise) in the second sequence by the letters in the first sequence.

3.1. A second HMM model for the sequence pair A and B

Alternative model II is again a HMM model for the sequence pair A¼A1A2 � � �Anþ k� 1 and

B¼B1B2 � � �Bnþ k� 1. First, two IID sequences A and B0 are generated. From these two sequences we

construct B as follows. We assume that at each position which is not already covered by a chosen segment,

with probability l, the original bases of the two sequences at the position are kept. With probability 1� l,
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a segment of length M from the first sequence is chosen, and the same segment in the second sequence is

replaced by it. Then we move to the end of the segment to start this process again. Consider an underlying

Markov chain Q1Q2 � � �Qi � � � defined as follows. Each Qi takes values in f0, 1, 2, � � � , Mg, where Qi¼ 0

indicates that, at position i, Ai and Bi are the originally generated bases, whereas Qi ¼ m (1, 2, � � � , M)

indicates that position i is at the m-th position of a segment which was copied from the first sequence to the

second sequence. The transition matrix of Q1Q2 � � �Qi � � � is given by T ¼ (tmm0)(Mþ 1) · (Mþ 1), where

t00¼ tM0¼ k, t01¼ tM1¼ 1� k, tm, mþ 1¼ 1, m¼ 1, 2, � � � , M� 1, and all the other t’s are 0. It is easy to see

that the stationary distribution of this Markov chain is p¼ 1
kþM(1� k)

(k, 1� k, 1� k, � � � , 1� k) (see Pro-

position 2.1 in Zhai et al. [2010]).

Let Ci¼ (Ai, Bi)
t. With pa denoting the probability of letter a in the IID model, the emission probabilities

are given by

P((Ai, Bi)¼ (a, b)jQi¼ 0)¼ papb, P((Ai, Bi)¼ (a, b)jQi¼m)¼ paI(a¼ b):

Then C1C2 � � �Ci � � � form a HMM.

3.2. The asymptotic distributions and power of D2, D�2, and DS
2 for detecting relationships

between sequences under alternative model II

Under alternative model II, the marginal distributions of the individual sequences are IID sequences and

hence the means of Xw and Yw are unchanged compared to the IID model. However, the two sequences

depend on each other because they share some common segments. The following theorem shows an

efficient way to calculate the covariance of the number of occurrences of word w in sequence A and the

number of occurrences of word w0 in sequence B. These covariances are used to derive the limiting

distributions of D2, D�2, and DS
2 when the sequence length tends to infinity.

Theorem 3.1. Let Xw and Yw be the number of occurrences of word w in sequence A and B, re-

spectively. Assume that the MC starts in the stationary distribution. For any pair of words (w, w0), we have

under alternative model II,

a. The expectation of XwYw0 is

E(XwYw0)¼ nc0(w, w0)þ
Xk� 1

j¼1

(n� j)(cj(w, w0)þ cj(w
0, w))

þ [n2� (2k� 1)nþ k(k� 1)]pwpw0 :

b. The covariance of Xw and Yw0 changes linearly with sequence length n, and

dk(w, w0)¼ lim
n!1

Cov(Xw, Yw0 )

n

¼ c0(w, w0)þ
Xk� 1

j¼1

(cj(w, w0)þ cj(w
0, w))� (2k� 1)pwpw0 :

(6)

c. The difference ED2� n2
P

w2Ak p2
w changes linearly with respect to sequence length n, and

lim
n!1

ED2� n2
P

w2Ak p2
w

n
¼
X

w2Ak

c0(w, w)þ 2
Xk� 1

j¼ 1

cj(w, w)� (2k� 1)p2
w

" #
: (7)

d. The expectation of D�2 converges as the sequence length n tends to infinity, and

lim
n!1

ED�2¼
X

w2Ak

c0(w, w)þ 2
Pk� 1

j¼ 1 cj(w, w)

pw

" #
� (2k� 1): (8)

In all the above equations, c0(w, w0)¼P(Al¼wl, Bl¼w0l, l¼ 1, 2, � � � , k) can be calculated as

c0(w, w0)¼
PM

m¼ 0 h(w, w0)
k (m), and h(w, w0)

i (m)¼P(Al¼wl, Bl¼w0l, l¼ 1, 2, � � � , i; Qi¼m) can be calcu-

lated recursively using the following equations for i¼ 1, 2, � � �
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h(w, w0)
iþ 1 (0)¼ (h(w, w0)

i (0)þ h(w, w0)
i (M))kpwiþ 1

pw0
iþ 1

,

h(w, w0)
iþ 1 (1)¼ (h(w, w0)

i (0)þ h(w, w0)
i (M))(1� k)pwiþ 1

I(wiþ 1¼w0iþ 1),

h(w, w0)
iþ 1 (m)¼ h(w, w0)

i (m� 1)pwiþ 1
I(wiþ 1¼w0iþ 1), (m¼ 2, 3, . . . , M)

with initial values

h(w, w0)
1 (0)¼

kpw1
pw0

1

kþM(1� k)
,

h(w, w0)
1 (m)¼

(1� k)pw1
I(wiþ 1¼w0iþ 1)

kþM(1� k)
, (1 � m � M):

Moreover cj(w, w0)¼P(Al¼wl, Blþ j¼wl, l¼ 1, . . . , k) can be calculated as

cj(w, w0)¼ c0(wjþ 1wjþ 2 � � �wk, w01w02 � � �w0k� j)
Yj

s¼1

pws

Yk

s¼k� jþ 1

pw0s , j¼ 1, 2, � � � k� 1:

Similarly to the proofs of Theorems 2.2, 2.3, 2.4, we can prove the following theorem regarding the

limiting distributions of D2, D�2, and DS
2. Let r1(w, w0)¼ limn!1

Cov(Xw, Xw0 )
n

¼ limn!1
Cov(Yw, Yw0 )

n
and

r2
1(w)¼ r1(w, w), which can be calculated as in Zhai et al. (2010), and recall dl(w, w0) from (6).

Theorem 3.2. Suppose 0< l� 1 and the alternative model II.

a. Then, in distribution,

lim
n!1

ffiffiffi
n
p
 

D2

n2
�
X

w2Ak

p2
w

!
¼ eZZ k,

where eZZ k has normal distribution N (0, 2(Kk)2), and

(Kk)2¼
X

w2Ak

p2
wr2

1(w)þ
X
w 6¼w0

pwpw0r1(w, w0)þ
X
w, w0

pwpw0dk(w, w0):

b. In distribution,

lim
n!1

D�2¼ eZZ �k¼ X
w2Ak

eZZ (1)

w
eZZ (2)

w

pw
,

where f eZZ (1)

w , w 2 Akg and f eZZ (2)

w , w 2 Akg have the same marginal normal distribution N(0, (s1(w,

w0))w,w0) and the covariance between eZZ (1)

w and eZZ (2)

w0 is dl(w, w0).
c. In distribution,

lim
n!1

DS
2ffiffiffi
n
p ¼ eZZ S

k¼
X

w2Ak

eZZ (1)

w
eZZ (2)

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( eZZ (1)

w )2þ ( eZZ (2)

w )2

q
where f eZZ (1)

w , w 2 Akg and f eZZ (2)

w , w 2 Akg are the same as in part (b).

