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ABSTRACT

Analysis of large gene expression data sets in the presence and absence of a phenotype can
lead to the selection of a group of genes serving as biomarkers jointly predicting the phe-
notype. Among gene selection methods, filter methods derived from ranked individual genes
have been widely used in existing products for diagnosis and prognosis. Univariate filter
approaches selecting genes individually, although computationally efficient, often ignore
gene interactions inherent in the biological data. On the other hand, multivariate ap-
proaches selecting gene subsets are known to have a higher risk of selecting spurious gene
subsets due to the overfitting of the vast number of gene subsets evaluated. Here we propose
a framework of statistical significance tests for multivariate feature selection that can reduce
the risk of selecting spurious gene subsets. Using three existing data sets, we show that our
proposed approach is an essential step to identify such a gene set that is generated by a
significant interaction of its members, even improving classification performance when
compared to established approaches. This technique can be applied for the discovery of
robust biomarkers for medical diagnosis.
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1. INTRODUCTION

There is an increasing amount of high-throughput biological data available, including gene

and protein expression, genetic variation, phosphoproteomics, and various forms of imaging signals.

Often these data sets are associated with two or more phenotypes, allowing for the discovery of biomarkers

that have significant medical utility for diagnosis, prognosis and treatment selection (Baker, 2005; Frank and

Hargreaves, 2003). In particular, panels of multiple bio-markers from gene expression data have been

proposed and are used in existing products (Paik et al., 2004; van ’t Veer et al., 2002). Because of the large

number of features and the high degree of noise in high-throughput biological data sets, it is necessary to

select a subset of features that are relevant to the phenotype in question (Guyon, 2003).

Feature selection methods for classification can be widely organized into three categories, depend-

ing on how they interact with the construction of the classification model (Saeys et al., 2007). Filter
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methods evaluate the association of features with the phenotype of interest independently of the classifi-

cation model, looking only at the intrinsic characteristics of data. Most filter approaches employ a criterion

to evaluate the association of each gene individually. We refer to this approach as univariate feature

selection (Baldi and Long, 2001; Ben-Dor et al., 2000; Bhattacharyya et al., 2003; Breitling et al., 2004;

Fox and Dimmic, 2006; Golub et al., 1999; Jaeger et al., 2003; Newton et al., 2001; Thomas et al., 2001;

Troyanskaya et al., 2002; Zhang et al., 2006). In all cases, the univariate approach is based on including the

highest-ranked individual features depending on a chosen association measure, for example, signal-to-noise

ratio (Golub et al., 1999). Unlike filter methods, wrapper and embedded methods perform feature selection

by using a specific classification model. Wrapper methods involve combinatorial searches through the

space of feature subsets, guided by the prediction ability of a specific classification model (Inza et al., 2000;

Jirapech-Umpai and Aitken, 2005; Li et al., 2001; Ooi and Tan, 2003; Xiong et al., 2001). On the other

hand, embedded methods perform feature selection in the process of training a specific classification model

(Diaz-Uriarte and Alvarez de Andres, 2006; Guyon et al., 2002; Jiang et al., 2004; Ma and Huang, 2005). A

representative embedded method is Recursive Feature Elimination using Support Vector Machines (SVM-

RFE) (Guyon et al., 2002), which uses successive elimination of individual features ranked lowest ac-

cording to a criterion, aimed at keeping the discrimination ability as high as possible.

Among feature selection methods for classification, univariate filter methods have been dominant in this

field because of its simplicity and efficiency. However, it does not take into account gene-gene interactions,

possibly leading to less accurate classifiers. Thus, multivariate filter techniques that try to capture the

correlations between genes have been proposed (Bo and Jonassen, 2002; Gevaert et al., 2006; Mamitsuka,

2006; Peng et al., 2005; Wang et al., 2005; Xing et al., 2001; Yeoh et al., 2002). Rather than selecting only

from a list of highly ranked individual features, multivariate filter techniques, such as feature selection by

mutual information can exploit synergistic feature interactions. For example, analysis of a rich training

dataset of gene expression data can reveal high correlations of a gene pair with a phenotype, while

the individual associations of one or both of the two genes in the pair may not be strong (Anastassiou,

