
u Ottawa 
L'Universite canadienne 

Canada's university 



nm 
FACULTE DES ETUDES SUPERIEURES Î ^J FACULTY OF GRADUATE AND 
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Abstract 

As genomes of related species diverge through rearrangement mutations, groups of 

genes once tightly clustered on a chromosome will tend to disperse to remote locations 

on this chromosome or even onto other chromosomes. Even if most rearrangements are 

local, e.g., small inversions or transpositions, after a long enough period of time their 

chromosomal locations may reflect little or none of their original proximity. Given 

the gene orders in two modern genomes, then, it may be difficult to decide if some 

set of genes are close enough in both genomes to infer some ancestral proximity or 

some functional relationship. There are a number of formal criteria for gene clustering 

in two or more organisms, giving rise to cluster detection algorithms and statistical 

tests for the significance of clusters. These methods all depend on one or more 

arbitrary parameters as well as n, the number of genes in common in the two genomes. 

The various parameters control, in different ways, the proximity of the genes on the 

chromosome in order to be considered a cluster. Change the parameters and the 

number of clusters may change, as may the content of each cluster. We explore 

a two-parameter class of gene proximity criteria, and find natural values for these 

parameters. One has to do with the parameter value where the expected information 

contained in two genomes about each other is maximized. The other has to do 

with parameter values beyond which all genes are clustered. We analyse these using 

combinatorial and probabilistic arguments as well as simulations. 

n 
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Chapter 1 

Introduction 

1.1 Biological Background 

The increasing availability of comprehensive linkage maps and complete genomic se­

quences from many prokaryotes, eukaryote organelles and more recently eukaryote 

nuclei has led to the burgeoning of a new area, Comparative Genomics, based on 

the macrostructure of entire genomes, rather than on the traditional comparison of 

a single gene or protein sequence in different organisms, to study the relationship of 

genome structure and function across different biological species. 

One of the fundamental tasks in the comparative genomics is the identification 

of homologous genes in related genomes, pairs of genes, one in each genome, that are 

descended from a single gene in the ancestral genome, either through speciation or 

duplication. This is a prerequisite to many tasks in the comparative genomics. 

Homologous genes are very useful tools in biology and bioinformatics. First, they 

help us to transfer knowledge of one genome to make inferences about another. Al­

though increasing numbers of genome sequences are becoming available, most experi­

mental studies are still carried out on a small set of model organisms. By determining 

1 
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how genes and genomic regions of poorly-studied organisms correspond to those of 

well-studied organisms, knowledge about one species can improve understanding of 

others. In particular, although humans are among the most well-studied organisms, 

many types of experimentation cannot be carried out on humans. Thus, transfer 

of knowledge from model organisms is essential for understanding human biological 

processes, and developing new disease treatments. 

Moreover, homologous genes can help elucidate protein function and regulation. 

In bacteria, functionally related genes tend to be spatially clustered on the chromo­

some. Comparisons of gene order can identify sets of genes whose spatial arrangement 

is conserved, and that are more likely to be functionally related. Unlike sequence or 

structural homology methods, which primarily provide insight on the biochemical 

function of a protein, spatial clustering offers evidence of associations between pro­

teins, such as physical interactions, or participation in the same pathway. These 

types of associations help identify the physiological or cellular role of a protein, com­

plementing information derived from sequence comparisons. In bacteria, conserved 

gene order and content have been used for prediction of operons [4, 11, 25, 36, 38], 

horizontal transfers [19], and more generally to investigate the relationship between 

spatial organization and functional selection [17, 18, 22, 30, 32, 33]. 

Finally, we can construct a phylogeny tree of these genomes to represent the evo­

lution history of species and estimate ancestor genomes based on the model species 

by comparing homologous genes in different genomes. Following speciation, offspring 

genomes initially have identical gene content and order. Similarly, a whole genome 

duplication yields a new genome with two identical copies of the ancestral genome. 

In both cases the two genome copies will invariably diverge over time. Genomes, con­

taining the entire genetic complement of an organism, will evolve as the genes in them 

evolve through the processes of nucleotide substitution, insertion and deletion. Gene 
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duplication, gene loss and horizontal transfer will also alter the gene complement, the 

set of genes appearing in the genome. In addition, larger scale genome rearrangements 

including translocation, transposition and inversion disrupt gene order and syntenic1 

structure [27]. 

However, as genomes of related species diverge through rearrangement mutations, 

large and small, groups of genes once tightly clustered on a chromosome will tend to 

disperse to remote locations on this chromosome or even on to other chromosomes. 

After a long enough period of time their chromosomal locations may reflect little or 

none of the original proximity. Given the gene orders in two modern genomes, then, 

it may be difficult to decide if some set of genes are close enough in both genomes to 

infer some ancestral proximity or some functional relationship. 

Conserved chromosomal segments are defined as any maximal contiguous chro­

mosomal regions with the same gene content, order, and even orientation (the tran­

scription direction associated with each gene) in two or more genomes being compared. 

In practice it is useful to relax this stringent definition to some extent to detect the 

evolutionary signal in regions, that are "almost conserved", to avoid unstable esti­

mates of the number of segments if these may be as small as one or two genes [7], and 

to diminish the effect of experimental error and other noise. The experimental errors 

can be attributed to gross mistakes in chromosomal assignment of genes, quantitative 

errors in gene positions as well as the errors occurring when integrating gene locations 

from different sources [20, 28]. So a less strict concept, gene clusters, is introduced, 

which are pairs of regions with similar, but not identical, gene content and gene order. 

1Two genes located on the same chromosome in a genome are said to be syntenic in that genome. 
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1.2 The Steps of Cluster Identification 

To identify clusters in closely related genomes, map-based approaches are often used 

in which clusters are detected based on the locations of genomic markers, rather 

than direct comparison of the primary sequence. A marker-based approach to the 

identification of homologous segments typically involves the following four steps. 

1.2.1 Gene and Chromosome 

Genomic comparison using map-based approaches requires a set of markers, sequences 

with unique locations in the genome, as input data. When the markers are biological 

genes and the input data are genomic sequences, the marker identification problem 

reduces to the problem of gene finding. Many other types of markers can also be 

used, e.g., [23, 24, 29]. 

In this thesis, we assume that a genome consists of some linear unbroken chro­

mosomes, the orientation of each gene is ignored and the distance between two genes 

is calculated using the number of genes between them. For instance, a genome 

S = (gi,92,--- ,9i)(9i+w- ,9j)(9j+ii-'- ,9n), where gk (k = 1,2,--- ,n) is a gene of 

the genome S and braces represent the ends of chromosomes. In this example, the 

genome S has three chromosomes and n genes. This model assumes that genes do 

not overlap, and disregards the physical distance between genes. So, we do not need 

to deal with the variation in gene density that can lead to gene-rich and gene-poor 

regions of chromosomes when we compare two or more genomes. 

1.2.2 Homology Detection 

The most general definition of homology is that it designates a relationship of com­

mon descent between any entities, without further specification of the evolutionary 
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scenario. Accordingly, entities related by homology, in particular, genes, are called 

homologs. In other words, two genes are homologous if they arose from a single gene 

in an ancestral genome. Orthologs and paralogs are two fundamentally different types 

of homologous genes that evolved, respectively, by vertical descent from a single an­

cestral gene and by duplication. Two genes in different species are orthologous if they 

come from a single gene in the Most Recent Common Ancestor(MRCA) of the two 

species, and paralogous if they arose through a duplication event that preceded the 

divergence of the species[12, 13]. 

Figure 1.1 shows a hypothetical phylogenetic tree of a gene family. By gene 

duplication, the gene in MRCA becomes two gene copies, a and (3. After speciation 

events occur, we can find a and (5 in species frog, chick and mouse. Then one gene 

copy from the gene in MRCA in one species is orthologous to the same gene copy in 

different species and paralogous to the different gene copy in different species. For 

instance, a gene in mouse is orthologous to a gene in chick and is paralogous to (3 

in mouse, chick and frog. All six genes are homologous, as they arose from a single 

ancestral gene. All of them form a gene family. 

1.2.3 Cluster Detection 

Declarative and constructive gene cluster definitions 

We can define clusters either by specifying precise characteristics that allow one to 

identify a cluster, or by giving a procedure for constructing clusters, without men­

tioning cluster properties. The former definition is called declarative definition and 

the latter one, constructive definition. Although a constructive definition makes it 

clear how to find clusters, it does not provide what the resulting clusters will look 

like. Unless some properties can be abstracted from the constructive idea, it is dif-
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homologs 

\̂  -" paralogs 

frogo. chicka mousea mousef3 chick(J frogp 

a-chain gene p-chain gene 

early globin gene 

Figure 1.1: The relation of homologs, orthologs and paralogs 

(http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html) 

ficult to do analysis on the resulting cluster. A declarative definition, on the other 

hand, facilitates the analysis; however, it requires an additional search procedure to 

find clusters that satisfy the formal definition. No matter what cluster definition is 

used, it is necessary to verify that the constructive and declarative definitions are 

equivalent. Recently there has been a movement to formalize cluster definitions, and 

to develop precisely formulated search algorithms, so that correctness and efficiency 

of these algorithms can both be analyzed. 

Clus te r definit ions 

There are a number of formal definitions and criteria for gene cluster detection in two 

or more organisms, giving rise to cluster detection algorithms and statistical tests for 

the significance of clusters, e.g., [7, 16, 37]. Here we introduce five commonly applied 

criteria for gene clusters: conserved segment, common interval, r-window cluster, 

max-gap cluster (also referred as "gene teams" [1]) and generalized adjacency gene 

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html
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cluster (GA cluster) . 

• The most conservative definition is conserved segment, a set of genes with the 

same gene content, order, and even orientation (the transcription direction as­

sociated with each gene) in two or more compared genomes [3, 20, 21, 31]. 

However, this stringent definition will exclude many regions that did indeed 

descend from a single ancestral region but have undergone a series of small 

rearrangements, insertions or deletions. 

• A common interval defines a set of genes occurring contiguously in each of the 

genomes compared, ignoring gene order, but without allowing gene insertions 

and deletions. A number of researchers have developed search algorithms to 

efficiently find common intervals in genomic data [5, 14, 34]. However, this 

definition is still generally too strict, since gene duplication and loss are com­

mon when comparing distantly related genomes, and a single gene insertion or 

deletion in one genome may destroy a common interval. 

• An r-window cluster is defined as a pair of windows in two genomes, each 

containing r genes, in which at least k genes are shared [7]. This definition 

allows rearrangements as well as a limited number of insertions and deletions. 

If k=r, an r-window cluster reduces to a common interval gene cluster with size 

k. How to best choose the values of r and k is a problem in practice. 

• A max-gap cluster is a set of marked genes where the number of intervening 

genes between adjacent marked genes in each genome compared is not larger 

than a given gap parameter, g. This definition also ignores gene order and 

allows insertions and deletions, but does not constrain the maximum length 

of the cluster. When g=0, max-gap clusters reduces to common interval gene 
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clusters. A max-gap cluster is maximal if it is not contained within any larger 

max-gap cluster. 

• A generalized adjacency gene cluster (GA cluster) is a component of a graph, 

called generalized adjacency graph. Genes are represented as vertices in this 

graph and edges are added between vertices if the number of genes between the 

two corresponding genes are less than a given parameter 9 in both genomes. 

Clearly, if 6 = 1, GA clusters reduce to conserved segments. 

r-window clusters, max-gap clusters and GA clusters will be discussed further in 

Chapter 2. 

The following is an example to illustrate the four different cluster criteria. 

Given two genomes: G\ = 1 2 * 3 4 5 * * 6 7 * 8 

and G2 = 2 * 6 7 * 8 1 * 5 3 4 

where the integers represent homologous gene pairs and the stars indicate genes with 

no homolog (or a remote homolog) in the other genome, then we can find 

1. Conserved segments: {3, 4} and {6, 7}. 

2. Common intervals: {3, 4, 5} and {6, 7}. 

3. r-window clusters 

(a) when r = 5 , k=3: {1, 3, 4}, {3, 4, 5} and {6, 7, 8}; 

(b) when r=6 , k=4: {1, 3, 4, 5}. 