Based on the above theorem, we can obtain the approximate power of D2, D�2, and DS
2 for detecting the

relationships between two sequences under the alternative model II.

Theorem 3.3. Suppose 0< l< 1 and the alternative model II. For a given type I error a, let ezza, ezz�a, andezzS
a be the upper a quantile for eZZ 1, eZZ �1, and eZZ S

1, respectively. Then the corresponding power of eZZ k, eZZ �k, andeZZ S

k under the alternative model II when l< 1 is asymptotically Pf eZZ k � ezzag, Pf eZZ �k � ezz�ag, and Pf eZZ S

k � ezzS
ag,

respectively.

Since eZZ 1 is normally distributed with mean 0, the threshold value ezza 4 0 if a< 0.5. From this theorem, it

is clear that the power of the three statistics for detecting the relationships between the two sequences does
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not increase with sequence length n when n is sufficiently large, which is consistent with the simulation

results in Reinert et al. (2009). The theoretical results presented here explain that none of the three statistic

is what would be most desirable for detecting the relationships between sequences under the alternative

model II. One unsolved problem is what statistics we should use under alternative model II.

4. RESULTS

In this section, we describe an online implementation and a stand-alone R program for calculating the

power of detecting the relationships between two sequences under the alternative model I using any of the

statistics studied in this article. Then we compare the mean, variance, and power of the statistics D2, D�2 and

DS
2 derived using our formula with the simulated quantities for the situations in Reinert et al. (2009). As an

illustration of the difficulties involved, we present the results for the relatively simple two letter sequences

under alternative model I in the supplementary material. In particular, this simple case shows that in some

cases D2 will have zero power for detecting the relationship between two sequences when they share a

common motif. In some scenarios, however, we see that D2 can be more powerful than D�2 and DS
2. It also

shows that the convergence of the mean and variance of DS
2 to their theoretical limit is very slow, which

affects the approximate power calculation; in the parameter region which we considered, the theoretical

approximate power of DS
2 differs so considerably from the power under simulation that we do not rec-

ommend using DS
2 for moderate sequence lengths. Finally, the power of detecting the relationships between

two sequences when any of the 323 motifs with motif length at most 10 in JASPAR (Sandelin et al., 2004)

(October 12, 2009 version) are present in the two sequences are given. For alternative model II, we give an

explanation why the power of D�2 using k¼ 10 is much higher than using k¼ 2, 3, 4, 5 for the parameters in

simulation studies (Reinert et al., 2009).

4.1. A program for calculating the power of detecting the relationships between two sequences
under alternative model I

To facilitate the use of D�2 or DS
2 for sequence or genome comparison and for evaluation of statistical

power for detecting the relationship between the sequences, a web-based online program (http://

meta.cmb.usc.edu/d2) and a stand-alone R program were developed to calculate the power of sequence

comparison using these statistics. We describe the program for the above model. However, the program can

be easily extended to the general scenario of different background letter frequencies, sequence lengths, and

motif densities as in the supplementary materials. The inputs of the program are:

1. The background nucleotide or amino acid frequencies p(0)
l , l¼ 0, 1, � � � L� 1 of the two sequences A

and B under study;

2. the nucleotide or amino acid frequencies p(m)
l , l¼ 0, 1, � � � L� 1, m¼ 1, 2, � � � , M at each position of

the motif (PWM);

3. the lengths n of the sequences A and B;

4. the motif density, 1� l, for the sequences A and B;

5. the type I error, a.

For each set of parameters, the program first calculates the mean Pk(w)¼ Ek(Xw) for any word w and

the covariance sl(w, w0)¼Cov(Xw, Xw0) for two words w and w0, related to sequence A. The corre-

sponding quantities related to sequence B are also calculated. Secondly, the program calculates the

approximate variance, 2(Sl)
2, 2(R�k)2, and 2(RS

k)2 of D2, D�2, and DS
2 using formulas derived in Theorems

2.2, 2.3, and 2.4, respectively. Thirdly, for the given type I error a, the threshold values za, z�a, and zS
a for

the corresponding statistics D2, D�2 or DS
2 in Theorem 2.5 are calculated. Since the cumulative distribution

functions of Z�1 and ZS
1 are not readily available, a simulation based method is used to obtain the threshold

values. A large number of independent sequence pairs are simulated according to the specified letter

frequencies and the sequence lengths, and the empirical distributions of D�2 and DS
2 are estimated. The

threshold values are estimated by the upper a% quantile of the simulated values of each statistic. Finally,

the values of C(l), C*(l), and CS(l), and thus the power using the corresponding statistics in Theorem 2.5

is calculated.
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We use the program to study the power of detecting the relationship between related sequences under

alternative model I using the different statistics. In Subsection 4.2, we present the results for the parameter

sets used in Reinert et al. (2009) and compare the results derived using our program with the simulated

quantities in previous studies. In Subsection 4.3, we present the power of the various statistics for com-

paring the relationships between sequences when any of the motifs with motif length at most 10 in JASPAR

(Sandelin et al., 2004) are present in both sequences.

4.2. Comparison of theoretical mean, standard deviation, and power of D2, D�2,
and DS

2 with their corresponding simulated values from Reinert et al. (2009)

In this subsection, we present some numerical results on the mean, standard deviation, and power of

detecting the relationships between two sequences for the three statistics D2, D�2, and DS
2 under the alter-

native model I using the same set of parameters as in Reinert et al. (2009). The objective is to see how close

the corresponding quantities calculated using our formulas approximate the true values. We let the

background letter frequencies for the two sequences be pA¼ pT¼
1
6
, pC¼ pG¼ 1

3
. The inserted motif is

‘‘AGCCA’’ and the motif density 1� l¼ 0.01. The size of the k-tuple is k¼ 5. We used 10,000 simulations

to find the threshold values z0.05, z�0:05, and zS
0:05. The type I error a was set at 0.05 and 0.01.

For scaled D2, D�2, and DS
2 defined respectively by

ND2¼
ffiffiffi
n
p
 

D2

n2
�
X

w2Ak

p2
w

!
, ND�2¼D�2=

ffiffiffi
n
p

, NDS
2¼DS

2=
ffiffiffi
n
p

,

from Theorems 2.2, 2.3, and 2.4, it can be seen that the (approximate) means are
ffiffiffi
n
p

(A(k)�A(1)),
ffiffiffi
n
p

A�(k)

and
ffiffiffi
n
p

AS(k), respectively. Similarly, the approximate variance of ND2, ND�2 and NDS
2 are 2(Sl)

2, 2(R�k)2,

and 2(RS
k)2, respectively.