2007), so these genes would not individually appear as highly ranked. Including such gene pairs can

improve performance of biomarker classifier. The idea of exploiting gene interactions for feature selec-

tion first appeared in Bo and Jonassen (2002), where a subset of gene pairs was selected based on a

criterion that involved linear discriminant analysis and a two-sample t-test. While confirming the claim

that class prediction can be improved using gene pairs, their approach has a weakness that some genes pairs

can be selected just by chance, as pointed out by the authors, because of the huge number of pairs

evaluated.

A criterion is required to filter out such spurious gene pairs. In most cases, the statistical significance of

some measure of association between each gene pair and the phenotype of interest is assessed, resulting in

only those gene pairs that are significant above a predefined significance level being selected. We refer to

this test as the overall significance test. However, while this test is proper if it is used for assessing genes

individually, it is not sufficient to test genes in pairs, because this association can be generated by an

insignificant paring of two genes, in which case just one of the two genes might play a significant role in the

association.

Addressing this question in this work, we propose a multivariate feature selection method that identifies

small gene sets, such as pairs, each predicting the phenotype in a statistically significant manner. Using

several real examples in existing data sets, we demonstrate that our proposed approach is a necessary step

to filter out the small gene sets that can occur just by chance. We also show that it can identify many

potentially important gene interactions that are associated with the phenotype of interest, revealing that

the selected gene sets share a common biological relationship. Regarding classification, any standard

classification model can be implemented using the selected small gene sets. In this work, we are interested

in a model for which an interpretation of classification decision is simple. Our proposed classification

model consists of building such a classifier based on multiple ‘‘voters,’’ each being a small statistically

significant set of selected genes. We demonstrate that this technique can improve classification perfor-

mance when compared with three published approaches: correlation-based approach (van ’t Veer et al.,

2002) from univariate filter methods, gene-pair selection ignoring the statistical significance from multi-

variate filter methods (Bo and Jonassen, 2002), and SVM-RFE (Guyon et al., 2002) from embedded

methods. We hope that it can lead to improved products using gene expression data for medical diagnosis

and prognosis.
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2. GENE EXPRESSION DATA SETS

For testing our method, we used three publicly available microarray data sets: one containing ex-

pression levels of prostate cancer samples, one of colon cancer samples, and one of hepatocellular

carcinoma samples. For the prostate cancer set (Singh et al., 2002), raw probe data for a set of

Affymetrix Human Genome U95Av2 microarray assays were downloaded from the Broad Institute’s

website, then normalized using the Robust Multi-array Average (RMA) method (Irizarry et al.,

2003), which was implemented in an R package from Bioconductor (Gentleman et al., 2004). The set

consists of gene expression profiles of 12,625 genes from 52 tumor samples and 50 normal samples.

The colon cancer data set (Alon et al., 1999) consists of gene expression profiles of 2,000 genes from

40 tumor samples and 22 normal samples, originating from Affymetrix Hum6000 arrays. The hepa-

tocellular carcinoma (HCC) data set consists of gene expression profiles of 10,404 genes that are measured

using cDNA microarray from pair-matched tumor and adjacent liver tissues from 56 HCC patients.

The data set is available from the Gene Expression Omnibus’s website (GEO accession number

GSE14811).

3. GENE SELECTION AND CLASSIFICATION MODEL

To build an algorithm based on our approach, we need to use a measure estimating the associa-

tion between a subset of genes and the phenotype. In this work, this is simply measured by the error

rate of a linear classifier based on the genes, resulting from a Fisher linear discriminant finding a

linear decision boundary orthogonal to the projection line on which the ratio of the between-class

variance to the within-class variance is maximized. It should be noted that any measure of associa-

tion such as t-test performed on the points projected on the linear discriminant axis (Bo and Jonassen,

2002) can be plugged into our approach for gene selection. We also need to introduce a test of the

statistical significance of the value of the association measure on the training set found for a particular

subset of genes under consideration for being selected. As described in a subsequent section, the

significance is ascertained by random permutation testing, in which the association measure found on

the training set is compared with the measures calculated from randomly label-permuted versions of the

training set.