4. Maximal max-gap clusters 

(a) when g=2: {1, 2, 3, 4, 5, 6, 7, 8}; 
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(b) when g=l: {6, 7, 8} and {3, 4, 5}. 

5. GA clusters 

(a) when 0=3: {1, 2, 3, 4, 5, 6, 7, 8}; 

(b) when 9=2: {3, 4, 5} and {6, 7, 8}; 

The criteria r-window cluster, max-gap cluster and GA cluster all depend on one or 

two arbitrary parameters as well as n, the number of genes in common in the two 

genomes. The various parameters control, in different ways, the proximity of the 

genes on the chromosome in order to be considered a cluster. 

1.2.4 Cluster Significance Test 

In the previous section, we introduced the basic steps for identifying gene clusters, 

from determining the position of genes in the genome to designing cluster definitions 

and criteria. After these steps, we can create the algorithm to find gene clusters. 

However, it is not possible to estimate a gene clustering algorithm's accuracy, sensi­

tivity or specificity, because we do not know what the true evolutionary relationships 

are. Over time, processes of genome mutation and rearrangement cause the rela­

tionships among formerly adjacent genes to become more and more similar to the 

statistical background. Thus, to evaluate putative gene clusters, it is imperative to 

test and reject the hypothesis that the observed similarities could have occurred by 

chance. So cluster significance statistical tests are necessary to evaluate the accurate 

identification of ancient segmental homologies. 

Moreover, statistical models also enable the principled selection of search param­

eters. Cluster definitions and criteria are based on one or more parameters which are 

fixed and defined by users. For example, the gap parameter g in max-gap cluster and 
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the parameters r and k which represent the window size and the smallest number 

of gene shared in the r-window cluster definition. All of these parameters are user-

specified. If parameters selected are too strict, many significant clusters will not be 

detected. On the other hand, very liberal parameter values may lead to biologically 

meaningless clusters being detected. A statistical model can be used to determine 

the range of parameter values within which a cluster will still be significant. 

1.3 Cluster Properties and Searching Strategies 

1.3.1 Cluster Properties 

As we have mentioned, there are many different gene clustering criteria. It is dif­

ficult for us to compare the different criteria without enumerating desirable cluster 

characteristics. Furthermore, the significance of gene clusters we obtain using the 

clustering criteria also depends on the cluster properties. Hoberman and Durand [15] 

listed some important cluster properties. In this section, I will present some of the 

most commonly used ones. 

• Size: Almost all approaches to gene clustering evaluation consider gene cluster 

size, i.e. the number of marked genes contained within the cluster. Here the 

"marked" gene is one in some predetermined subset of genes. 

• Leng th : The length of a gene cluster is the total number of marked and un­

marked genes contained within it. 

• Dens i ty : The density of a gene cluster is the cluster size divided by the cluster 

length. The majority of existing methods attempt to find regions that are 

densely populated with marked genes. 
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• Order: Some gene clustering criteria such as conserved segments consider the 

order of gene in the cluster, i.e. the genes of a gene cluster in one genome must 

be in identical or opposite order in the other genome. Other criteria, however, 

release this constrain. 

• Orientation: Conserved spatial organization in bacterial genomes often points 

to functional associations between genes. In particular,-clusters of genes in close 

proximity, with the same orientation, often indication operons. 

1.3.2 Search Strategies of Gene Clustering 

Researchers are sometimes interested in the genes in a particular region of a genome 

and search one or more other genomes for similar regions. Or, gene clusters may be 

found in "fishing expeditions" for clusters in the whole genome comparisons. So the 

significance of a gene cluster depends not only on the characteristics of the cluster, 

but also on the way it was found. The larger the search space, the less significant 

the cluster. However, most statistical tests do not consider the search space size, 

and most people represent cluster results without providing the details of the search 

procedure during which it was detected. Durand and Sankoff [7] characterized the 

following three most common search strategies: 

1. Reference set: Given a set of genes of interest, the goal is to identify subsets 

of these genes that are located in close proximity in the genome. For example, 

the genes of interest share a particular functional or regulatory property. Using 

this gene set as reference set, we look for clusters of reference set genes in a 

genome. In this case, the search space is the entire genome. 

2. Window sampling: Given two chromosomal regions, the goal is to determine 

whether the regions share a significant number of homologs, in order to obtain 
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evidence that they descended from a single region in an ancestral genome. In 

many cases, these windows are selected because they contain a pair of known 

homologs of particular interest. This search scenario may be used, for example, 

to determine whether a particular set of paralogs were duplicated through a 

large scale event, or to assess whether the gene order around a pair of orthologs 

has been conserved. In window sampling, the search space is confined to the 

two regions of interest. 

3. Whole genome comparison: Given two genomes, the goal is to identify all 

clusters of genes that appear in both genomes. In this case, appropriate tests 

must be used to avoid exaggerating cluster significance due to a much larger 

search space. 

1.4 Thesis Overview 

As I mentioned, there are a number of formal criteria for gene clustering in two or 

more organisms, giving rise to cluster detection algorithms and statistical tests for 

the significance of clusters, e.g., [7, 16, 37]. These methods all depend, however, on 

one or two arbitrary parameters as well as n, the number of genes in common in the 

two genomes. The various parameters control, in different ways, the proximity of the 

genes on the chromosome in order to be considered a cluster. Change the parameters 

and the number of clusters may change, as may the content of each cluster. 

In this thesis, we define a two-parameter class of gene proximity criteria, where 

two genes are said to be one-way (i, j)-adjacent if they are separated by i — 1 genes 

on a chromosome in one of the genomes and j — 1 genes in the other or either-way 

(i, j)-adjacent if they are separated by i — 1 genes on a chromosome in either one 

of the genomes and j — 1 genes in the other. And also we define a (#, ^-adjacency 
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cluster in terms of a graph. These definitions are inspired by previous work [37, 39] 

on (in our present terminology) (9, 9) clusters. 

As with other clustering criteria, the quantities 9 and ip w m at first seem to be 

arbitrary parameters in our definition of a cluster. However, research on statistical 

properties of the generalized adjacency gene clustering criteria will enable us to remove 

some of this arbitrariness, by finding "natural values" for 9 and tp as a function of n, 

the total number of genes in the genomes. 

In Chapter 2, I represent in some detail techniques of two previous gene clustering 

models, the r-window model and the max-gap model and some results of research un­

der these models. Then I introduce the generalized adjacency model. I also represent 

some related work by my colleagues [37, 39]. 

In Chapter 3, we develop in more detail the generalized adjacency model defined 

by Zhu et al. [39] and introduce a class of two-parameter generalized adjacency gene 

clustering models. We pay particular attention to (l,j) adjacencies and (1,9) clusters 

since these may be of interest in genome similarity studies in that they depend upon 

how much genes that are strictly adjacent in either of the genomes being compared 

are separated in the other genome. We then move to the more generalized criteria, 

(i,j) adjacencies and (9,ip) clusters. We start by defining a wide class of similarities 

(or equivalently, distances) between two genomes in terms of a class of weights on 

the (i, j)-adjacencies, namely any system of fixed-sum non-negative weights u> non-

increasing in i and j , representing decreasing weight with increasing separation of the 

genes on the chromosome. In any pair of genomes, in order to maximize the sum 

of the weights, we prove a theorem showing that the solution reduces to a uniform 

weight on gene separations up to certain values of 9 and ip, and zero weight on larger 

separations. By using simulations to investigate the expected value of the optimal 

9 and ip under a uniform measure on the space of genomes, it is found that the 
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parameters are slowly-growing functions of n, the length of the genomes and this 

behaviour is closely modeled by a theorem in the theory of record times of series of 

random i.i.d. variables. 

In Chapter 4, we study the second set of "natural" parameter values determined 

by a kind of percolation behaviour of the (9,ip) generalized adjacency gene clusters. 

Beyond certain values of these parameters, it is no longer surprising, revealing or 

significant to find large groups of genes clustering, because all clusters rapidly coalesce 

together even in pairs of random genomes. So tests of significance are no longer 

meaningful. 

First, we calculate the expected number of (z,j)-adjacent gene pairs, prove that 

this number converges to a Poisson variable, and then find an expression for the ex­

pected number of (i,j) adjacencies with i < 9 and j < ip. Moreover, we extend this 

to the expected number of three and four genes which are in the same generalized 

adjacent gene cluster. At last, we discuss the percolation threshold which serves as 

an upper bound on the meaningful choices 9 and ip if we are willing to disregard 

the criteria of Chapter 3, and prefer to search for clusters more widely dispersed on 

chromosomes. Most analytical results on percolation pertain to completely random 

(Erdos-Renyi) graphs. The graphs associated with (9, if)) generalized adjacency gene 

clusters manifest delayed percolation, so the use of Erdos-Renyi percolation values 

would be a "safe" but conservative way of avoiding dangerously high values of the pa­

rameters. We show how to translate known results on Erdos-Renyi percolation back to 

generalized adjacency clusters, we also introduce random bandwidth-limited graphs 

and use simulations to compare the delays of generalized adj acency and bandwidth-

limited percolation with respect to Erdos-Renyi percolation in order to understand 

what structural properties of generalized adjacency are responsible for the delay. 

In Chapter 5, we lift the constraint that the genomes must have the same gene 
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content and look for some properties of generalized adjacency gene clusters which can 

be used in more real genome comparison cases. 

In Chapter 6, we extend the two parameter generalized gene clustering crite­

rion from two-genome comparison to multiple genome comparison and discuss the 

interpretation of generalized adjacency of two genes in multiple genomes. 

Chapter 7 represents the conclusion of my thesis and some open questions. 



Chapter 2 

Gene Clustering Models and Their 

Statistical Tests 

Various clustering definitions and algorithms have been widely used in empirical stud­

ies, however, very few formal statistical models have been developed to test the sig­

nificance of clusters. Most approaches have simply estimated the distributions of test 

statistics based on randomization. In contrast, Durand and Sankoff [7] undertook 

a mathematical approach constructing statistical tests for r-window clusters under 

different scenarios; Hoberman et al. [16] represented analytical statistical models for 

clusters satisfying max-gap criterion. Zhu et al. [39] represented a new parameterized 

definition of gene clusters, generalized adjacency gene cluster (GA cluster) and Xu et 

al. [37] initiated research into the statistical properties of this model. In this chapter, 

I will discuss these three models. Genomes are modeled as a set of n genes, ordered by 

their positions in the genome: G = {1,2,... ,n}, ignoring physical distances between 

genes; we assume genomes are linear, genes do not overlap and the distance between 

two genes is simply the number of genes between them. 

16 
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2.1 r-Window Gene Clustering Model 

In 2003, Durand and Sankoff [7] introduced a new definition of a gene cluster, r-

window gene cluster, and presented a comprehensive analysis on statistical tests suit­

able for this cluster definition. They begin with a simple model under a reference 

region scenario. 

For a given genome G with n genes and m genes prespecified, they assume every 

prespecified gene has exactly one occurrence in G. The goal is to test the significance 

of a r-window cluster containing all of the m genes, identified through searching the 

whole genome. The null hypothesis is that the m genes are chosen by chance, i.e. the 

probability of choosing any m genes in n genes is the same. Then, the probability of 

observing that the m genes span at most r slots in G (equation(2) in [7]) is 

(n-r)(r-\) + (r) 
9(n,m,r) = ' ^ Km) (2.1.1) 

So if this quantity is less than a given significance level a, then the null hypothesis is 

rejected, and the observed r-window cluster is significant, which suggests or confirms 

that genes in the cluster share some evolutional or functional properties. 

2.1.1 Gene Family Model 

In real genomes, where genes may occur in two or more almost identical copies, 

Durand and Sankoff [7] also propose a more realistic and complicated model, the 

Gene Family Model. 