Table 1 shows the simulated mean and standard deviation of ND2, ND�2, and NDS
2, respectively, and their

corresponding limits. Surprisingly, the approximate mean and standard deviation of ND2 are within 15% of their limit

even when the sequence length is just 1Kbp. For D�2, the simulated mean is roughly the same as the theoretical limit and

the simulated standard deviation is within 21% of its theoretical limit when the sequence length is at least 1Kbp.

However, the simulated mean of DS
2 is much smaller than its limit. The corrected mean for DS

2 is very different from the

Table 1. Comparison of Simulated Mean and Variance of ND2, ND�2, and NDS
2

for Different Sequence Length n with the Corresponding Theoretical Limits (the last row),

with ( pA, pC, pG, pT)¼ (1/6, 1/3, 1/3, 1/6), l¼ 0.99, Motif¼ ‘‘AGCCA’’, and Word Length k¼ 5

D2 D�2 DS
2

n * 10�4 END2�104ffiffi
n
p s(ND2) * 103 END�

2
�10ffiffi

n
p r(ND�2)

ENDS
2ffiffi

n
p � 102 AS

m � 102 r(NDS
2) � 10

0.1 0.92 4.09 1.34 2.41 4.35 �1032 6.80

0.12 0.92 4.12 1.33 2.34 4.03 �859 7.01

0.14 0.94 4.08 1.34 2.34 3.73 �735 7.15

0.16 0.97 4.03 1.34 2.27 3.60 �642 6.99

0.18 0.98 4.01 1.35 2.23 3.51 �570 7.07

0.2 0.98 3.95 1.35 2.24 3.38 �512 7.05

0.3 0.99 3.90 1.33 2.14 3.35 �339 7.32

0.4 1.01 3.86 1.34 2.11 3.48 �252 7.39

0.5 1.02 3.85 1.34 2.09 3.57 �200 7.47

0.6 1.03 3.84 1.34 2.08 3.66 �165 7.61

1 1.03 3.82 1.34 2.05 3.98 �96 7.90

2 1.04 3.80 1.34 2.03 4.48 �44 8.38

20 1.04 3.71 1.34 2.00 6.46 2.8 9.32

1000 1.05 3.76 1.34 1.95 7.90 7.89 7.83

Theory 1.05 3.76 1.34 1.99 7.99 7.99 7.72

As before, s denotes standard deviation.
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simulated mean, too, probably because the difference between Pl(w)� pw for most 5-tuples are very small; both

approximations do not work well in this parameter regime. Therefore, while we expect that the power formulas we

derived should approximate the true power of D2 and D�2 well even for sequences of over 1Kbp long the power formula

for DS
2 can significantly over-estimate the true power.

Table 2 shows the theoretical approximate power of D2, D�2, and DS
2 calculated using our formulas and

the simulated power with the same setting as in Table 1. The results show that the approximations are very

close for D2 and D�2. However, the theoretical approximate power based on the first approximation sig-

nificantly over-estimates, while the approximate power based on the second approximation significantly

under-estimates the simulated power for DS
2, in the parameter regime we consider.

As the approximate power for DS
2 is not accurate in the parameter regimes we have considered, in the

following, we only show the results related to D2 and D�2 using the theoretical approximate power. Figure 1

shows the values of C(l) and C*(l) (upper panel) and the power of D2 and D�2 for detecting the relationships

between pairs of sequences (lower panel) as a function of sequence length and the word length k when

l¼ 0.99. It should be noted that the power is a decreasing function of the values of C’s and the smaller the

values of C, the higher the power of the corresponding statistic is. From the left panel related to D2, it can

be seen that, when k¼ 2 or 3, the value of C actually increases and that the power 1�F(C(l)) decreases

Table 2. Comparison of the Theoretical and the Simulated Power Under Alternative Model I

for Different Values of Sequence Length, with ( pA, pC, pG, pT )¼ (1/6, 1/3, 1/3, 1/6), l¼ 0.99,

Motif¼ ‘‘AGCCA’’, and Word Length k¼ 5

D2 D�2 DS
2

n * 10�4 Theory Simulated Theory Simulated Theory1 Theory2 Simulated

Type I error a¼ 5%

0.1 21 20 85 81 87 0 33

0.12 25 23 91 88 94 0 39

0.14 29 26 95 93 98 0 45

0.16 32 29 97 97 99 0 52

0.18 32 29 98 98 100 0 57

0.2 38 35 99 99 100 0 62

0.3 49 45 100 100 100 0 81

0.4 59 55 100 100 100 0 93

0.5 66 63 100 100 100 0 97

0.6 73 71 100 100 100 0 99

1 90 89 100 100 100 0 100

2 99 99 100 100 100 0 100

20 100 100 100 100 100 100 100

1000 100 100 100 100 100 100 100

Type I error a¼ 1%

0.1 4 5 71 66 72 0 16

0.12 7 8 82 77 83 0 18

0.14 8 9 88 84 91 0 21

0.16 11 11 93 92 96 0 29

0.18 11 11 96 96 98 0 33

0.2 14 14 97 97 99 0 36

0.3 22 20 100 100 100 0 60

0.4 31 28 100 100 100 0 81

0.5 38 36 100 100 100 0 90

0.6 45 43 100 100 100 0 96

1 71 70 100 100 100 0 100

2 96 96 100 100 100 0 100

20 100 100 100 100 100 100 100

1000 100 100 100 100 100 100 100

As before, s indicates standard deviation.
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with the sequence length. For given sequence length and word size k, the power of D�2 is generally higher

than the power of D2. All these conclusions are consistent with the simulation studies in Reinert et al.

(2009). Comparing the two figures in the lower panel of Figure 1 here with Figures 1 and 2 in Reinert et al.

(2009), respectively, we can see that the the theoretical power is slightly higher than the simulated power,

but the difference is generally small, less than 10% in all the situations considered.

Simulation studies can only explore the influence of a relatively small range of parameter sets on the

power of the different tests. With the theoretical results presented in this paper, we are able to explore a

much larger parameter space. Theorem 2.5 shows that the power of D2 and D�2 is mainly determined by

B(l) and B*(l), respectively. The higher the values of B’s, the more powerful the test is. Therefore, we also

plot the values of B(l) and B*(l) for k¼ 2, 3, 4, 5 and l¼ 0.93 or 0.99 (Fig. 2). Again it is shown that B*(l)

is generally larger than B(l) indicating that D�2 is generally more powerful than D2. We note that both B and

B* decrease when l increases. The smaller l is, the larger is the probability of inserting a motif, and the

eaiser it is to detect a difference from the null model.

FIG. 1. The values of C(l) and C*(l)

(upper panels) and the power of D2

and D�2 (lower panels) for detecting the

relationships between sequence pairs

related through alternative model I for

different values of word size k¼ 2, 3,

4, 5 and sequence length n. The pa-

rameters were set at pA¼ pT¼ 1/6,

pC¼ pG¼ 1/3, l¼ 0.99, and type I

error a¼ 0.05.