We first describe the significance testing for gene pairs: Each pair is deemed a ‘‘legitimate voter’’ if it

passes both of the following two significance tests:

(1) The ‘‘overall significance test,’’ which examines whether or not the observed correlation of the pair

with the class label in the training set can be due to pure chance.

(2) The ‘‘incremental significance test,’’ which compares the correlation of the pair with the correlation

of the most discriminatory gene (the ‘‘main’’ gene) between the two member genes, examining

whether or not the observed improvement following the addition of the ‘‘partner’’ gene can be due to

pure chance.

3.1. Overall significance test

For the overall significance test, we generated 100 data sets by randomly permuting the class labels of the

samples in the original data set. For each permutation we find amongst all possible gene pairs the single pair

that achieves the minimum error rate and record that error rate. In our work, the threshold of acceptable

significance is defined as the overall minimum error rate over all permutations; in other words, only those

pairs whose error rates were never achieved in all 100 permutations were accepted as being overall

significant. For the incremental significance test described in a subsequent section, we also generated 100

permutations as above except that the expression values of the main gene remain associated with the true

class label for each sample, thus assuring that the correlation of the main gene with the class label is not

modified. For each permutation we find the partner gene to the main gene that minimizes the overall error

rate and record that error rate. As before, only those pairs whose error rates were never achieved in all

permutations were accepted as being incrementally significant.
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3.2. Incremental significance test

The incremental significance test is needed because we must ascertain that each of the two genes, not just

one of the two, plays a significant role in the observed high correlation of the pair, so that the addition of the

partner gene enhances performance in a statistically significant manner over that of the main gene. For

example, it is known that hepsin (HPN) has exceptionally good classification performance in prostate

cancer (Magee et al., 2001), which is confirmed by analyzing the data set we used, in which HPN was

found as the most discriminatory single gene. Using exhaustive search, we found that S100A4 is the best

partner gene to HPN, decreasing the error rate to 0.059 for the pair (HPN, S100A4) compared to 0.147 for

HPN alone (Fig. 1A). While the pair passes the overall significance test, it fails to pass the incremental

significance test, because the improvement in error rate of the pair does not exceed that which can be

attained by pairing the best permuted genes with HPN. As an illustrating example, when HPN was

augmented by the best fictitious partner gene resulting from one of the random permutations described

above, the error rate was even lower (0.049; Fig. 1B). Interestingly, S100A4 has been implicated in prostate

cancer (Saleem et al., 2006), which explains why its individual error rate is found relatively low (0.245),

and these results indicate that HPN and S100A4 may be used as individual voters, but we should not use

their combination as a single voter.

In contrast, Figure 2 shows two pairs of genes that passed both significance tests. The first pair (Fig. 2A)

from the prostate cancer data set contains genes RBP1 and EEF1B2, a pair that was also found using a

different methodology and a potential biological explanation was presented (Watkinson et al., 2008). The

second pair (Fig. 2B) from the colon cancer data set provides an example of two genes that are not good

classifiers individually, but in combination are good and significant predictors of the phenotype. In datasets

with very large number of samples, the above testing procedure generalizes to larger gene sets, such as gene

FIG. 1. Scatter plots including

the highly discriminating gene

HPN (hepsin) in the prostate can-

cer data set. Cancerous samples

correspond to red dots, and healthy

samples correspond to blue dots.

The horizontal axis shows the ex-

pression values of HPN. The green

line indicates the best HPN-based

classifier, while the black line in-

dicates the best gene-pair-based

classifier. Each axis also shows the

corresponding error rates. (A)

Shown in the vertical axis is

S100A4, the best partner gene to

HPN, decreasing the error rate to 0.059 for the pair (HPN, S100A4) compared to 0.147 for HPN alone. (B) Shown in the

vertical axis is the best fictitious partner gene to HPN resulting from one of the random permutations described in the

text, decreasing the error rate to 0.049 for the pair.