They assume that homology relationships have already been determined and the 

genes in a genome can be partitioned into non-intersecting gene families, sets of genes 

with similar sequences. Every gene in a gene family is homologous to all the other 

members in the same family while genes in different families cannot be homologous. 
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The size of a gene family, represented by 0y, is defined as the number of genes in the 

gene family, say fj, in the genome Gj. Let T = {/,} be the set of all gene families in 

genomes under consideration and rif = \!F\ which is the total number of gene families. 

Denote by n; be the number of genes in the genome Gj. 

Based on the gene family model, Durand and Sankoff [7] construct statistical 

tests against null hypotheses of random gene order, taking incomplete clusters, mul­

tiple genome comparison and genome self-comparison into account. However, the 

treatment presented is mainly of theoretical interest and the expressions for calcu­

lating the p-values of their test statistics are not computationally tractable. They 

also give the formulae for calculating the expected number of clusters of a given type 

under different cases, which can be used as an informal test. 

2.1.2 Window Sampling 

r-window clusters can be obtained by window sampling. Here I represent only the 

window sampling model for two genomes. 

1. Without gene families 

For two genomes G\ and G2 containing the same set of n genes, given a pair 

of windows W\ and W2 of length r, drawn from G\ and G2 respectively. Under 

the null hypothesis that genes are randomly distributed in G\ and G2, the 

probability that W\ and W2 share at least m genes is : 

P ( n , r , m ) = ^ ^ A ^ Z (2.1.2) 
i=m \r/ 

which is equation (22) in [7]. 

2. W i t h gene families 

Under the gene family model, an r-window cluster is redefined as a pair of 
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windows, each containing r genes, in which at least k gene families are shared. 

Durand and Sankoff [27] studied two genomes G\ and G? containing rii and ri2 

genes respectively and having the same set of gene families T. Two windows 

with length r, W\ and W^-, are selected from G\ and G^ respectively. They 

obtained an expression of the probability that W\ and W^ share at least m genes, 

but it is computationally intractable. Using a generating function method, 

Raghupathy and Durand [26] provided a computationally tractable expression 

of this probability by constraining all faj (as defined in Section 2.1.1) to take 

on the same value, 0. The generating function is 

Q(m) = E t (7W)E (JW)] (2-1-3) 
fc=m ^ ' l=m ^ ' 

where 

Pi(fc) = (n
r
1)"(-D f cD(-1)<( 

n2\ L V̂  , , j r r/ i\i(l\( i(P \Jn2-H »«-(?)" E <-«' E K-D'Q 
^ ' z=max(Q,r-k<t>) j = [-£=£] ^ ' 

r — z J \ z 

2.2 Max-Gap Gene Clustering Model 

In the rest of this thesis I use the term max-gap clusters as shorthand for maximal 

max-gap clusters. Hoberman, et al. [16] developed statistical tests for max-gap 

clusters found in two different searching strategies, reference region and whole 

genome comparison. Due to the nature of max-gap definition, max-gap clusters 

cannot be identified by window sampling [26]. 
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2.2.1 Reference Region 

In this scenario, m genes are prespecified (or marked), each of which has exact one 

homolog in the genome of n genes, the motivation is to test the significance of a 

cluster containing all or part of the m specified genes, identified through searching 

the whole genome. In this test, the null hypothesis is that the m genes are distributed 

in the genome randomly. Hoberman, et al. [16] represented two test statistics for the 

difference cases in the reference region scenario: the complete cluster case and the 

incomplete cluster case. 

In the complete cluster case, they calculated what the probability of observing 

that m marked genes form a max-gap cluster with maximum gap less than or equal 

to g under the null hypothesis mentioned above. The test statistic is (equation(2) in 

[16]): 

P(n,m,g) = -p- <( 

(n - wmg + l)(g + l)™"1 + {^f^){g + l)m~\ wmg<n + l 

d0(m,g,n), otherwise. 

(2.2.1) 

where n — wmg + 1 = m + (m — l)g is the number of ways of placing the first marked 

gene, (g + l ) m _ 1 is the number of ways of placing the remaining marked genes (or 

equivalently, the number of ways of choosing m — 1 gaps each between 0 and g), and 

the last term is the number of ways of constructing a max-gap cluster within the last 

w — 1 genes in the genome. Furthermore, 

(n-m)/(g+l) , . / •/ t i\\ 

Unlike the complete cluster case, in the incomplete cluster case with fixed maxi­

mum gap value g , the m marked genes can form different clusters in the same genome, 

and the size of the largest cluster is used as test statistic. Hoberman, et al. used 
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dynamic programming to count those permutations which do not contain a cluster 

of size h or larger and subtract to obtain the probability of observing at least one 

incomplete cluster. 

i.e. 

nt u \ 1 r][n,m,g +1,0] . . 
Q{n,m,h,g) = l ^ (2.2.2) 

The algorithm is defined by the following recursion relation (equation(4) in [16]): 

0 it c = h or n < m 

1 else if m = 0 

r)[n — l,m,j + l,c] + rj[n — l , m — 1,0, c + 1] else if j < g 

rj[n — l,m,j + l,c] + rj[n — l , m — 1,0,1] otherwise 

rj[n,m,j,c] = < 

(2.2.3) 

Based on Equation 2.2.1, the probability of observing a complete cluster as a 

function of m for n = 1,000 is shown in Figure 2.1 (Figure 2. in [16]). The probability 

of observing a complete cluster is an increasing function of g, however, it does not 

increase monotonically with m, as expected. For example, when m=n, a complete 

cluster for any value of g can always be observed. The similar trend is also found for 

the probability of observing an incomplete cluster as a function of m, given h = y . So, 

for the max-gap cluster definition without constraints on the length or order, larger 

clusters do not always imply greater significance, which contradicts "a widespread 

belief that cluster significance grows with the number of homologs in the cluster" 

[16]. 

2.2.2 Whole Genome Comparison 

In this scenario, Hoberman, et al. only consider pair-wise comparison. Given two 

genomes, G\ and G2, each containing n genes only m of which are in common, the 
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100 200 300 400 500 600 700 800 

Number of genes of interest (m) 

Figure 2.1: (Figure 2. in [16])Probability of a complete max-gap cluster of m marked 

genes in a genome of size n = 1,000 as a function of m, for g = {5,10, 20,50}. 

null hypothesis is that the m genes are randomly distributed in G\ as well as in 

G2. Like the reference region scenario, they also assume that each of the m genes in 

G\ has exactly one homolog in G2, and vice versa. Of course, n — m genes in each 

genome have no homologs in the other. Through whole genome comparison between 

G\ and G2, the probability of observing a complete max-gap cluster of m common 

genes is [P(n, m, g)]2, where P(n,m,g) is defined in Equation 2.2.1. If G\ and G2 

are closely related and share a high percentage of genes, this quantity can approach 

1 (e.g. m = n). Consequently, in the whole genome comparison scenario, rather than 

calculate the probability of observing a cluster of size at least h, Hoberman, et al. 

[16] tried to determine the probability of observing a cluster of exactly size h, and 

represent the upper and lower bounds for this quantity. 
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2.3 Generalized Adjacency Gene Clustering Model 

Zhu et al. [39] represented a new parameterized definition of gene clusters that allows 

us to control the emphasis placed on conserved order within a cluster and hence to 

systematically explore the details of the content/order trade-off. The basis for this is 

the notion of generalized adjacency1, which is the property shared by any two genes 

no farther apart, in the linear order of a chromosome, than a fixed threshold. Then 

a generalized adjacency gene cluster (GA cluster)2 in two or more genomes is just a 

maximal set of genes, where in each genome these genes form a connected component 

of generalized adjacencies. Increasing the size of the threshold relaxes the degree of 

common ordering required, within a cluster, in different genomes. Nevertheless, for 

any fixed threshold, evolutionary rearrangements continue to disrupt the orders of 

genes on chromosome and will create, alter or destroy generalized adjacency gene 

clusters. Since even pairs of randomly constructed genomes may have some general­

ized adjacency gene clusters in common, the question arises of whether the number 

or size of these common clusters is significantly larger than the random case. Xu 

et al. [37] studied the statistical properties of generalized adjacency to answer such 

questions. 

2.3.1 GA Cluster Definition 

Definition 2.3.1. [37] Let Vx to be the set of markers in the genome X. These 

markers are partitioned among a number of total orders called chromosomes. For 

markers g and h in Vx on the same chromosome in X, let gh G Ex if the number 

of genes intervening between g and h in X is less than 0, where 0 > 1 is a fixed 

*all the gene pairs which are (i,j)-adjacency in my definition of two-parameter generalized adja­
cency, where i < k and j < k, are generalized adjacencies with parameter k in [39] 

2It is called (8,9)-adjacency cluster in my definition of two-parameter generalized adjacency. 
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neighbourhood parameter. 

Consider the graphs Gs = (Vs,Es) and GT = {VT,ET) with a non-null set of 

vertices in common V = Vs D Vp- We say a subset of C QV is a generalized ad­

jacency gene cluster if it consists of the vertices of a maximal connected subgraph 

ofGST = {V,EsnET). 

This definition of clusters, illustrated in Figure 2.2, decomposes the genes in the 

two genomes into two identical sets of disjoint generalized adjacency gene clusters 

of size greater or equal to 2, and possibly different sets of singletons belonging to 

no cluster, either because they are in Vxy, but not in Ex H Ey, or because they 

are in Vx U Vy \ Vxy- For the simplicity of the properties study, Xu and Sankoff 

[37] did not attempt to deal with duplicate genes in their paper, i.e. they did not 

take gene families into account, and also assumed Vx = Vy = Vxy- In practice, 

depending on the relative emphasis to be placed on order rearrangement versus gene 

insertion/deletion, they can delete all genes in Vx U Vy \ Vxy before calculating Ex 

and Ey, so as to exclude the effect of the markers unique to X or unique to Y. 

When 6 = 1, a GA-cluster reduces to a conserved segment conserving exactly the 

same gene content and order (or reversed order) in both genomes. When 0 = oo, the 

definition returns simply all the synteny sets, namely the sets of markers in common 

between two chromosomes, one in each genome. 

2.3.2 Some Statistical Properties of GA Clusters 

Each genome can be represented as a permutation of the first n positive integers. 

Then represent by / the reference genome 1, 2 , . . . ,n and by R the random genome 

sampled from all n! possible genomes, each with probability of ^ j . 

Let ri2 = \Ei fl ER\ represent the number of common edges, i.e. the number 



2.3. GENERALIZED ADJACENCY GENE CLUSTERING MODEL 25 

GENOME S (3 chromosomes) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

GENOME T (2 chromosomes) 

9 6 15 8 13 12 11 18 7 10 

14 15 16 17 18 19 20 

o - o 

2 5 4 1 21 19 14 3 17 16 

Generalized Adjacency Clusters: 

8-2:{U5}, {6,8}, {11,1213}, {16,17} 
8 - 3 : {1,2,4,5}, {6,7,8,9,10,11,1213}, {14,16,17} 
9= 4 : {1,2,3,4,5}, {6,7,8,9,10,11,1213}, {14,16,17} 

Figure 2.2: Graphs constructed from two genomes using parameter 9 = 3. Thick 

edges determine generalized adjacency gene clusters. Clusters listed for 9 = 2 and 

6 = 4 as well. 

of generalized adjacencies. For a random genome R = r\,r2,... ,rn, if r^ = i, they 

define the position of i in R to be gt = h. Then 

\Ej n ER\ = \{1 < i < j < n | j - i < 9, \9l - 9j\ < 9}\. 