FIG. 2. The values of B(l) and B*(l) for l¼ 0.93,

0.99 and k¼ 2, 3, 4, 5. Dashed lines refer to B and solid

lines to B*; triangles refer to l¼ 0.93 and circles to

l¼ 0.99. B(0.99), dash line with circle points; B(0.99),

dash line with triangle points; B*(0.99), solid line with

circle points; B*(0.99), solid line with triangle points.
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4.3. The power of D2 and D�2 for comparing two sequences when motifs
in JASPAR are present

Since the approximate distribution of DS
2 in Theorem 2.4 requires very long sequences and the resulting

formula for calculating the power of DS
2 significantly over-estimates the true power, we will not consider DS

2

in the following. We next investigate whether the relative performance of D2 and D�2 for comparing the

relationships between two sequences holds for a large class of motifs. To achieve this objective, we

downloaded the transcription factor (TF) binding sites in the database JASPAR CORE (Sandelin et al.,

2004) as motifs and studied the power of detecting the relationship between two sequences if such motifs

are present in the sequences. The same letter frequencies for the background as in Reinert et al. (2009) are

used. The theoretical formulas obtained in this paper make such large scale comparisons possible. Due to

the long computational time required when the motif length is large, we only consider motifs with length at

most 10.

A total of 323 transcription factor binding profiles with length at most 10 from JASPAR CORE (Sandelin

et al., 2004) (October 12, 2009 version) are currently available. These motifs represent the most abundant

publicly available knowledge regarding nucleotide sequence motifs. The corresponding PWMs are used to

insert motifs as in alternative model I. Based on these assumptions, we can calculate the values of B(l),

B*(l), C(l), C*(l), and the corresponding power for different values of word length k and motif density

1� l. The resulting figures and the corresponding letter frequencies in each position for all the motifs are

presented in the supplementary material. From this large-scale study, we can conclude that D�2 is more

powerful than D2 in more than 90% of the motifs. An example motif profile ‘‘MA0003’’ for which D2 is

more powerful than D�2 is given in Figure 3. Note that in this motif, the overall frequencies of (A, C, G, T)

in the motif are (0.11, 0.40, 0.40 0.09).

We then calculate the mean overall letter frequencies of (A, C, G, T) in those motifs for which D2 is

more powerful than D�2 for at least three of the k¼ 2, 3, 4, 5 (l¼ 0.93) and the corresponding frequencies

are (0.08, 0.22, 0.57, 0.13). On the other hand, the mean overall letter frequencies of (A, C, G, T) in the

other motifs are (0.30, 0.22, 0.25, 0.23). Under the background sequence model with (A, C, G, T) fre-

quencies equal to (1/6, 1/3, 1/3, 1/6), in general, the GC content of the motifs for which D2 is more

powerful than D�2 is higher than that of the other motifs under the background model considered in this

article. If the background sequence model is changed, the PWM of motifs for which D2 outperforms D�2
should also change. As a general rule, D2 outperforms D�2 if the letter frequencies in a motif are close to the

background letter frequencies.

Since we found that, in most situations, the power of D2 can be even smaller than the type I error,

whereas the power of D�2 always approaches 1 for sequence length tending to infinity, we do not suggest

using D2 in general situations even if it can potentially perform well in some special cases.

FIG. 3. The sequence LOGO of motif ‘‘MA0003’’.

1480 WAN ET AL.



4.4. The power of D2, D�2, and DS
2 for detecting the relationships between two sequences

under alternative model II

Previous simulation studies have shown that, under alternative model II, the power of D2 is less than 0.4

and decreases with sequence length n when the word size k is 2 to 6. Actually, we can show that when n is

large, the power of D2 is always less than 0.5 for any parameter set. Note that Theorem 3.3 shows that the

power of D2 is approximately P( eZZ k � ezza). Since ezza is positive and eZZ k is approximately normally dis-

tributed, the power is less than 0.5 when the sequence length is large for any set of parameters.

However, similar arguments will not work for D�2 and DS
2 since the distributions of eZZ �k and eZZ S

k are not

normal when l< 1. This shows that D2 does not have enough power to detect the relationship between

sequences under alternative model II. So we will not study D2 further under alternative model II. Previous

simulation studies also showed that DS
2 is less powerful than D�2. So we now concentrate on further

understanding D�2 and DS
2.

Theorems 3.2 and 3.3 show that the power of detecting the relationships between two sequences related

through the alternative model II using any of D2, D�2, and DS
2 reaches its plateau quickly as the sequence

length increases, and the limit is generally much smaller than 1. Theorems 3.2 and 3.3 justify the simulation

results that the simulated power by any of the statistics tends to a limit which is typically less than 1 when

sequence length goes to infinity (Reinert et al., 2009), which was quite intriguing at the time of the

simulation studies. Let T be any one of statistics D2, D�2, and DS
2. It is theoretically shown here that the

primary reason for the power of T to be stable with respect to sequence length n is that there exist constants

an and bn such that Ul,n¼ an(T� bn) approximates non-degenerate random variables Ul under both the null

model (l¼ 1) and the alternative model l< 1. Although Ul is stochastically decreasing with respect to l,

the power of the test approaches a constant P(Ul� ua), where P(U1� ua)¼ a. In order for the power of T to

increase with respect to sequence length n and to finally reach 1, we need that (1) U1,n approximates a non-

degenerate random variable U1 under the null model (l¼ 1), and (2) Ul,n tends to infinity as n tends to

infinity.

Another interesting observation from previous simulation studies is that the power of D�2 seems to

increase with the length, k, of word pattern used (see Figure 8 in Reinert et al. (2009)). In order to explain

this phenomenon, we study the mean D�2 as a function of word length k. We are aware that in general the

power of a test depends on the distributions of the test statistics under the null and the alternative hy-

pothesis, not just the mean and/or the variance. However, as an explanation to the intriguing observation,

we try to see if E(D�2) increases with k when other parameters are fixed. Theorem 3.1 (d) shows that

lim
n!1

(ED�2)¼
X

w2Ak

c0(w)þ 2
Pk� 1

j¼1 cj(w, w)

pw

" #
� (2k� 1)¼ S(k, k):

Figure 4 shows the relationship between S(l, k) and k 2 (0:9, 1) for k¼ 2, 4, 6, 8, 10. It can be seen that S(l,

k) increases with k for any k 2 (0:9, 1:0), as does the discrepancy between S(l, k) and S(1, k) for l< 1. As

our statistic is based on comparing the means of the counts under the two models, this partially explains that

the power of D�2 increases with word length k.