FIG. 2. Examples of scatter plots

of significant gene pairs. (A) Scatter

plot of two genes (RBP1, EEF1B2)

in the prostate cancer data set that,

in combination, significantly im-

proves discrimination ability when

compared with each gene alone. (B)

Scatter plot of two transcripts in the

colon cancer data that, in combina-

tion, significantly improves dis-

crimination ability compared to

each gene alone.
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triplets. For example, the correlation of a gene triplet is compared with the correlation of the minimum-

error-rate gene pair subset, to ascertain whether the addition of the third gene improves performance in a

statistically significant manner.

3.3. Gene set ranking

In our gene selection method, we first filter all gene pairs so that those that do not pass the two

significance tests described above are excluded (Fig. 3). We then rank-order all remaining significant gene

pairs. We stop when we have used the allocated number of genes. It is in principle (using heuristic search)

possible to also identify significant triplets of genes to include in the list. In our examples, however, we

found that all triplets were far from being significant following long heuristic search. Each of the selected

entries of the list defines an individual linear classifier, serving as a voter. The final aggregate classifier

combining together the individual entries of the list is simple majority voting of the individual classifiers. If

the number of voters is even and there are an equal number of voters for each class label, then classification

results from the selection of the highest-ranked voter.

4. RESULTS

4.1. Classification performance

We compared the classification performance of our proposed method with those from the correlation

coefficient based classifier used in van ’t Veer et al. (2002), linear SVM classifier combined with linear

SVM-RFE used in Guyon et al. (002), and majority voting of individual classifiers defined by error-ranked

gene pairs (majority voting with error-ranked gene pairs). In linear SVM classifier combined with linear

SVM-RFE, to optimize performance, at each elimination step we removed a single gene, rather than a

group of genes. We did two fivefold cross-validation tests to evaluate the performances of different

methods. For each method, the entire process—including gene selection and building a classifier—was

performed with each training set, and we recorded the error of the trained classifier in the corresponding

testing set, calculated as the percentage of wrong predictions (number of wrong predictions divided by the

number of the tested samples). Upon completion of all cross-validation experiments, we evaluated the

average error versus the number of genes used. Results from our proposed method, correlation-coefficient

based classifier, majority voting with error-ranked gene pairs, linear SVM-RFE are shown for the prostate

cancer data set, the colon cancer data set, and the hepatocellular carcinoma data set (Fig. 4). For all of three

data sets, we found many significant gene pairs in each training set, and we observed that our proposed

method outperforms both linear SVM-RFE classifier and correlation-based classifier in all cases. We also

observed that our approach using significant gene sets performs better than majority voting with error-

ranked gene pairs for both colon cancer and hepatocellular carcinoma data sets, establishing the importance

of using the significance tests (less than 32% of the gene pairs selected from an error-ranked list were

significant) in both colon cancer and hepatocellular carcinoma data sets. However, this behavior was not

FIG. 3. The significance test

protocol. The input is a pair of

genes, and the output is an indi-

cator of a significant gene pair.

Here, we assume that GM is the

main gene, the most discriminate

gene of the pair (GM, GN). Only

those gene pairs passing both

significance tests were considered

as significant.
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observed in the prostate cancer data set as more than 82 of the top 100 gene pairs passed the significance

test anyway.

4.2. Selected gene sets

As illustrated in Figure 2, selected gene pairs are often significantly associated with phenotypes of

interests only when combined together, while the individual members are only weakly associated with the

phenotype, suggesting the presence of synergy (Anastassiou, 2007). Since these pairs are incrementally

significant, their interaction with respect to the phenotype may be biologically relevant to the study of the

disease.

