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A Appendix: Proposal distribution

As described above, the proposal distribution for histories is defined by a se-
quential sampling procedure that selects groups of atom pairs to merge in each
step. The goal is to define this distribution so that the overall proposal distri-
bution is as close as possible to the actual conditional distribution p(H ′

i
|Hi−1),

making the acceptance probability as close as possible to one. Directly charac-
terizing p(H ′

i
|Hi−1) appears to be difficult, so we settle for a heuristic weighting

function in the proposal distribution for merges that is designed to produce rea-
sonably good proposed histories. The Metropolis-Hastings algorithm will ensure
that the retained samples will accurately reflect the posterior distribution, once
the Markov chain reaches stationarity.

In each step, we consider all possible duplications consistent with the current
set of guide trees, as well as selected deletion and speciation events. Deletions do
not leave observable sequence traces in extant species, and thus it is impossible
to date them precisely; instead, in the proposal algorithm we associate deletions
with the speciation or duplication events that occurred before them. We allow
a single deletion following a duplication. We consider only deletions completely
inside the source or target sequence of the duplication.

A speciation event is represented as a copy of all atomic segments from one
species to a previously empty sequence of another species, possibly followed
by several deletions in both species. We only allow speciations in the partial
order imposed by the species tree. Additionally, we propose only speciations
that maximize the total sequence length of matched atomic segments between
the two species. As in the case of duplications, only segments that are currently
cherries in the corresponding guide trees can be matched. For example, if we
have sequences in two species S1 = a1b1c1 and S2 = a2b2c2, and b1 and b2 are
not cherries in the segment tree, we have to propose speciation from an ancestral
sequence ab1b2c or ab2b1c, followed by one deletion in species S1 and one deletion
in species S2. Proposals that obey these constraints can be easily generated by



a simple dynamic programming algorithm, and in the case of many possible
speciation proposals, we only keep 20 highest weight candidates. Note that it is
always possible to propose at least one event until we reach an ancestral sequence
of unique atoms.

We characterize each proposed event by a feature vector f1, . . . , fk and the
probability of choosing the event will be proportional to exp(

∑
i
wifi) for some

fixed set of weights wi. In the rest of this section we briefly describe these features
and their weights.

Target length. The basis of the overall score is the length ℓ of duplication or
speciation, i.e. how much sequence is removed by unwinding the event. We set
f1 = ln(ℓ) and w1 = 1.

Previously seen event. To keep the newly proposed history similar to the previous
sample Hi−1, we add bonus to events seen in Hi−1. This is achieved by a binary
indicator feature f2 and weight w2 = ln(10). Some events may not be possible
in the new history due to changes in the guide trees.

Branch length mean and variance. For a given duplication consistent with the
guide tree set, we can compute the mean distance µ of corresponding cherries
in the guide tree (weighted by the lengths of atoms in nucleotides), and also
variance on such distance σ. The lower µ indicates likely more recent events,
while large variance σ would indicate that we are merging two or more events
that happened at different times. We set f3 = µ, f4 = σ, w3 = −10, w4 = −1.

Partial duplication penalty. If the proposed duplication is a subset of a larger
duplication, we set indicator f5 = 1 and use w5 = − ln(100).

Breakpoint reuse penalty. Although, we allow breakpoint reuse, we favor dupli-
cations with fewer breakpoint reuses which seems to be particularly useful for
determining correct direction of duplications. We have implemented the three
conditions stipulated by Zhang et al. (2008) based on collapsibility of atom pairs
on boundaries of the duplicated segments. We set f6 to the number of violated
conditions and w6 = − ln(10);

Pair reduction bonus. Consider the number π of distinct pairs of adjacent atom
types that occur in the current set of sequences. For input with n atom types,
π = n − 1 when we reach the ancestral sequence, and each duplication reduces
π by at most 2. This gives us a lower bound on the number of events necessary
to reach the ancestral sequence. We set f7 to be the reduction of π achieved by
the event (f7 can be negative if π increases) and w7 = ln(10).

Deletion penalties. Deletion associated with a duplication is penalized by setting
f8 = 1 and w8 = − ln(10). In addition, we penalize longer deletions by setting
f9 = ln(d/(d+ ℓ)) and w9 = 3 where ℓ is the length of the target sequence in the
duplication, and d is the length of the deletion. Each deletion associated with a
speciation is penalized by setting f10 = 1 and w10 = − ln(1000).

Heat constants. Finally, in some rounds of the MCMC sampler, we want to
explore radically new histories, while in other rounds we want to concentrate on
smaller local improvements. Thus, we exponentiate the final event weights to a
heat constant, which changes from round to round. In our experiments, we have
used cyclic sequence of heats (0.5, 0.6, 1, 1.2).
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B Appendix: Supplementary Figures
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Fig. B1. Convergence of the
MCMC sampler. Log likelihood

as a function of iteration number for

two independent chains with random

starting points on a slowly evolving

simulated cluster.
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Fig. B2. Ancestral sequence reconstruction for PRAME. The cartoon shows

large blocks of consecutive atomic segments, with block size proportional to the number

of atoms per block. The blocks are ordered according to the highest posterior ordering

and the alternative edges show other possible pairs of adjacent atoms with > 25%

posterior probability. The atoms spanning five ancestral genes at 90% similarity are

marked A-E.
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Table B1. Distribution of events along the individual branches of the phy-
logeny. The table shows a histogram of the differences between the actual and the

expected number of events computed from the MCMC samples.

rate 200 (slow) rate 300 (fast)
Branch < 0 0 1 2 > 2 < 0 0 1 2 > 2

Duplications:
human 0 20 0 0 0 0 20 0 0 0

hominid 1 19 0 0 0 5 15 0 0 0

chimp 0 20 0 0 0 0 20 0 0 0

macaque 6 13 1 0 0 2 18 0 0 0

root 0 15 5 0 0 0 17 2 1 0

total 3 16 0 1 0 4 16 0 0 0

Deletions:
human 0 20 0 0 0 0 20 0 0 0

hominid 1 16 3 0 0 0 15 5 0 0

chimp 0 20 0 0 0 0 20 0 0 0

macaque 0 18 2 0 0 1 18 0 1 0

root 0 19 1 0 0 0 20 0 0 0

total 0 17 1 2 0 1 12 6 1 0
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