5. DISCUSSION

Alignment-free sequence comparison has become increasingly important as new sequencing technolo-

gies can generate enormous amount of sequence data in a relative short time and at low cost. However, the

statistics used for alignment-free sequence comparison are usually ad-hoc, and it is not clear whether such

ad-hoc statistics can actually find the relationships between sequences. It is also important to know under

which evolutionary models the statistics are meaningful. One of the widely discussed and studied statistics

for alignment free sequence comparison is the D2 statistic. Previously simulation studies have shown the

limitations of D2 in detecting the relationships between sequences under a common motif model (alter-

native model I) and a pattern transfer model (alternative model II). It was shown that the power of D2 can

even be smaller than the pre-specified type I error under some situations. Two new statistics, D�2 and DS
2,

were developed to overcome the inherent problems of D2 and simulation studies showed their superior

performance compared to D2 (Reinert et al., 2009).
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However, the approximate distributions of these statistics were not known at the time of the study

(Reinert et al., 2009), and thus, it was not possible to give a theoretical formula to calculate the power of the

different tests. Having the limiting distribution of the test statistics can help us design algorithms to

calculate the power. With the power calculator, we are able to explore a large range of the parameter space

and study how the parameters individually and collectively contribute to the power of the tests. The

theoretical studies also give insights into when and how the test statistics can be applied to compare

sequences. In this paper, we carried out a systematic theoretical study of the power of D2, D�2 and DS
2 for

detecting the relationships between sequences under alternative models I and II. Under alternative model I,

we provided an easy to use program to calculate the power of the test statistics D2 and D�2 for different

combinations of parameters. Using the program, we then obtained the theoretical power and compared with

the simulated power using the same parameters as in Reinert et al. (2009) and showed that they are

generally close, thus validating the usefulness of our program. However, the convergence of DS
2 to our

theoretical limit is very slow and the approximation is only reasonable for very long sequences. We then

carried out a large-scale comparison of D2 and D�2 statistics for sequence comparison under alternative

model I when the motif is any one of the 323 motifs with length at most 10 in JASPAR CORE. Our

program made such a large-scale comparison possible. We verified the relative performance of D2 and D�2
observed in previous studies, i.e. D�2 is generally more powerful than D2. Under alternative model II, we

theoretically showed that the power of the three statistics tends to a constant, usually less than 1. We also

gave some reasons why the power of D�2 increases with the word size k.

This study has several limitations regarding the models of the background sequences and the foreground

motif models. The IID model was used to model the background sequence. It is known that the genomes of

organisms are hierarchically organized (Mantegna et al., 1994) and simple IID models cannot fully de-

scribe the background sequences; instead high-order Markovian models could be more appropriate. Si-

milarly, the positions of the motifs are assumed independent and again this assumption can be violated in

many motifs. To incorporate such complexity into our model, high-order HMMs can potentially be used;

the calculations would then become much more involved. Although the extensions to higher order HMM

are conceptually simple, heavy computational issues need to be solved.

We made several simple assumptions regarding the distribution of the motifs along the sequences as in

Reinert et al. (2009). First it was assumed that the motifs are uniformly distributed along the sequences.

Motifs can cluster together in some regions and may be sparse in other regions of the sequences. If such

inhomogeneity is known to be present, an inhomogeneous HMM can be used to model the distribution of

motifs by assuming large motif density l in motif-clustered regions and low motif density l in sparse motif

regions. If such motif-clustered and motif-sparse regions are unknown, but suspected, we can assume that l
is a random variable following certain distributions. Second, we considered the presence of just one motif

along the sequences. In many situations, several motif patterns work together to form modules. How to

model such sequences is a problem for future studies. Third, we emphasize that the three statistics we

FIG. 4. The values of S(k, k)¼ limn!1 E(D�2) as a

function of motif density l and word length k, l¼ 0.9 to

1.0 by step 0.01, and k¼ 2, � � � , 10
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consider here are most likely not optimal and other more powerful statistics may possibly be constructed.

Fourth, applying these statistics to practical examples is another topic for future research.

In this article, we theoretically showed that, under alternative model II, the power of D2, D�2, and DS
2

converges to a value that is generally much less than 1 when the sequence length tends to infinity.

Therefore, they are not appropriate to test for relationships between sequences under this model. The

obvious important question is which statistics based on word counts should be used for testing against this

model instead.

6. APPENDIX A: PROOFS OF THE THEOREMS

In this Appendix, we prove the theorems in the main text.

A.1. Proofs of Theorems 2.2–2.5 under alternative model I

Proof of Theorem 2.2. From the definition of D2, we have

D2

n2
¼
XXw

n

Yw

n

¼
X 

Xw

n
�Pk(w)þPk(w)

! 
Yw

n
�Pk(w)þPk(w)

!

¼
X 

Xw

n
�Pk(w)

! 
Yw

n
�Pk(w)

!
þ
X

Pk(w)

 
Xw

n
�Pk(w)

!

þ
X

Pk(w)

 
Yw

n
�Pk(w)

!
þ
X

(Pk(w))2:

Therefore, ffiffiffi
n
p �D2

n2
�
X

w

(Pk(w))2
�

¼ 1ffiffiffi
n
p
X

w

ffiffiffi
n
p �Xw

n
�Pk(w)

� ffiffiffi
n
p � Yw

n
�Pk(w)

�
þ
X

w

Pk(w)
ffiffiffi
n
p �Xw

n
�Pk(w)

�
þ

ffiffiffi
n
p � Yw

n
�Pk(w)

�� �
: (9)

It has been shown in Zhai et al. (2010), Proposition 2.4, for 0< l< 1, and in Reinert et al. (2009),

Proposition 6.1, for l¼ 1, that, in distribution,

lim
n!1

ffiffiffi
n
p
 

Xw

n
�Pk(w)

!
¼ lim

n!1

ffiffiffi
n
p
 

Yw

n
�Pk(w)

!
¼N(0, r2

k(w)), (10)

where r2
k(w)¼ limn!1

Var(Xw)
n

. Therefore, the first term in equation (9) tends to 0 when n??, with

alphabet size fixed, and

ffiffiffi
n
p
 

Xw

n
�Pk(wÞ

!
þ

ffiffiffi
n
p
 

Yw

n
�Pk(w)

!
! N (0, 2r2

k(w)):

Let rk(w, w0)¼ limn!1
Cov(Xw, Xw0 )

n
which can be calculated as in Zhai et al. (2010) for 0< l< 1, and as in

Reinert et al. (2009) for l¼ 1. Since fXw, w 2 Akg and fYw, w 2 Akg are independent, the second term in

(9) is asymptotically normal with mean 0 and variance 2(Sl)
2. Theorem 2.2 is proved.

We note that the proof of Theorem 2.2 breaks down when all letters are equally likely, as then with

p¼ pw,
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X
w

p
ffiffiffi
n
p Xw

n
� p

� �
¼ 0

and thus the second term in (9) vanishes.

Proof of Theorem 2.3. The proof of Theorem 2.3 is similar to the proof of Theorem 2.2. The first

part can be easily proved using the normal approximation Corollary 6.1 in Reinert et al. (2009) for the

individual centered word counts, which also holds when all letters are equally likely. To prove the second

part, note that

D�2
n
¼
X 1

pw

 
Xw

n
�Pk(w)

! 
Yw

n
�Pk(w)

!
þ
X (Pk(w)� pw)

pw

 
Xw

n
�Pk(w)

!