In the prostate cancer data set, the genes that appear in many of the significant gene pairs (Table 1) are

RBP1 (cellular retinol-binding protein-1) and DF (human adipsin complement factor D), consistent with the

results in Watkinson et al. (2008). In all gene pairs that include RBP1 and DF, the molecular logic is that

prostate cancer tends to occur when RBP1 (or DF) is down-regulated, and its partner gene (often a

ribosomal protein) is up-regulated. Many of the genes in the significant pairs are ranked low in the list of

FIG. 4. Classification results for

three microarray data sets. The

classification error rates of the

majority voting method using sig-

nificant gene sets is compared with

those of different methods on the

prostate cancer data set (A), the

colon cancer data set (B), and

the hepatocellular carcinoma data

set (C), respectively. In all cases,

the vertical axis shows the classi-

fication error rate, and the hori-

zontal axis shows the gene subset

size.

Table 1. Ranking of Significant Gene Pairs by Linear Error Rate

in the Prostate Cancer Data Set

Ranking Accession 1 Symbol 1 Accession 2 Symbol 2 Linear error rate

1 AC002400 NDUFAB1 M11433 RBP1 0.049

2 X60489 EEF1B2 M11433 RBP1 0.0588

3 M98539 PTGDS U28686 RBM3 0.0588

4 AA149307 TCEAL4 J03592 SLC25A6 0.0588

5 U68063 SFRS10 M84526 DF 0.0588

6 Z93930 XBP1 M84526 DF 0.0588

7 M29039 JUNB M84526 DF 0.0588

8 D86640 STAC AJ130733 AMACR 0.0588

9 J03592 SLC25A6 M11433 RBP1 0.0588

10 Z25749 RPS7 M11433 RBP1 0.0686

11 AA426364 ATP5I M11433 RBP1 0.0686

12 U14972 RPS10 M84526 DF 0.0686

13 X16416 ABL1 M11433 RBP1 0.0686

14 X56681 JUND M84526 DF 0.0686

15 M32304 TIMP2 M84526 DF 0.0686

16 AA135683 BASP1 M11433 RBP1 0.0686

17 AF068179 CAMLG M84526 DF 0.0686

18 AI961040 TUBGCP2 M84526 DF 0.0686

19 AF065388 TSPAN1 M84526 DF 0.0686

20 X56932 RPL13A M84526 DF 0.0686
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single genes and would be missed by traditional approaches (Fig. 5). For example, the cancer-related gene,

RBM3 (Sureban et al., 2008), is a low-ranked single gene, but is a member of a high-ranked significant

gene pair.

In the hepatocellular carcinoma data set, RPL8 (ribosomal protein L8) appears in many of the significant

gene pairs (Table 2). It is interesting that all the gene pairs that include RPL8 also follow the same

molecular logic; in hepatocellular carcinoma tissues, RPL8 is expressed at high levels, while its partner

gene is expressed at low levels (Fig. 6). It is known that RPL8 is over-expressed in several tumors, having

potential as a vaccine target for those tumors (Swoboda et al., 2007).

FIG. 5. The scatter plots of nine

significant gene pairs in the prostate

cancer data set.