Proposit ion 2.3.2 (Proposition in [37]). For 6 > 1, 

E(n2) = 2t9: 

so that for a given 9 

2 An93-92(l + 9)2 

2n(n - 1) 
(2.3.1) 

lim E(n2) = 292 (2.3.2) 

Proposit ion 2.3.3 (Proposition in [37]). For 9 > 1, n2 converges in distribution to 

a Poisson distribution with parameter 292. 
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2.3.3 Square-root Law for Parameter Selection 

Based on 10,000 pairs of random genomes of size 100, varying parameter 9, the 

frequency of different maximal cluster sizes is shown in Figure 2.3. Figure 2.4 is the 

result of the same calculation when the genome size n is 1,000. It is remarkable how 

quickly the distribution changes between 9 = 9 and 9 = 10 for n = 100, and between 

9 = 31 and 9 = 33 for n = 1,000. 

9=9 

L ~ I 

100 

Figure 2.3: (Figure 4 in [37])Histograms for kmax when n = 100. 

On the basis of 10,000 pairs of random genomes, we determined the change-point 

9* (a value of 9, after which the average of kmax jumps from below 0.5n to above 0.5n 

immediately and dramatically) for a range of values of n(shown in Table 2.1), and in 

Figure 2.5 plotted these points against ^/n. This suggests that the change-point is 

approximately 9* = yjn. 

By calculating how much of the probability mass falls to the right of 0.5n, for each 

value of 6, Figure 2.6 is obtained, showing that the change behaviour, in proportion 
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350 
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50 

6=25 

A 

1 

AHfcJ 
The value of Maxsize 

50 100 

500 1000 1000 500 600 700 800 900 1000 
The value ot Maxsize 

Figure 2.4: (Figure 5 in [37])Histograms for fcmax when n = 1000 

Table 2.1: Change-point as a function of n 

Value of n 

Change-point 

50 100 300 500 1000 3000 5000 10000 

6 9 17 22 32 56 73 104 

to y/n, tends to a sharp "cut-off' at or near 9 = y/n. 
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40 60 
SQRT(n) 

Figure 2.5: (Figure 6 in [37])Change-point for fcmax as a function of y/n. Dotted 

diagonal represents y/n 

0.5 1 
theta/SQRT(n) 

Figure 2.6: (Figure 7 in [37])Histograms for A;max when n = 1,000 



Chapter 3 

The Two Parameter Generalized 

Adjacency Model 

In the previous chapter, I presented the one-parameter GA cluster criterion introduced 

by Zhu et al. [39] and also some statistical results on this criterion found by Xu and 

Sankoff [37]. However, some biologists are more interested in figuring out how far 

apart two genes in one genome tend to be if they are strictly adjacent in another one. 

Furthermore, using one parameter to compare multiple chromosomal genomes may 

lose cluster sensitivity when we do pairwise chromosomal comparison because of the 

large difference between chromosomes. Thus we need to extend the one-parameter 

GA cluster criterion to solve these kinds of problems. 

In this chapter and the following chapters, we extend the GA cluster definition 

to a more general two-parameter generalized gene cluster, and study some properties 

under this new definition. 

29 
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3.1 Basic Definitions 

Definition 3.1.1. Let S be a genome with n distinct genes, i.e., a permutation of the 

integers from { 1 , . . . , n}. Two genes (integers) x and y are i-adjacent in S, written 

\xy\s = i or x ~ y in S, if there are i — 1 genes between them in S. E.g., 1 and 4 

are 2-adjacent in the genome (2 13 4)- We also write x ~ y if x ~ y, i.e., if x and 

y are adjacent in the usual sense. 

Definition 3.1.2. We say two common genes x and y of genomes S and T are 

one-way (i,j)-adjacent if they are i-adjacent in the genome S and j-adjacent in 

the genome T. While genes x and y are either-way (i,j)-adjacent if they are 

i-adjacent in either one of the genomes and j-adjacent in the other. 

Definition 3.1.3. Let u>ij be the (i,j)-adjacency weight on two genes that are one­

way (i,j)-adjacent, i.e., i-adjacent in one genome and j-adjacent in the other, such 

that 

1. 0 < uJij =u)ji, i,j e {1,2, . . . , n - 1} 

3. Uij > u)ki if 

(a) max(i , j ) <max(A;,/) 

(b) m&x(i,j) =mkx.(k,l) and 

min(z,j) < min(k,l) 

Definition 3.1.4. The distance between two genomes S and T is then 

n-\ / n-1 \ 

d(S, T) = 2(n - 1) - ] T TiiifJa + ^ n ^ - . (3.1.1) 
i=l V 3=1 J 

file:///xy/s
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where uiij is the weight of two genes x and y are one-way (i,j)-adjacent in genomes 

S and T; nij is the total number of one-way (i,j)-adjacent gene pairs, (x, y) that are 

i-adjacent in S and j-adjacent in T. 

Since w^ = Uji, let n'tj = n^ + n^ (1 < j < i < n — 1). Then n'^ is the total 

number of either-way (i, j')-adjacent gene pairs in genomes S and T if j < i and twice 

of the total number of either-way (i,j)-adjacent gene pairs in genomes S and T when 

i = j . Thus we can simplify the distance (3.1.1) to obtain the genome distance under 

the either-way adjacent gene pairs as 

Ti—l i 

d(S,T) = 2 ( n - l ) - £ £ n « w « - (3.1.2) 
i = l j = l 

Definition 3.1.5. Let Eg be the set of all i-adjacencies in S, where 1 < i < 6. We 

define a subset of C C V to be a one-way ((^^-generalized adjacency gene 

cluster, or one-way (#, ^ -adjacency cluster, if it consists of the vertices of a 

connected component of the generalized adjacency graph, GST = (V, Es D E^). 

Figure. 3.1 illustrates how genomes 5 = 1 2 3 4 5 6 7 8 9 and T = 2 1 5 7 8 3 6 4 9 

determine the one-way (1,3) clusters {1,2}, {3,4}, {6,7,8} and the one-way (3,1) 

clusters {1,2}, {3,4,6}, {5,7,8}. 

Generalizing definition 3.1.5, we obtain the definition of an either-way cluster as 

follows 

Definition 3.1.6. Let Es be the set of all i-adjacencies in S, where 1 < i < 8. We 

define a subset of C CV to be an either-way (6, ^ -general ized adjacency gene 

cluster, or either-way (9, ^ -adjacency cluster, if it consists of the vertices of a 

connected component of the generalized adjacency graph, Gs% = (V, (Es n Ef) U 
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Figure 3.1: Determination of (1,3) clusters and (3,1) clusters. 

Figure. 6.2 illustrates how genomes 5 = 1 2 3 4 5 6 7 8 9 and T = 2 1 5 7 8 3 6 4 9 

determine the (1,3) clusters {1,2} and {3,4,5,6,7,8}. 
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Figure 3.2: Determination of (1,3) clusters (or (3,1) clusters). 

Based on the definitions above, we get the GA cluster in previous work [37, 39] 

to be a particular case of my definition, namely a (9,0)-adjacency cluster. Like other 

gene cluster definitions, the choice of parameter values is arbitrary. One of the main 

goals in this thesis is to remove some of this arbitrariness. In the following section, 

I will represent some statistical properties of adjacencies and adjacency clusters to 
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reduce their arbitrariness, by finding "natural values" for 6 and ip as a function of n, 

the number of genes in the genomes. Here I only consider the whole genome compari­

son scenario since conclusions obtained in the whole genome comparison scenario also 

hold in the reference genes set scenario. I will begin with either-way (1, ^-adjacent 

gene pairs and either-way (1, #)-adjacency clusters. These may be of particular inter­

est in genome similarity study, as mentioned at the beginning of this chapter. After 

that, I will extend it to the more general case. 

3.2 A "Natural" Weight Function 

3.2.1 Weight in ( l , j ) Generalized Adjacency Model 

In this model, we fix one parameter of either-way (i, j')-adjacency and either-way 

(#, ^-adjacency cluster to 1. Then the definitions of weight and genome distance in 

Section 3.1 will be represented as follows: 

Definition 3.2.1. Let (1, j)-adjacency weight w, be any non-negative, non-increasing, 

function on the -positive integers such that Y^i-i ^i = 1- The weight w induces the 

distance between genomes S and T as follows: 

n-l 

d(S,T) = 2(n - 1) - J2(nf + nj)^ (3.2.1) 
i = l 

where n* is the number of one-way (l,j)-adjacent gene pairs, i.e. j-adjacent on 

genome X and 1-adjacent on the other genome. 

Similar to definition 3.1.4, we represent the number of either-way (1, j)-adjacent 

gene pairs by n\ — nf + nf, thus we have 

n - l 

d{S,T) = 2(n-l)-J2ni^u (3.2.2) 
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Given two genomes S and T with the same genes, we consider the weight u that 

is allocated, inasmuch as possible, to small i-adjacencies, thus emphasizing the local 

similarities of the two genomes. This motivates the study of min^ d(S, T). 

T h e o r e m 3.2.2. For genomes S and T, the weight UJ that minimizes the distance 

(3.2.1) has 

±, ifl<i<k* 

(3.2.3) U>i = < 

0, otherwise, 

where k* is a natural number and maximizes the function 

k 

/(*) = ^ X > f + ̂ ) (3-2.4) 
4 = 1 

k 

Proof. Based on Equation (3.2.2), minimizing d(S, T) is equivalent to maximizing the 

summation 

7 1 - 1 

R = ^n'ioji (3.2.6) 
i=i 

We first note that a uniform upper bound on Ui is 4-. i.e. 0 < Ui < j . This 

follows because if it is not true, i.e. there exists a weight Ui > j , then u)j > j for 

j < i since the CJS are non-increasing, so that we have Y^i ^j > ^ = ^~ \i which 

contradicts Yl)~^i ̂ j — X^^=i Wj — Ui < I — \ because the summation of all weight 

is 1. By the same argument, we also obtain the proposition that if u>i = 4 for some 

value of i, then u)\ = 0J2 = • • • = ^ i - i — ^ = 7 a n d ^J%+\ = • • • = un-\ = 0. 

Now we show that for any solution, i.e., a w = (CJI, u>2,..., w„-i) that maximizes 

equation (3.2.6), there must be one weight in UJ which attains this upper bound. 

To prove this, let weights coi,u>2, • • •, wn-i maximize Equation (3.2.6) for given 

values of n[,n'2,...,n'n_lt such that C = maxR. If all the n^'s are equal or all the UJI 
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are equal, the theorem holds trivially. 

For all other cases, assume that there is no weight in u; that attains its upper 

bound. We define the set C = { i \ u>i > toi+i, 1 < i < n — 2} ^ 0 . Let £ = 

minc(min(u;; — u>i+i, * — ws)) > 0, by assumption. We select two weights Wj and ujj 

where v!i ^ n'j. Without loss of generality, we fix i < j . Set a sign function 7 = 1, if 

n'i < n'; and 7 = — 1, if n' > n'-. Then we define 

- i - l j — \ n - 1 

C' = J]y fcu; fc + < ( ^ - 7 0 + Yl rikuk + rij(u;j + IS)+ ^ n'kuk (3.2.7) 
k=l k=i+l k=j+l 

= C + K - « ; ) • / • £ (3-2.8) 

> C- (3-2.9) 

Then C is not the maximal value, contradicting the assumption about u. Hence, there 

must exist a weight Wj in u attaining its upper-bound 4-. Then the optimal weight is 

UJI = to2 = • • • = Wj-i = oji = j and ui+i = • • • = w n_! = 0. 

Substituting this u> in (3.2.6), produces the expression of form (3.2.4). So maxi­

mizing (3.2.6) is the same as maximizing (3.2.4). • 

Thus if we set 6 = k*, we should find a large number of generalized adjacencies, 

but not at the cost of unreasonably increasing the number of potential adjacencies. 

The cut-off k* differs widely of course according to the pair of genomes S and T being 

compared, and this variation increases with n. However, under the uniform measure 

on the set of permutations, f(k) does not vary much, in the statistical sense, at least 

as n gets large. Thus we use E[/c*], as function of n, to find the natural value for the 

cut-off parameters in the uniform weight-based distance. 