þ
X (Pk(w)� pw)

pw

 
Yw

n
�Pk(w)

!
þ
X (Pk(w)� pw)2

pw
:

It follows from the normal approximation for individual word counts that, in distribution,ffiffiffi
n
p X 1

pw

 
Xw

n
�Pk(w)

! 
Yw

n
�Pk(w)

!
! 0 as n!1:

Therefore, in distribution,

lim
n!1

ffiffiffi
n
p
 

D�2
n
�
X (Pk(W)� pw)2

pw

!

¼ lim
n!1

X (Pk(w)� pw)

pw

ffiffiffi
n
p
 

Xw

n
�Pk(w)þ Yw

n
�Pk(w)

!
:

For 0< l< 1, under the assumption that (Pk(w)� pw)
pw

is not constant in w, this expression has a normal

distribution with mean 0 and variance 2(R�k)2, where (R�k) is given in (3). Theorem 2.3 is proved.

Proof of Theorem 2.4. The first part of Theorem 2.4 has been proved in Theorem 2.1 in Reinert et al.

(2009). We only present the outline for the proof of the second part. Using Taylor expansion, it is

straightforward to show that for any a= 0 and (x, y) in the neighborhood of (0,0),

(xþ a)(yþ a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ a)2þ (yþ a)2

p ¼ jajffiffiffi
2
p þ sign(a)

2
ffiffiffi
2
p (xþ y)þO(x2þ y2),

where O(x2þ y2) indicates a term such that there exists a constant C with

jO(x2þ y2)j � C(x2þ y2):

For each word w, let a¼Pk(w)� pw, x¼ Xw

n
�Pk(w), and y¼ Yw

n
�Pk(w). Then, with this Taylor expansion,

~XXw
~YYw

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~XX

2

wþ ~YY
2

w

q ¼ jPk(w)� pwjffiffiffi
2
p þ sign(Pk(w)� pw)

2
ffiffiffi
2
p Xw

n
�Pk(w)þ Yw

n
�Pk(w)

� �

þO
Xw

n
�Pk(w)

� �2

þ
� Yw

n
�Pk(w)

�2

 !
: (11)

Taking expectations in (11) we obtain that

Ek

~XXw
~YYw

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~XX

2

wþ ~YY
2

w

q
0B@

1CA¼ jPk(w)� pwjffiffiffi
2
p þO Ek

Xw

n
�Pk(w)

� �2

þEk
Yw

n
�Pk(w)

� �2
 !

:

As Ek( Xw

n
�Pk(w))2¼ 1

n
Vark( Xwffiffi

n
p )¼O(n� 1), we obtain that the asymptotic mean of

~XXw
~YYw

n

ffiffiffiffiffiffiffiffiffiffiffiffi
~XX

2

w þ ~YY
2

w

p equals
jPk(w)� pwjffiffi

2
p .
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Moreover, summing Equation (11) over all the word patterns w 2 Ak, we have

ffiffiffi
n
p DS

2

n
�
X

w2Ak

jPk(w)� pwjffiffiffi
2
p

0@ 1A
¼

ffiffiffi
n
p X 

~XXw
~YYw

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~XX

2

wþ ~YY
2

w

q � jPk(w)� pwjffiffiffi
2
p

!

¼
X sign(Pk(w)� pw)

2
ffiffiffi
2
p

ffiffiffi
n
p �

Xw

n
�Pk(w)þ Yw

n
�Pk(w)

�

þ 1ffiffiffi
n
p
X

O

 
n

�
Xw

n
�Pk(w)

�2

þ n

�
Yw

n
�Pk(w)

�2
!
:

Similar as in the proof of Theorem 2.2, under the assumption that Pl(w)� p(w) is not constant in w, we see

that
ffiffiffi
n
p �

DS
2

n
�
P

w2Ak
jPk(w)� pwjffiffi

2
p

�
is asymptotically normal with mean 0 and variance 2(RS

k)2.

For the last assertion, we refine the Taylor expansion to

(xþ a)(yþ a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ a)2þ (yþ a)2

p � jajffiffiffi
2
p þ sign(a)

2
ffiffiffi
2
p (xþ y)� 3

8
ffiffiffi
2
p
jaj

x2� 2xyþ y2
� �

,

and using a¼Pl(w)� pw, if Pl(w)� pw= 0, x¼ Xw

n
�Pk(w), and y¼ Yw

n
�Pk(w), taking expectations

completes the proof of Theorem 2.4.

Proof of Theorem 2.5. The proof of the three equations are roughly the same, and thus we only give

the proof for the first equation.

Note that under the alternative model I, we expect that the k-tuple counts for the two sequences are more

correlated than that for two random sequences. Therefore we use one-sided test. For fixed type I error a,

based on Theorem 2.2 (a), we find za such that P{Z1� za}¼ a. Under the null hypothesis that

k¼ 1, n� 2D2�
P

p2
w has approximate mean zero, whereas under the alternative l< 1, the approximate

mean of n� 2D2�
P

p2
w will not be zero. We reject the null hypothesis if Z1> za, which is approximately

equivalent to D2 4 n2A(1)þ za

ffiffiffiffiffi
n3
p

. The power for D2 is

1� b¼Pk(D2 4 n2A1(1)þ za

ffiffiffiffiffi
n3
p

)

¼Pk
D2� n2A(k)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n3(Rk)2
p �

 
n2A(1)þ za

ffiffiffi
n
p 3� n2A(k)ffiffiffi

2
p

n3(Rk)2

�
� 1��(C(k)):

The last approximation holds because of Theorem 2.2 (b).

A.2. Proofs of Theorems 3.1, 3.2, and 3.3

Proof of Theorem 3.1. We calculate E(XwYw0 ) for any two words w and w0 of length k. Let

IA
w(i)¼ I(AiAiþ 1 � � �Aiþ k� 1¼w1w2 � � �wk)

IB
w0(i)¼ I(BiBiþ 1 � � �Biþ k� 1¼w01w02 � � �w0k)

8<: ,

then

Xw¼
Xn

i¼ 1

IA
w(i), and Yw0 ¼

Xn

i¼ 1

IB
w0(i):
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Thus

EXwYw0 ¼ E
Xn

i¼ 1

Xn

j¼ 1

IA
w(i)IB

w0(j)¼
Xn

i¼ 1

Xn

j¼ 1

E IA
w(i)IB

w0 (j)

¼
Xn

i¼ 1

E IA
w(i)IB

w0 (i)þ
Xk� 1

j¼ 1

Xn� j

i¼ 1

E IA
w(i)IB

w0 (iþ j)þ
Xk� 1

j¼ 1

Xn� j

i¼ 1

E IB
w0 (i)I

A
w(iþ j)

þ
Xn� 1

j¼ k

Xn� j

i¼ 1

E IA
w(i)IB

w0 (iþ j)þ
Xn� 1

j¼ k

Xn� j

i¼ 1

E IB
w0(i)I

A
w(iþ j)

¼ nc0(w, w0)þ
Xk� 1

j¼ 1

(n� j)(cj(w, w0)þ cj(w
0, w))þ 2

Xn� 1

j¼ k

Xn� j

i¼ 1

pwpw0

¼ nc0(w, w0)þ
Xk� 1

j¼ 1

(n� j)(cj(w, w0)þ cj(w
0, w))

þ [n2� (2k� 1)nþ k(k� 1)]pwpw0 ,

where c0(w, w0)¼P(Al¼wl, Bl¼w0l, l¼ 1, 2, � � � , k) and cj(w, w)¼P(Al¼wl, Bjþ l¼w0l, l¼ 1, 2, � � � , k).