Table 2. Ranking of Gene Pairs by Linear Error Rate

in the Hepatocellular Carcinoma Data Set

Ranking Accession 1 Symbol 1 Accession 2 Symbol 2 Linear error rate

1 AF290475 RSBN1L NM_033301 RPL8 0.044643

2 NM_002346 LY6E NM_033301 RPL8 0.053571

3 NM_014888 FAM3C NM_033301 RPL8 0.0625

4 BI488702 MT1M NM_003122 SPINK1 0.0625

5 NM_002346 LY6E NM_001235 SERPINH1 0.071429

6 NM_020992 PDLIM1 NM_033301 RPL8 0.071429

7 NM_002268 KPNA4 NM_002568 PABPC1 0.071429

8 NM_005410 SEPP1 NM_033301 RPL8 0.071429

9 NM_014888 FAM3C NM_003122 SPINK1 0.071429

10 NM_001920 DCN NM_000050 ASS1 0.071429

11 NM_002346 LY6E BI768064 RAB34 0.071429

12 NM_002346 LY6E NM_002863 PYGL 0.071429

13 BF131637 MT2A NM_003122 SPINK1 0.071429

14 NM_014427 CPNE7 NM_033301 RPL8 0.071429

15 BG749845 MT1E NM_033301 RPL8 0.080357

16 NM_005836 HRSP12 NM_033301 RPL8 0.080357

17 NM_006007 ZFAND5 NM_033301 RPL8 0.080357

18 NM_002268 KPNA4 NM_033301 RPL8 0.080357

19 BG749845 MT1E NM_002568 PABPC1 0.080357

20 NM_005836 HRSP12 NM_015658 NOC2L 0.080357
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5. CONCLUSION

The goal of using statistical significance tests for feature selection is that it can reduce a risk of selecting

irrelevant genes that might originate from random fluctuations in biological systems. Our approach is the

logical extension of the statistical tests in a multivariate way, which is to find genes that play a significantly

cooperative role in predicting the phenotype. By addressing the statistical significance of the error rate of

gene sets, we can reduce the risk of selecting irrelevant features. Using several real examples, we dem-

onstrated that it is an essential step for multivariate feature selection. Our approach can be further extended

to identifying other types of genes by using other scoring measures such as mutual information. Although

microarray data are known to be noisy and platform dependent, a potential single product measuring

expression levels under specified and well-controlled conditions will guarantee the reliability of the bio-

marker classifier, as in existing commercial medical diagnostic products. Our algorithm can also naturally

be applied to other types of biomarkers—such as imaging-based signals, SNPs, Copy Number variations,

and phosphoproteomics—including mixtures of biomarkers from diverse types. We hope that our approach

will provide a valuable computational tool helpful for the design of accurate and robust biomarker products

for medical diagnosis and prognosis.
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Inza, I., Larrañaga, P., Etxeberria, R., et al. 2000. Feature subset selection by Bayesian network-based optimization.

Artif. Intell. 123, 157–184.

Irizarry, R.A., Hobbs, B., Collin, F., et al. 2003. Exploration, normalization, and summaries of high density oligo-

nucleotide array probe level data. Biostatistics 4, 249–264.

Jaeger, J., Sengupta, R., Ruzzo, W.L., et al. 2003. Improved gene selection for classification of microarrays. Pac. Symp.

Biocomput. 53–64.

Jiang, H., Deng, Y., Chen, H.-S., et al. 2004. Joint analysis of two microarray gene-expression data sets to select lung

adenocarcinoma marker genes. BMC Bioinformatics 5, 81.

Jirapech-Umpai, T., and Aitken, S. 2005. Feature selection and classification for microarray data analysis: evolutionary

methods for identifying predictive genes. BMC Bioinformatics 6, 148.

Li, L., Weinberg, C.R., Darden, T.A., et al. 2001. Gene selection for sample classification based on gene expression

data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142.

Ma, S., and Huang, J. 2005. Regularized ROC method for disease classification and biomarker selection with mi-

croarray data. Bioinformatics 21, 4356–4362.

Magee, J.A., Araki, T., Patil, S., et al. 2001. Expression profiling reveals hepsin overexpression in prostate cancer.

Cancer Res. 61, 5692–5696.

Mamitsuka, H. 2006. Selecting features in microarray classification using ROC curves. Pattern Recognit. 39, 2393–

2404.

Newton, M.A., Kendziorski, C.M., Richmond, C.S., et al. 2001. On differential variability of expression ratios:

improving statistical inference about gene expression changes from microarray data. J. Comput. Biol. 8, 37–52.

Ooi, C.H., and Tan, P. 2003. Genetic algorithms applied to multi-class prediction for the analysis of gene expression

data. Bioinformatics 19, 37–44.

Paik, S., Shak, S., Tang, G., et al. 2004. A multigene assay to predict recurrence of tamoxifen-treated, node-negative

breast cancer. N. Engl. J. Med. 351, 2817–2826.

Peng, H.C., Ding, C., and Long, F., et al. 2005. Minimum redundancy—maximum relevance feature selection. IEEE

Intell. Syst. 20, 70–71.
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