N.B. The cut-off k* is not always unique, though the range of maximizing values 

will be very narrow. In the simulation studies in the ensuing sections, we will adopt 

the convention of using the minimal solution value for k*. 
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Clearly, it is easy to transform the definition 3.2.1 and theorem 3.2.2 from either-

way generalized adjacency gene cluster to one-way generalized adjacency gene cluster. 

We get a new definition and theorem as follows: 

Definition 3.2.3. Let(l, j)-adjacency weight u>i be any non-negative, non-increasing, 

function on the positive integers such that 5^=1 <*̂i = 1- The weight u> induces the 

distance between genomes S and T under the one-way (1,0)-adjacency cluster crite­

rion as follows: 

n-l 

d(S, T) = (n-1)-J2 nf^i (3.2.10) 
i = l 

where nf is the number of one-way (I, j)-adjacent gene pairs that are j-adjacent on 

genome X and 1-adjacent on the other genome. 

Theorem 3.2.4. For genomes S and T, the weight UJ that minimizes the distance 

(3.2.10) has 

±, if 1 < i < k* 

^. = < (3.2.11) 

0, otherwise, 

where k* is a natural number and maximizes the function 

k 

/(fc) = i£nf. (3-2"1 2) 
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J=ak* 

i=akt 

j=k*- i(i-l)/2 

Figure 3.3: k is augmented from left to right, starting at the top row, in the lower 

triangle including the diagonal. Values of CJ,J in the upper triangle determined by 

symmetry. 

3.2.2 The "natural" Bivariate Weights 

Theorem 3.2.5. Let ak = |_——^ J- The (i,j)-adjacency weight a> that mini­

mizes the distance (3.1.1) has 

Uij = < 

£jr, if i < Qffc., j < i, 

or i = ak*, j<k*-%=& 
(3.2.13) 

0, otherwise 

where k* is a natural number and maximizes the function 

/ (* ) = -k 

ak-\ i k-\ak(ak-\) 

Yl J2(na + na) + Yl (n^ + n J ' a ^ 
2=1 j = l j = l 

(3.2.14) 

where n^ is the number of gene pairs i-adjacent on S and j-adjacent on T. (See 

Figure 3.3 for 2-dimensional area measured by k*.) 

Proof. Since w -̂ = u>ji, Equation (3.1.1) is equivalent to 

n—1 i 

(3.2.15) 
t = i j=i 
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So we can use the lower-triangle matrix to represent the bivariate weight, i.e. 

/ 

(jj = 

W l l 

^ 2 1 ^ 2 2 

W31 CJ32 W33 

w ( n - 2 ) l <^(n-2)2 w ( n - 2 ) 3 W(n-2 ) (n -3 ) W ( n _ 2 ) ( n _ 2 ) 

y ^ ( n _ i ) i d ; ( n _ i )2 W(n-1)3 • • • ^ ( n - l ) ( n - 3 ) ^ ( n - l ) ( n - 2 ) ^>{n-l){n-l) J 

(3.2.16) 

and for each CJ^ (1 < j < i < n — 1), the corresponding coefficient is n^ + n^. Thus 

we transform the two-dimensional weight matrix to one-dimensional weight sequence 

U> = {cun , CJ21 , <^22 , • • • , <^ (n - l ) (n -2 ) , ^ ( n - l ) ( n - l ) } (3.2.17) 

Obviously, the LOS' in Equation (3.2.17) satisfy the weight definition in Section 3.2.1. 

Therefore we have that u)ij satisfies a uniform distribution with a cut-off value k* 

based on Theorem 3.2.2. Let ujij be the last nonzero u>. Then the two-dimensional 

weight matrix is 

So we have 

u> = 

^ 2 1 ^ 2 2 

Wj l U)l2 • •• OJij 0 • • • 0 

0 

0 

0 . . . 0 0 ••• 0 •• 

0 . . . 0 0 ••• 0 •• 

• 0 

• 0 Oy 

(3.2.18) 

(3.2.19) 



3.3. THE EXPECTED NUMBER OF ADJACENT GENE PAIRS 39 

Since l<j<i<n — 1, then 

2 2 

Solving (3.2.20) , we obtain the bounds for i, 

>« " !) + 1 < *• < ! < i ± i l (3.2.20) 

^ T T S F ^ ^ . £ V l+ 8 ( f c - - l ) + l ( 3 2 2 1 ) 

Because i, j and fc* are all natural numbers, i must be |_ ^ J a n d j — 

k* — 2 • Therefore, the conclusion holds. • 

This theorem and Theorem 3.2.2 suggest that for the parameter values which 

are most sensitive to the similarities between two genomes, i.e., where the genome 

distance is minimized, the best weighting is uniform over all generalized adjacencies 

in 'a set determined by k*. Then the value of 9 and •0 should be set to 6 = if) — 

\_— 2 J ~ \/2AF to find the (0, ?/>) generalized adjacency gene clusters. As in 

the previous section we can use the E[k*] to estimate k* due to the small variance of 

3.3 The Expected Number of Adjacent Gene Pairs 

As mentioned in previous sections, the best weighting to minimize the genome dis­

tance is uniform over all generalized adjacencies in a set determined by k* and the 

parameters should be a function of k*. Because the formula which k* maximizes is 

determined by n^ (or rij for (1,0) case), we should study properties of the n^s (or 

the rijS for the (1,0) case) to find the value of A;*. 

Without loss of generality, we may always relabel the genes in one genome so 

that it becomes / = (1,2,... ,n) while the other is considered the random genome R, 

sampled from all n! possible genomes, each with probability of ~. So the content of 
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each gene in the random genome R is the position of the gene in the reference genome 

I. 

3.3.1 The Expected Number of (1, /c)-Adjacencies in Two Ran­

dom Genomes 

Let n* be the total number of gene pairs (g, h), that are fc-adjacent in genome X and 

1-adjacent in the other. 

Theorem 3.3.1. For two random genomes S and T with n genes, the expected value 

of the random variable nf (or n\) is ^ , i.e. 

E(nf) = E(n[) = ^ ^ (3.3.1) 

c k 

Proof. Considering E(n^), the event {x, ~ Xj in genome S and x, ~ Xj in genome 
k 

T} is equivalent to the event {i ~ i + 1 in the random genome R}. 

We define yf as follows: 

yki = \ 

1, if i ~ i + 1 in R 

0, otherwise 

(3.3.2) 

Then 
7 1 - 1 

nt = Y.y*- (3-3-3) 
Clearly, the number of gene pairs in a genome with n genes is n{n — 1). Now 

we are going to calculate the number of gene pairs in the random genome R which 

k 

satisfies i ~ i + 1, i.e., the two genes are 1-adjacent in the genome R and fc-adjacent 

in the genome / . For two genes x and y which are strictly adjacent in the genome 

R, if the location of one gene, say x, is in the interval [k, n — k] of / , then there are 
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two positions to choose for the other gene y in / ; while if the location of the gene x 

is out of the interval [k, n — k] oi I, we only have one position to choose for the gene 

k 

y in I. So the number of gene pairs in the random genome R that satisfy i ~ i + 1 is 

2(n — k). Thus we obtain 

Pn(yk = 1) = Pn(t li + l) = 2^0^ (3-3.4) 

and also 

E(nk) = £ E(yk) = £ PM = 1) = 2 ^ 1 - (3.3.5) 

D 

Theorem 3.3.2. Let nf be the total number of gene pairs which are k-adjacent in 

genome S and 1-adjacent in the other genome, then nf converges in distribution to 

the Poisson with parameter ^n~ '. 

Proof. As we know: 

Theorem 3.3.3. (Theorem 30.1 in [2]). Let fi be a probability measure on the line 

having finite moments a.^ = J^ xkfi(dx) of all orders. If the power series J^fc ai~rk/k\ 

has a positive radius of convergence, then /x is the only probability measure with the 

moments ati, a.2,- • • • 

Theorem 3.3.4. (Theorem 30.2 in [2]). Suppose that the distribution of X is deter­

mined by its moments1, that the X„ have moments of all orders, and that limn E[X^] = 

E[X r] for r=l,2,.... Then the distribution o / X n converges to the distribution of X. 

From Theorem 3.3.3 and Theorem 3.3.4, we derive the following theorem 

1 A probability measure is called determined by its moments if it satisfies the conclusion of Theo­
rem 3.3.3. 
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T h e o r e m 3.3.5. (Theorem 2 in [37]). For probability distributions of Xn, if their 

kth factorial moment, Ei[X^)] = f™ x(x — 1) • • • (x — (k — l))/j,(dx), converges to Xk, 

then their probability distributions converge to the Poisson distribution with mean A. 

So using the same definition of y\ as (3.3.2), we consider the tth factorial moment 

of nk, 

E[nk(nk -l)...(nk-t + l)} = (^~1^ t\E[y^2... yfj (3.3.6) 

what we need to prove is E[nk{rik — 1 ) . . . (nk — t + 1)] converges to [ ^ ']* for 

k > 1. Equation (3.3.6) holds because both sides of it represent the expectation of 

the number of ways to choose t non-zero elements from {y\,..., y\_x }. Since all y\ 

can only take the value 1 or 0, we have 

Then, 

Ebivi-.-vl] = P„(i£ = i , . . . , i £ = l) 

= flPn(y^ = i) + 0(-^) 
3 = 1 

2(n - k) 

n(n — 1) + 0 < ^ > 

(3.3.7) 

(3.3.8) 

lim E\y{y-l)...{y-t+l)] 
n—>+oo 

2(n - k) 

n 
(3.3.9) 

Therefore, we conclude nf converges in distribution to the Poisson with parameter 

2(n-fc) 
n • 

Wolfowitz [35] proved (cf. Xu et al. [36]) that nf converges in distribution to 

the Poisson distribution with parameter 2. This is a special case of our result when 

n gets large. 
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Let rifc be the total number of either-way (1, A;)-adjacent gene pairs in two genomes, 

e.g. S and T. It is clear that n^ = nf + n\ as k ^ 1, since the two events {the two 

genes are fc-adjacent in genome S, 1-adjacent in genome T} and {the two genes are 

1-adjacent in genome S, ^-adjacent in genome T} are independent except for k = 1. 

If k = 1, i.e. for (1, l)-adjacent gene pairs, then n^ = nf = n\. 

Thus we have 

Theorem 3.3.6. Let n^ be the total number of either-way (1, k)-adjacent gene pairs 

in two genomes. Then n\ is an even number and \n\ converges in distribution to 

the Poisson with parameter "̂~ '. For k > \, the nk all converge, independently and 

independent of | n , in distribution to the Poisson with parameter ^ . 

Figure 3.4 shows the comparison of the simulated values of n^ versus the Poisson, 

for k = 10 and k = 500. 
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Figure 3.4: The distribution of n^ (histogram) compared to the Poisson distribution 

with parameter "̂~ ^(dash line), where k = 10 (left) and k — 500 (right) Genome 

size n = 1,000, sample size = 50,000. 
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Given the limiting result in Theorem 3.3.6, we undertake to see the implications, 

for finite n, of the Poisson approximation. We simulated the expected value of k* for 

genome sizes n = 1000,2000,. . . , 100000 by calculating k* for each of 50,000 random 

permutations as in Theorem 3.2.2, and simply taking the mean. For comparison, 

we find k* by generating 2Poisson(2^1') for i = 1 and Poisson(A^n~1') for i = 

2 , . . . ,n — 1, calculating mean of k* on the basis of these values. The results are 

shown in Figure 3.5. So we can using the independent Poisson distribution with 

corresponding parameters to estimate the number of either-way (1, fc)-adjacent gene 

pairs, i.e. n^, instead of calculating from a random genome. 