Part (a) of the theorem is proved.

Note that

Cov(Xw, Yw0 )¼ E(Xw, Yw0 )� n2pwpw0 :

Then part (b) can be easily deduced from part (a).

Part (c) and (d) can be proved by the definition of D2 and D�2, respectively, and by part (b) above by

letting w¼w0. The recursion follows as in Reinert et al. (2009).

Proof of Theorem 3.2. The proofs of parts (a), (b), and (c) of the theorem are similar to that of

Theorems 2.2–2.4, respectively.

(a) As in the proof of Theorem 2.2, we haveffiffiffi
n
p �D2

n2
�
X

p2
w

�
¼ 1ffiffiffi

n
p
X ffiffiffi

n
p �Xw

n
� pw

� ffiffiffi
n
p � Yw

n
� pw

�
þ
X

pw

 ffiffiffi
n
p
 

Xw

n
� pw

!
þ

ffiffiffi
n
p
 

Yw

n
� pw

!!
: (12)

Under alternative model II, the marginal sequences are IID, and hence
ffiffiffi
n
p 	

Xw

n
� pw



converges to a mean

zero normal variable, call the asymptotic variance M1; and
ffiffiffi
n
p 	

Yw

n
� pw



converges to the same limit. As

the two count vectors are asymptotically jointly normal, we obtain that, in distribution,

ffiffiffi
n
p Xw

n
� pw, w 2 Ak

Yw

n
� pw, w 2 Ak

 !
! N

0

0

� �
,

M1 Dk

Dk M1

� �� �
, (13)

where M1¼ (r1(w, w0))w, w0 and Dk¼ (dk(w, w0))w, w0 .

Therefore, the first term in Equation 12 tends to 0 as n tends to infinity. The second term tends to a

normal distribution with mean 0 and variance 2(Ll)
2. Part (a) is proved. Parts (b) and (c) follow directly

from the normal approximation (13).

Proof of Theorem 3.3. The proof of this theorem is similar to the proof of Theorem 2.5. For illustration

only, we prove the claim for the power of D�2. From Theorem 3.2 (b) with l¼ 1, we can choose ezz�a such that

P( eZZ �1 � ezz�a)¼ a:

We reject the null hypothesis that the two sequences are not related if D�2 � ezz�a. We use one sided test since

the mean of D�2 is expected to be greater than 0 under the alternative model. From Theorem 3.2 (b), the test

has an approximate type I error a under the null hypothesis l¼ 1.
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The power is the probability that the null model is rejected under the alternative model II l< 1. Thus, the

power is

1� b¼Pk(D�2 � ezz�a) � Pf eZZ �k � ezz�ag:

APPENDIX B: LIMIT DISTRIBUTIONS OF D2, D2
*, AND D2

S WHEN
THE TWO SEQUENCES HAVE DIFFERENT LETTER FREQUENCIES,

MOTIF DENSITIES, AND SEQUENCE LENGTHS

For simplicity of presentation, we have so far assumed that the two sequences have the same letter

frequency, motif density, and sequence length. The theorems in the main text can be easily extended to the

general situations. Let nX be the length and 1� lX be the motif density for sequence A. Let pX
w be the

probability of pattern w under the null model and PX
kX

(w) be the probability of word pattern w as calculated

in subsection 2.1 for sequence A. Let (RX
kX

)2 and (RX�
kX

)2 be similarly defined as in equations 2 and 3,

respectively, by replacing l with lX. Similar notation can be defined for sequence B; here we use the

superscript or subscript Y. We define D2 and DS
2 similarly as above by replacing pw by pX

w or pY
w appro-

priately. Let CXY¼ nX/nY. For simplicity of presentation, we also define CYX¼ nY/nY¼ 1/CXY. Under the

general model, we redefine D�2 as

D�2¼
X

w2Ak

eXXw
eYY wffiffiffiffiffiffiffiffiffiffi

nXpX
w

p ffiffiffiffiffiffiffiffiffiffi
nY pY

w

p :

In this general setting,

DS
2ffiffiffiffiffiffiffiffiffi

nxny
p ¼

X
w2Ak

( eXXw=nX)( eYY w=nY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXY

eXX2

w=n2
X þCYX

eYY 2

w=n2
Y

q : (14)

From the law of large numbers we deduce that, in distribution and almost surely,
eXX w

nX
! PX

kX
(w)� pX

w, and a

similar statement holds for
eYY w

nY
. Hence, we abbreviate in connection with the asymptotic means, see The-

orem 5.1

Ag(kX , kY )¼
X

w2Ak

PX
kX

(w)PY
kY

(w),

Ag�(kX , kY )¼
X

w2Ak

(PX
kX

(w)� pX
w)(PY

kY
(w)� pY

w)ffiffiffiffiffiffiffiffiffiffiffi
pX

wpY
w

p ,

AgS(kX , kY )¼
X

w2Ak

(PX
kX

(w)� pX
w)(PY

kY
(w)� pY

w)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXY (PX

kX
(w)� pX

w)2þCYX(PY
kY

(w)� pY
w)2

q ,

where and in the following, the superscript ‘‘g’’ indicates the general model. In analogy to Theorems 2.1,

2.2, 2.3, 2.4, and 2.5, we have the following theorems. As the proofs are very similar to the ones presented

in the article, they are omitted.

Theorem 5.1. Under alternative model I for the two sequences as described above, the expectations of

D2, D�2 and DS
2 can be calculated as follows.