100 T- - ••• - -

90 

so AsJ****^^ 

60 ^ / * ' 

^ 50 -/^^ 

40 • yT 

30 f 

20 / 

10 

0 -I 1 1 1 1 

0 20000 40000 60000 80000 100000 

n 

Figure 3.5: The expectation of k* simulated by random permutation and by Poisson 

variables. Dotted line=Poisson. 
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3.3.2 The Expected Number of (j, &)-Adjacencies in Two Ran­

dom Genomes 

We previously calculated the expected number of both one-way and either-way (1, k)-

adjacent gene pairs, i.e., 1-adjacent in one (or either one) genome and fc-adjacent in 

the other. Here, we study the number of (j, fc)-adjacent gene pairs. Similar to Section 

3.3.1, we first consider rijk, the total number of one-way (j, A;)-adjacent gene pairs, 

(g, h), in two genomes, S and T, that are j-adjacent in genome S and fc-adjacent in 

genome T. 

Theorem 3.3.7. For two random genomes, S and T, with n genes, let rijk be the 

total number of one-way (j,k)-adjacent gene pairs, (x,y), which are j-adjacent in 

genome S and k-adjacent in genome T. Then njk converges in distribution to the 

Poisson with parameter „(J_") 

Proof. The event {x ~ y in genome S , x ~ y in genome T } is equivalent to the 

event {i ~ i + j in the random genome R}. We define y\h as: 

#" = i 

k 

1, if i ~ i + j in R 

(3.3.10) 

0, otherwise. 

Based on a similar explanation in the proof of Theorem 3.3.6, we have 

Pn(i~i+j)={ 

n(n- l ) ' % ~ i ' Z ' - • • > n ~ •? 

0, otherwise, 

(3.3.11) 
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So 

Pn(v?,k) = l) = Pn(i~i + j,l<i<n-j) 

k • 
= Pn(i~i + j\l<i<n- j)Pn(l <i<n-j) 

2{n-k){n-j) 

n(n — l ) 2 

Considering the tth factorial moment of rijk, 

(3.3.12) 

E[njk(njk - 1 ) . . . (njk -t+l)]=["^) t\E[y^y%k) . . . y^} (3.3.13) 
n - 1 

t 

Equation (3.3.13) holds because both sides of it represent the expectation of the 

number of ways to choose t non-zero elements from {y[J' , . . . , y^-i }• 

(i k) 

Since all y] can only take the value 1 or 0, we have 

,Cj'.*)„.0'.fc) (j.*)i E^vr-vr'] = Pn(yi'k) = i,..-,y^ = i) 

nPn(vg'fc) = i) + o(-ir) 

(3.3.14) 

r = l 

2{n-k)(n-j) 
n(n — l ) 2 + o(-7TT) 

n t+ i -
(3.3.15) 

Therefore, 

lim E[y(y - 1 ) . . . (y - k + 1)] 
n—»+oo 

'n-1 
n—>+oo \ £ 

= lim I " . ' l ^ t y f V f . - . y ^ ] 

2 ( n - f c ) ( n - j ) -it 

(3.3.16) 
n(n — 1) 

Based on Theorem 2 in [37], we conclude rijk converges in distribution to the Poisson 

with parameter 2{n~£§j). • 

Let n'jk (1 < k < j < n — 1) be the total number of either-way (j, fc)-adjacent 

gene pairs of two random genomes. Then 
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T h e o r e m 3.3.8. If j = k, n'kk is even and 2n'kk converges in distribution to the 

Poisson with parameter ^?~_K ', if k < j , the n'fe all converge, independently and 

independent of \n'kk, in distribution to the Poisson with parameter ^„_"7 

As with Figure 3.6, we compared n'jk based on random permutations to the 

Poisson distribution. Given the limiting result in Theorem 3.3.7, we undertake to 
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Figure 3.6: The distribution of n^(histogram) compared to the Poisson distribu-

tion(dash line) with parameter ~{n-V\ , where n = 1,000, j = 11 and k = 10 (left) 

or 500 (right). Sample size=50,000. 

see the implications, for finite n, of the Poisson approximation. We simulated the 

expectation of k* for selected genome sizes n = 100,200, . . . , 100,000 by calculating 

k* for each of 50,000 random permutations as in Theorem 3.2.5, and taking the 

mean. For comparison, we also estimated k* by generating 2Poisson ( „/„_"7 ) 

for j = k € {1, 2 , . . . , n - 1} and Poisson [4{n~(n-i)k)) f o r 3 + k G {1, 2 , . . . , n - 1}, 

calculating k* on the basis of these values. The results are shown in Figure 3.7. Note 

that in this bivariate case k* grows much more rapidly than with (1, £;)-adjacencies. 
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1000 2000 3000 4000 5000 6000 7000 

Figure 3.7: The expectation of k* simulated by random permutation and by Poisson 

variables. Dotted line=Poisson. 
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3.4 The Expectation Value and Variance of f(k) 

Since the number of one-way (or either-way) (i, j)-adjacent gene pairs can be rep­

resented approximately as independent Poisson distributions, we can calculate the 

expected value and variance of f(k) in Theorem 3.2.5 

Theorem 3.4.1. Let the n^'s (1 < i, j < n — 1) satisfy Theorem 3.2.5. Then the 

expectation and variance of Equation (3.2.14) converge to (2 — ^ ) 2 and -%(1 + - — J?) 

as n —> oo, where a = |_— ^ J. 

Proof. Let n'^ = n^ + n^, (1 < j < i < n — 1). Then 

1 

' < * > k i = l j = i j = i 

/ a f c - l i fc-iafc(ak-l) \ 

= EE4+ £ -C P - 4 - 1 ) 

Since n^ independently converges to Poisson ( ^ . . - l ) ) based on Theorem 3.3.7, 

so we get the expectation of n'^ is ^n-" ) • Let a.^ = a, the expectation and 

variance of f(k) are 

™*>i = i ( | £ ^ ^ + " i f ^ ^ ^ f 1 1 ) <3-' 
Akn2 - [2k2 - 2{a2 - 3a - l)fc - W a 2 - l ) ( a - 2)]n 

&n(n — 1) 

2ak2 - 2a{a2 - a - l)k + \a{a2 - l ) (a 2 - a - \)n 

kn(n — 1) 

| a ( a + l ) (a + 2)(3a2 + l) 

kn(n — 1) 

(2n-af a 1 1 2 2 

n(n — 1) 3n(n — 1) n — 1 n(n — 1) a (n — 1) 3an(n — 1) 

= ( 2 - - ) 2 + o ( - ) as fc~ \a2 and a & {1, 2, ••• , n - 1} (3.4.3) 
n n 2 
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Var[f(k)} 
1 i a—l i—l ., . w .x a—l nl .so fc—50(0-1) 

f W 4 ( " - * ) ( r c - . 7 ) l i r 2 ( n " ' ) i V 4 ( n - a ) ( n - j ) 
i - 2 | Z ^ Z ^ n ( n - l ) ^ n ( n - l ) ^ A;2 n(n — 1) 

8 / , 2 ^ / I N , 1 2 
r(l + o) + o ( - ) a s A ; ~ - a 2 

ar a a^ n 
(3.4.4) 

D 

So the expected value of f(k) should be decreasing from 4 to 1 and the variance 

of f(k) should be decreasing from 8 to 0. Figure 3.8 shows the expectation value 

and variance of f(k) over 50, 000 pairs of random genomes with 300 (left) and 1,000 

(right) genes. We can see that not only is the variance of f(k) decreasing, but also 

the range of the variance of f(k) is decreasing as genome size n is increasing. Thus 

we can use the E(k*) to estimate k* approximately. 

Figure 3.8: The mean and variance of f(k), where genome size n = 300 (left) and 

1,000 (right), sample size = 50,000 . 
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3.5 The Theory of Record Times 

Because A;* is a maximum value of f(k), looking for k* is similar to the upper record 

problem, i.e., for a series of random variables Xi, X2, • •., we consider the new sequence 

L(m), (m = 1,2,...), defined in the following manner: 

L(l) = 1; L(m) = min{j : Xj > XL ( m_1 }} (m > 2) (3.5.1) 

where L(m) is the index of the mth upper record (or mth record time), while the 

corresponding r.v. XL(m) is the value of the mth record (or mth record value). 

Well-known properties of record times for i.i.d. random variables are: 

• The probability that the ith random variable attains a record is \. 

• The expected number of records up to the ith random variable is logi. 

• the average time at the record for n random variables is | . 

The quantity k* in Theorem 3.2.5 is a record time over " ^ " values of f(k), though 

these are clearly neither identical nor independent random variables. That both the 

mean and variance of f(k) are decreasing functions of n means that records become 

increasingly harder to attain. 

This is illustrated in Figure 3.9, which compares the proportion of record values 

at each (i,j) in 50,000 pairs of random genomes of size n = 10,30,100,300,1000, 

and 3000, and the accumulated number of record values up to this point, with the 

corresponding values of i.i.d. random variables. Note that the horizontal axis is k, 

which maps to i = \J2k as a position on the genome. 

More important for our purposes is that the average record time is nowhere near 

half the number of random variables ( ^ in our case). Figure 3.10 clearly shows that 



3.5. THE THEORY OF RECORD TIMES 52 

0 200 400 600 800 1000 

Figure 3.9: Comparison of mean optimal k values, over 50,000 pairs of random 

genomes, with the record behaviour of i.i.d. random variables. Proportion of cases 

where k is optimal (left) and number of records attained (right), for (i,j) adjacencies 

as a function of genome size n. As n —> oo, for any k', all curves approach the record 

time curves for all k < k', but even at n = 3000, there is an eventual drop off, due to 

the declining mean expectations and variances of the n^. 
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Figure 3.10: Average record time as a function of genome length. 

k* is approximately y/n, so that the cut-off position on the genome of the maximizing 

weight system will be o(-y/n), actually about \/4n. For genomes of size n = 12,000, 

the expected value of k* is around 110, so that the cut-off 9 for generalized adjacency 

need not be greater than 15. 



Chapter 4 

A "Natural" Value Based on the 

Cluster Significant 

Theorems 3.2.2 and 3.2.5 show how to find the function which trades off the expected 

number, across all pairs of genomes, of generalized adjacencies against the parameters 

9 and •0, with lower parameter values considered more desirable, i.e., it is better to 

find a large number of generalized adjacencies, but not at the cost of unreasonably 

increasing the number of potential adjacencies. 

In this chapter, I shift attention to the other set of "natural" parameter values 

determined by the percolation behaviour of the (6, ^-adjacency clusters. Beyond cer­

tain values of these parameters, tests of significance are no longer meaningful because 

all clusters rapidly coalesce together. To identify the threshold for this phenomenon, 

I first introduce the expression of the expected number of (i, j) adjacencies with i < 6 

and j < ijj. Then I insert this expression into connectivity formulae from the Erdos-

Renyi theory of random graphs to find the corresponding percolation threshold, and 

compare this to simulations of random genomes. 

As before, without loss of generality, we may always relabel the genes in one 
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genome so that it becomes / = (1,2,... ,n) while the other is considered the random 

genome R, sampled from all n! possible genomes, each with probability of -7. So the 

label of each gene in the random genome R is the position of the gene in the reference 

genome / . 

4.1 The Expected Number of Adjacent Gene Pairs 

in a Generalized Adjacency Graph 

4.1.1 One-way (#, ̂ -Genera l i zed Adjacency Gene Cluster 

T h e o r e m 4 .1 .1 . Let N2(n, 6, ip) be the number of adjacent gene pairs in two genomes 

with n genes, where the distances are no larger than 6 in one genome and no larger 

than ip in the other, then 

lim E[N2{n,6,ip)} = 2*1)6. (4.1.1) 
n—>oo 

Proof. Based on Theorems 3.3.7 and 3.3.8, we know the number of one-way (i,j)-

adjacent gene pairs independently converges to the Poisson distribution with param­

eter 2 ( r 7 ) ( "7 j ) - Then 
n(n—1) 

e ip 

E[N2(n,e,ip)} = £ Z > ( n < ; ) 
i=i j=i 

2-^>^ n ( n - l ) 
j=i j=i v ' 

\(2n - 1)6 - 62][(2n - 1 ) ^ - T/>2] 
_ 2n(n - 1) 
_ ^ , _ * ( » + * ) + W-1) (1»-1) (4.L2, 

n 2n[n — 1) 

where n^ is the total number of one-way (i, j)-adjacent gene pairs, i.e. z-adjacent in 

one genome, j-adjacent in the other genome. 
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Therefore as 9, ip <^ n 

lim E[N2(n,e,i/>)] 
n—*oo 

n 2n(n — 1) 

= 2^9 (4.1.3) 

n 

4.1.2 Either-way (0, ^ -Genera l i zed Adjacency Gene Cluster 

T h e o r e m 4.1.2. Let N^n, 9,I/J) be the number of gene pairs in two genomes with 

n genes, where the distances are no larger than 9 in either one of genomes and no 

larger than ip in the other, then 

lim E[N2(n,9,ip)} = 4 # - 2 0 2 , where 1 < 9 < ip <C n. (4.1.4) 
n—»oo 

Proof. Based on Theorem 3.3.7 and 3.3.8, we know the number of (i, j)-adjacent gene 

pairs independently converges to the Poisson distribution. Then for 1 < 9 < ip < 

n — 1, 

E[N'2{n,6M 
0 Tp min(6,Tp) j—1 min(d,ip) 

i = l j = l j = 2 i = l i = l 

-,-l){n-j) y ^ y ^ 

n{n-l) jr^jri n ( n - l ) ^ n(n - 1) 

y ^ y ^ 4(n - i)(n - j) _ y ^ y 4 4(n - i)(n - j) _ y ^ 2(n - if 
£—* £-~t n(n — 11 £-i Z-^t ri(n — 1 ^ £-^ 
i=l j = l ^ ' j=2 i=l 

2. 29{i>2 - 92 + i>9) 9(9 - l)(2^2 - 2tp - 92 + 9) 
= {Aip9-292) y— L J ^ + 

n 2n(n — 1) 

(4.1.5) 

where n^ is the total number of one-way {i,j)~adjacent gene pairs, i.e. i-adjacent in 

one genome, j-adjacent in the other genome. 
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Therefore, i£ 1 < 9 < ip <^ n, we have 

lim E\N'2[n,d^)\ 
n—>oo 

= lim UQ - 292 - 2 ^ 2 - g 2 + ^ ) + W - !)(^2 - ^ ~ 02 + °) 
n 2n{n — 1) 

= Ai>6-202 (4.1.6) 

• 

4.2 The Number of Clusters with Large Size 

For the reference genome / and the random genome R with n genes, we used Nk{n,8,ip) 

to represent the number of fc-tuples of genes which are in the same (0, ^-adjacency 

gene cluster defined in Definition 3.1.5 and 3.1.6. We have already calculated the 

expected of N2(n,9,ip) in Section 4.1. In this section, we look for analytical results 

for the expectation of Nk(n,6,ip) when k > 3. We only consider 9,ip < Lf5iJ> be­

cause most of our discussion is under the constraint 9 and ip are much smaller than 

n. We first compute the expectation of N3(n, 9,9) and then extend to the larger k. 

4.2.1 Three Genes in One Cluster 

Considering three genes u, v and w in the genomes I and R, we define u ~ v ~ w as 

meaning genes u and v are ij-adjacent and v and w are i2-adjacent in a genome. 

We have 

Theorem 4.2.1. Let N3(n,9) — N3(n,9,9) be the total number of3-tuples of genes, 

(u,v,w), which are in the same (9,9)-adjacency gene cluster. If 1 < 9 < L^^pJ; then 

the N3(n,9) converges in distribution to the Poisson with parameter 

92{592-29-l) 92{2893-2992 + 29 + 5) 292{1992 - 169 - 8)(9 - I)2 

n 3n(n - 1) + 9n(n - l)(n - 2) ^ ' ' ' 
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123 or 321 
r , s e ( l n-l> 

213 or 312 

l<r<s<n-l 

132 or 231 
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® 
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2 1 3 
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© 

1 2 3, 
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1 3 2 
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Figure 4.1: The cases to compute AT3(n, 8, ip) 

Proof. Consider a 3-tuples of genes, we relabel them 1, 2, 3 from left to right in the 

reference genome, I, and define 1 ~ 2 ~ 3 in genome / and 1 ~ 2 ~ 3 in genome R. 

Based on Definition 3.1.6, there are eighteen configurations where genes 1, 2 and 3 

are in the same (9,0)-adjacency gene cluster. These are distinguished by the order of 

the three genes in genome R and whether there are edges between them in the two 

genomes. These cases are shown in Figure 4.11 . 

Let yp ) ( r ' s ) (u ) = 1 if the 3-tuples of genes, (1,2,3) is 1 £ 2 ~ 3 in / , 1 ~ 2 ~ 3 

in R, the location of gene 1 in the genome I is i and the degree of gene v is 2, while 

other genes' degrees are 1 in Figure 4.1, while y\3' '(r's'(v) = 0 otherwise. We define 

nfj!k)(r,s) t h e n u m b e r of 3-tuples of genes satisfying yp'fe)(r's)(w) = 1, i.e. rc^AOCr.s) = 

En-2yp)(,S) (u)_ 

lWe combine eighteen cases to nine cases, using left to right symmetry. 
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Similar to the calculation of Equation 3.3.4, we get 

2(n-r-s) . - - 1 2 „ _ ,- _ h 
n(n-l)(n-2)' 6 ~ ^ Z' ' ' " ' , l •> h 

PB(yW.*)(r..)(2) = 1 | ( 1 > 2 > 3) ) = J (4.2.2) 

0, otherwise, 

Then the expected number of 3-tuples of genes is 

E (ngg^Kl.2,3)) = J2 [Pn (yPKr'S)(2) = 1|(1,2,3)) Pn(l < i < n - j - k) 
1=1 

n-2 

1=1 

2(n — r — s) n — j — k 
_ n ( n - l ) ( n - 2 ) n - 2 

2{n ~ J — k)(n — r — s) 
n ( n - l ) ( n - 2 ) ' ( 4 ' 2 ' 3 ) 

Using the same idea, we can also obtain the £ ( n ? u / n ) ) in the other eight cases and 

find that the general formula is 

{n(j!k)(r,s)) ~ 

2{n—j—k){n—s) 
n(n-l)(n-2) ' 

2{n—j—k)(n—r—s) 
n(n-l)(n-2) ' 

2(n—j—k)(n—r) 
n(n-l)(n-2) ' 

U = 1 

U = 2 

v = 3. 

(4.2.4) 

Hence we can calculate the expected number of 3-tuples of genes which are in the 

same (9, #)-adjacency gene cluster, using Equation (4.2.5). 

3 

v=l j,k,r,s<9 (X,7J)6{(Ji,7ij)|l<»<3,l<J<9} 

adding all disjoint cases of genome / and R. 

From Figure 4.1, we see that the number of 3-tuples of genes in the case (I2, ^ 4 ) , 

which represent s the adjacency of genes in genome / , shown as X2, and in genome R, 

shown as 7?.4, is already counted in the case (Ti,TZi). So has the case {T^,Tl7). Also 

for cases (T2,T^-6) and (l3,TZs), their numbers have already been counted as other 

cases. Therefore, there are five cases left which are not included in other cases, shown 
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® 

Figure 4.2: The cases to compute Ns(n,9,i/j) which are not included the others 

as Figure 4.2. Then after adding all five cases in Figure 4.2 and subtracting the 

overlapping for each permutation of genes in genome R, we obtain for E[N3(n, 9)], 

E[N3(n,0)] 
e e r - l 

= C E£(^- f c) £E("-r-*) + 2££(n-r) 
\j=l k=\ / \r=l s=l r=1 s=\ / 

( 0-1 e-j \ / 0 r - i e r+e \ 

££<»-*-*>) (EE<»-->+E£ (»-)) 
j=i fc=i 

kr=2 s=l r=l s=0+l 

02(502 - 2 0 - 1 ) 02(2803 - 2902 + 29 + 5) 202(1902 - 160 - 8)(0 - l ) 2 

n 3n(n — 1) 9 n ( n - l ) ( n - 2 ) 

(4.2.6) 

where C = n(n-l)(ra-2)' 

Using a proof similar to Theorem 3.3.2, we can show that the n <v> 
(j,k)(r,s) s are 

approximately independent and converge to the Poisson distribution with parameter 

E(nhVk)(rs)) m Equation 4.2.4. Therefore, Ns{n,9) converges in distribution to the 

Poisson with parameter E[N3(n,9)] shown in Equation 4.2.1. • 
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It is straightforward to extend the E(N3(n,9,9)) to E(N3(n,9,tp)) as in the 

following theorem 

T h e o r e m 4.2.2. Let N3(n,9,il') be the total number of 3-tuples of genes, (u,v,w), 

which are in the same (0, -0) generalized adjacency gene cluster. Ifl<9<i)< \J±=±\, 

then the Ns(n,9,ip) converges in distribution to the Poisson with parameter 

- [(22</>3 - 360V2 + 2602V - 703) - 6^2 + 2^(39 - 2) - 0(20 - 3)1 + 0 (^ ) (4 .2 .7 ) 
n nz 

Proof. Based on the proof of Theorem 4.2.1, what we need to show is the expected 

value of Nz(n, 0, ip) is as in Equation 4.2.7. 

Since 

= E E E B(nS5Ml»,w) 
»=lj,fc,r,s=lRe{Ki,R2,K3} 

- E E E *(-SSMI».*) 
V=I j,k,r,s=o+i ne{ni,n2,'R.3} 

( if) ijj \ / ip il> V r—X \ 

EE^'- f c) EE("-r-s) + 2EE("-r) 
j=l fc=l / \ r = l s=l r=2 s=X / 

( ip—X tp-j \ / V r—1 ^ r+i/> \ 

EE("-^-fc) EE("-r) + E E (»-«) 
j=l fc=l / \ r=2 s=l r=X s=i/>+l / 

( i/> V \ / 4> ip 4> r-X \ 

E E("-^'-fc) E E( - - - - s ) + 2 E X>- ' ) 
j=0+lfc=0+l / \r=0+ls=0+l r=0+2 s=8+X J 

( ip—x tp-j \ / V »•—l V7 r + ' / ' \ 

E5>->-*> E E<•—•) + E E (»-) 
j=l fc=l / \r=fl+2 s=0+l r=0+l s^+0+1 / 

= - K22^3 - 360V>2 + 2602^ - 703) - 6^2 + 2^(30 - 2) - 0(20 - 3)1 + 0{\) 
n nz 

Hence the theorem holds. • 
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4.2.2 E[Nm(n, 9)} Calculation for m > 3 

It is easy to compute the expected number of three genes that are in the same clus­

ter because we can enumerate all nine cases and simplify to five cases as shown in 

Figures 4.1 and 4.2. We can also find all cases of four genes in a cluster, shown in 

Figure 4.3 and Figure 4.42. However, the larger the number of genes in one cluster, 

say m, is, the harder it is to enumerate the cases and compute the summation of 

each case because the number of summations we have to compute for m genes is 

mm _ 2 (m!) 2 , which is the number of spanning tree of the complete graph multiplied 

by m\. This is too huge a number for manual enumeration. We require a general 

summation formula to reduce the computational effort. 

From the proof of Theorem 4.2.1, we know the task of computing the E[Nm(n, 9)] 

is equivalent to computing the summation of all possible disjoint cases from tables 

such as shown in Figure 4.1, Figure 4.3 and Figure 4.4, where the first column indicates 

which case of m genes applies in the reference genome. Genes are labelled as an 

identity sequence {1 ,2 , . . . ,m}. The set of possibilities is the same as all spanning-

trees in the complete graph with m vertices. The other structure graphs in the same 

row represent all possible permutations of these m genes in the random genome R 

with the same adjacency structure as in the reference genome. Therefore, what we 

must do is to find all disjoint cases for these two graphs, where one is in the reference 

genome, i.e. one of graphs in the first column of the table and the other one is these 

m genes in the other genome with the same adjacency structure as in the reference 

genome. 