E(D2)¼ nXnY Ag(kX , kY ),

E(D�2)¼ ffiffiffiffiffiffiffiffiffiffi
nXnY

p
Ag�(kX , kY ),

and lim
n!1

E(DS
2)ffiffiffiffiffiffiffiffiffiffi

nXnY
p ¼AgS(kX , kY ):

The limiting distributions of D2, D�2, and DS
2 under the general model are given as follows.
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Theorem 5.2. Assume that in the background model not all letters are equally likely.

a. Suppose lX¼ lY¼ 1 (the null model that the sequences are independent). Then

lim
n!1

(nXnY )
1
4

�
D2

nXnY

�
X

w2Ak

pX
wpY

w

�
¼ Z

g
1 ,

where Z
g
1 has normal distribution N (0,

ffiffiffiffiffiffiffiffi
CYX

p
(RX

1 )2þ
ffiffiffiffiffiffiffiffi
CXY

p
(RY

1 )2). Here the asymptotics is valid when the

sequence length tends to infinity with alphabet size, motif length, and word length kept fixed.

b. Suppose 0< lX, lY< 1 (the alternative model I). Then

lim
n!1

(nXnY )
1
4

�
D2

nXnY

�Ag(kX , kY )

�
¼ Z

g
kX , kY

,

where Z
g
kX , kY

has normal distribution N (0,
ffiffiffiffiffiffiffiffi
CYX

p
(RX

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RY

kY
)2). Here the asymptotics is valid when

the sequence length tends to infinity with alphabet size, motif length, and word length kept fixed.

For D�2, we have:

Theorem 5.3. a. Suppose lX¼ lY¼ 1 (the null model that the sequences are independent). Then, in

distribution,

lim
n!1

D�2¼ Z
g�
1 ¼

X
w2Ak

Z(g1)
w Z(g2)

wffiffiffiffiffiffi
pX

w

p ffiffiffiffiffiffi
pY

w

p ,

where fZ(g1)
w , w 2 Akg and fZ(g2)

w , w 2 Akg are independent and have mean 0 normal distributions (with

non-trivial covariance matrix).

b. Suppose 0< l< 1 (the alternative model I), and that (Pk(w)� pw)
pw

is not constant in w. Then, in distri-

bution,

lim
n!1

(nXnY )
1
4

D�2ffiffiffi
n
p

XnY

�Ag�(kX , kY )

� �
¼ Z

g�
kX , kY

,

where Z
g�
kX , kY

has normal distribution N
�

0,
ffiffiffiffiffiffiffiffi
CYX

p
(RX�

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RY�

kY
)2

�
.

In order to state the limit distribution for DS
2, we let

uw¼
CYX(PY

kY
(w)� pY

w)3

CXY (PX
kX

(w)� pX
w)2þCYX(PY

kY
(w)� pY

w)2
n o3

2

,

vw¼
CXY (PX

kX
(w)� pX

w)3

CXY (PX
kX

(w)� pX
w)2þCYX(PY

kY
(w)� pY

w)2
n o3

2

,

and �
RXS

kX

�2

¼
X

w2Ak

(uw)2(rX
kX

)2(w)þ
X
w 6¼w0

uwuw0r
X
kX

(w, w0),

�
RYS

kY

�2

¼
X

w2Ak

(vw)2(rY
kY

)2(w)þ
X
w 6¼w0

vwvw0r
Y
kY

(w, w0):

The following theorem gives the approximate distribution of DS
2 under the null and the alternative models

for the general situation.

Theorem 5.4. a. Suppose lX¼ lY¼ 1 (the null model that the sequences are independent). Then, in

distribution,
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lim
n!1

DS
2

(nXnY )
1
4

¼ Z
gS
1 ¼

X
w2Ak

Z(g1)
w Z(g2)

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXY

p
(Z

(g1)
w )2þ

ffiffiffiffiffiffiffiffi
CYX

p
(Z

(g2)
w )2

q , (15)

where fZ(g1)
w , w 2 Akg and fZ(g2)

w , w 2 Akg are independent and have mean 0 normal distribution.

b. Suppose 0< lX, lY< 1 (the alternative model I), and assume that both PX
kX

(w)� pX
wand PY

kY
(w)� pY

w

are not constant in w. Then, in distribution,

lim
n!1

(nXnY )
1
4

DS
2ffiffiffiffiffiffiffiffiffiffi

nXnY
p �AgS(kX , kY )

� �
¼ Z

gS
kX , kY

,

where Z
gS
kX , kY

has normal distribution N (0,
ffiffiffiffiffiffiffiffi
CYX

p
(RXS

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RYS

kY
)2).

The proof of Theorem 5.4 is sketched as follows. Similarly as for (14),

DS
2

(nXnY )
1
4

¼
X

w2Ak

( eXXw=
ffiffiffiffiffi
nX
p

)( eYY w=
ffiffiffiffiffi
nY
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXY

p eXX2

w=nX þ
ffiffiffiffiffiffiffiffi
CYX

p eYY 2

w=nY

q :

For part (a), under the null hypothesis, we have that, in distribution,

eXXw=
ffiffiffiffiffi
nX

p ! Z(g1)
w , eYY w=

ffiffiffiffiffi
nY

p ! Z(g2)
w :

For part (b), we can write

eXXw

nX

¼ Xw

nX

�PX
kX

(w)þPX
kX

(w)� pX
w,

Then we use Taylor expansion for the function gw(x, y) given by

gw(x, y)¼
(xþPX

kX
(w)� pX

w)(yþPY
kY

(w)� pY
w)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CXY (xþPX
kX

(w)� pX
w)2þCYX(yþPY

kY
(w)� pY

w)2
q ,

at (x, y)¼ (0, 0), as well as (14).

From Theorems 5.2, 5.3, and 5.4, we are able to calculate the power of detecting the relationships

between sequences A and B under the general model.

Theorem 5.5. Assume that (PX
kX

(w)� pX
w)2=pX

w, (PY
kY

(w)� pY
w)2=pY

w and PX
kX

(w)� pX
w are not constant in

w. Then, for any given type I error a, the power of detecting the relationship between two sequences A and

B against the null model that lX¼ lY¼ 1 using D2, D�2 and DS
2 can be approximated by 1�F(Cg(lX, lY)),

1��(Cg(kX , kY )), 1��(Cg�(kX , kY )), and 1��(CgS(kX , kY )), respectively, where

Cg(kX , kY )¼ � (nXnY )
1
4Bg(kX , kY )þ zg

a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYX

p
(RX

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RY

kY
)2

q
,

Cg�(kX , kY )¼ � (nXnY )
1
4Bg�(kX , kY )þ zg�

a =((nXnY )
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYX

p
(RX�

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RY�

kY
)2

q
),

CgS(kX , kY )¼ � (nXnY )
1
4BgS(kX , kY )þ zgS

a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYX

p
(RXS

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RYS

kY
)2

q
and

Bg(kX , kY )¼ Ag(kX , kY )�Ag(1, 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYX

p
(RX

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RY

kY
)2

q ,

Bg�(kX , kY )¼ Ag�(kX , kY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYX

p
(RX�

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RY�

kY
)2

q ,

BgS(kX , kY )¼ AgS(kX , kY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYX

p
(RXS

kX
)2þ

ffiffiffiffiffiffiffiffi
CXY

p
(RYS

kY
)2

q :

Here, zg
a, zg�

a , and zgS
a are the upper a quantile of Z

g
1 , Z

g�
1 , Z

gS
1 from Theorems 5.2, 5.3, and 5.4, respectively.
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The alternative model II can equally be extended to the situation of different letter frequencies in the two

sequences; we omit the details here.
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