We define e^ as the edge label of genes in the adjacency gene cluster graph, 

where i is the distance of two genes connected by the edge and j is the index of the 

2We only drew half of the all permutations due to the symmetry of the sequence. 
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Figure 4.3: Cases to impute iV4(n, 0,VO 



4.2. THE NUMBER OF CLUSTERS WITH LARGE SIZE 64 

(1 r r 
VI \ \ -.1 

3 « 
V^J V 

^4„ 
5, J 

A 4 

*** § £ Ai 
^ ^ x A A* * y 

T I> 
( K u -I (J: 

4^ 
^ 1 - i i 

"l: 
Ai "K 

0,4 
AT 

^ „ ir.A ifV 
i V . AA 

r;: m i ?: E/ft-
X '̂  

7 

A 

v 
./AT vS \K 

i: 
i 
* -

- — » • • - - — ^ . . — . 

A»« A 1 

) /v< 
•x A 

v 'A 
A -m „ T * « 

1 * - V J"' A J" \ J • 
,?A?' 
A Hi Ni 

/ ^ 

/" 

A , 
•A:!' 

si' 
>j± -( i: \ 

i v A A 
\ ~ l |̂i fft: fi: ^i; 

4: 

A 

r /^*"j /AT .A* 
^ i " A J- A ;- A * 

y 4 
a vifi v. > v 

1V: 
•r 

v-^t-

/ f l l 
iKA 

V 
V 

A 

*v 
-tl r / 

J" 
x 

'"X.. <i" 

/i: 

SA 

• v _ 

.^ 

V ] C % .r* 

v. 
il \£ 

^ ^ J ) 
*N r\ 

•^±y %f A 

Figure 4.4: Cases to compute N${n,Q,ip) (continued) 



4.2. THE NUMBER OF CLUSTERS WITH LARGE SIZE 65 

1 2 3 4 5 

Figure 4.5: The index of edges in the adjacency graph 

leftmost gene in the cluster. Figure 4.5 illustrates the etj definition for five genes in 

a cluster. We also represent by |e^ | the length of the edge e^ which is the number of 

genes between the two genes connected by an edge, plus 1. 

Obviously, there are constraints on |ejj| within a cluster. We observe in Figure 4.5 

that: < 

1. |elfc| > 1, ke { 1 , 2 , . . . , m - l } 

2. |e(m_i)i| < n - 1, 

o. \eij\ — Z^k=j leifcl 

where n is the number of genes in a genome and m is the number of genes in a cluster. 

These motivate a general formula to compute each summation term in the for­

mula of E[Nm(n, 0)], i.e. 

6-Bi e-A2-B2 9-Ak-Bk e-Am-i / ro-1 \ 

E E - E -• E - E M <«-8> 
| e n | = l | e i 2 | = l |ei f c |=l | e i ( m - i ) l = l V /c=l / 

where Ak and Bk are determined by the longest edge, say e^, covering the edge e\k-

Bk is the number of edges eu where k < t < i + j , i.e. eu is covered by e^ and at 

the right of the edge e\k- While Ak is the sum of the length of all edges which are 
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Figure 4.6: The cases used to compute the summation in E[Nm(n, 9)] calculation, 

where m = 2, 3, 4, 5 

covered by the edge e^ and at the left of the edge e^ , i.e. 

ki(fc-i)| 

A k = J2 *• (4-2-9) 
* = | e i j | 

For example, we can use the formula 

e-i o-\eu\ 

J2 J2 (n - \en\ - \e12\) (4.2.10) 
| e n | = l | e i 2 | = l 

instead of 
e-i e-j 

Y,Y>-i-k) (4-2-n) 
j = i fc=i 

to compute the summation of case X2 of Figure 4.1. 

Hence, we can categorize all spanning tree of m genes based on the expression 

of formula (4.2.8). Figure 4.6 enumerates classes for m = 2, 3, 4, 5. So E[Nm(n,0)] 

is the linear combination of choosing any two graphs, taking into account repeated 
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occurrences of pairs of graph. So we reduce the summation computation from 9,216 

cases to 25 cases for 4 genes in a cluster and from 1,800, 000 cases to 196 cases for 5 

genes in a cluster to get the E[Nm(n, 9)] as follows: 

_9^_ 185 4 118 3 451 2 7 14 1 

82 ,19337 6 _ 13477 2389 406 
n{n-l)(n-2y 288 72 16 9 
3519 3101 395 1 

4.3 Percolation Threshold 

Clustering procedures based on parametrised adjacency criteria, e.g., as in Refs. [16, 

37], can have pathological behaviour as the criteria become less restrictive. At some 

point, called a percolation threshold, instead of large clusters being rare, they suddenly 

start to predominate and it becomes unusual not to find a large cluster. 

To interpret this pathological behaviour, we simulated the probability that the 

size of the largest (9, ijj)-adjacency gene cluster is larger than half of the genome size 

in 50, 000 random pairs of genomes with size 100. Figure 4.7 shows these probabilities 

as a function of 9 and ip. Then beyond some contour on the (9, ip) plane, it becomes 

meaningless to test that the numbers or sizes of clusters exceed those predicted by 

the null hypothesis of random genomes. 

It was established by Erdos and Renyi [8, 9, 10] that for random graphs where 

edges are independently present between pairs of the n vertices with probability p, 

the percolation threshold is p = -. 

We note in Figure 4.8 that the percolation of the generalized adjacency graph is 

delayed considerably compared to unconstrained Erdos-Renyi graphs with the same 

E[N4(n,9,9)] 

E[N5(n,9,9)] 
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Figure 4.7: Proportion of simulations where size of the largest cluster > | , based 

on a samples of 50,000 random permutations for 9, tp = 1, 2 , . . . , 99 and genome size 

n = 100 

number of edges. To understand what aspect of the generalized adjacency graphs is 

responsible for this delay, we also simulated random graphs of bandwidth < 9, since 

this bandwidth constraint is a property of generalized adjacency. It can be seen in 

Figure 4.8 that the limited bandwidth graphs also show delay in the percolation, but 

less than half that of generalized adjacency graphs. 

As a control on our simulations, it is known (cf. [6]) that Erdos-Renyi graphs 

with rn edges, with r somewhat larger than \ have a cluster of size (4r — 2)n. Our 

percolation criterion is that one cluster must have at least | vertices. Solving this, we 

get r = 0.625. This means that the 292 edges we use in each of our simulated graphs 

must be the same as 0.625n, suggesting that 9 = 0.56^/n, not far from the 0.61y/n 

we found in our simulations. 
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Figure 4.8: (left) Simulation with genome length n = 1000, with 2d2 edges in each 

graph, showing delayed percolation of generalized adjacency graphs with respect to 

Erdos-Renyi graphs. Bandwidth-limited graphs are also delayed but much less so. 

(right) Percolation point as a function of y/n, again with 2d2 edges per graph. Delay 

measured by coefficient of y/n in equation for trend line. 



Chapter 5 

The Expected Number of 

(i, j')-Adjacent Gene Pairs in Two 

Genomes with Different Gene 

Contents 

In previous chapters, the two genomes we are comparing have the same gene con­

tent. However, for real genomes, the gene content may not be the same. Moreover, 

most eukaryote genomes have multiple chromosomes. Even though they have the 

same gene contents, the genes could be in different chromosomes. To obtain general­

ized adjacency gene clusters, we may compare every pair of chromosomes in the two 

genomes. The gene content will generally differ. In this chapter, I will consider this 

more general case, but I still assume every gene has at most one copy in one genome, 

i.e. I do not consider gene duplication. 

70 
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5.1 The Expected Number of (j, A;)-Adjacent Gene 

Pairs in Two Genomes with Partially Different 

Gene Sets 

5.1.1 Two Genomes Have Same Size n and m Genes in Com­

mon 

Since the genome size n is the same, we first match the n — m unrelated genes in 

the two genomes arbitrarily. Then we can start with our previous results and try to 

modify them for the present case. 

To calculate the expected number of one-way (j,k) arbitrarily adjacent gene 

pairs of two random genomes S and T with n genes total and m genes shared, we 

first calculate it for the identity genome / and random genome R with n shared genes. 

We then choose m genes in / to construct subsequences randomly and calculate the 

expected number of one-way (j, fc)-adjacent gene pairs in the subsequence of R for 

which the genes are the same as the genes in the subsequence of / . Thus let rijk be the 

number of one-way (j, A;)-adjacent gene pairs of two genomes S and T, i.e. j-adjacent 

in genome S and A;-adjacent in genome T. 

\m) A ieA 
i+j€A 

2(n-j) 
n(n- l ) ( n ) V ^ l 

V / \mJ A i£A 
i+j€A 

"(n-l)O ' ' W - 2 
2m(m — l ) (n — j)(n — k) 

n2(n — l ) 2 
(5.1.1) 
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where A is the set of all subsequences containing m genes in the identity sequence 

k 

( 1 , 2 , 3 , . . . , n) and Pn(i ~ i + j) is defined by Equation (3.3.11). 

We can use the same idea to compute the expected number of either-way (j, k)-

adjacent gene pairs of two genomes S and T with n genes and m shared genes. 

Because the events i ~ i + j and i ~ i + k are independent, we have 

if j = k, 
1 

i+j€A 

^^-V V i 2 ( n - j ) 
n(n-l)(n) A 

V l\m) A ieA 
i+j^A 

2(n ~ j) . _ -Jn-2 

2m(m — l )(n — j)2 
(5.1.2) 

n2(n — l ) 2 

where A is the set of all subsequences containing m genes in the identity sequence 

(1, 2 , 3 , . . . , n) and Pn(i ~ i + j) is defined by Equation (3.3.11) with k — j ; 

while if j 7̂  k, 

( \ 

E(njk) = 
1 

77TT E E Pn(i~i + k) + ^2 E Pn(i~i + j) 
4 

/ 

i A i^A 
\ i+keA 

A ieA 
i+jeA 

<n-l)0 
\ 

("-^EE^-^EE1 
A ieA I 

i+jeA J 
A ieA 

i+keA 
4m(m — l)(n — j)(n — k) 

(5.1.3) 
n2(n — l ) 2 

where A is the set of all subsequences containing m genes in the identity sequence 

( 1 , 2 , 3 , . . . ,n) , and Pn(i ~ i + k) and Pn(i ~ i + j) are defined by Equation (3.3.11). 
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Hence 

_ . . um(m — l)(ra — j)(n — k) , I 2, j = k 
E(n*) = „J„ ,ii -• where ^ (5.1.4) 

n {H ~ 1} [ 4, j ± k. 

5.1.2 The Size of Two Genomes S and T are Different 

Let two genomes S and T have ns and TIT genes with m genes shared. Without loss 

of generality, we set m < ns < TIT-

First, we consider m = ns-

For example, let ns = 5 and nj> = 8. And consider genomes S = { 1 2 3 4 5 } and 

T = {3 2 6 4 5 1 8 7}. We add 6 7 8 to genome 5 so that 5 and T have the same 

size. Using our previous approach to calculating the expected number of one-way 

(j, A;)-adjacent gene pairs of two genomes with same genome size, we get the following 

result based on Equation (3.3.11). 

E'M = V ^T ~ J) 2(nT-j)(ns--k) 
v i*) Z ^ n (nT _ x) n (n _ n v ' 

4 = 1 v ' v ' 

E'(njk) is the expected value which is computed by two genomes with n*r genes and 

ns shared genes. Taking into account the two subsets of genes, one has ns genes and 

the other one has nr — ns genes. 

Therefore the final expectation value is 

E{njk) = j ^ - T 2 ( " r ~ J \ (5-1.6) 

2 ( n r - j ) ( n s - f c ) . 

Also, we can deal with the either-way (j, fc)-adjacent gene pairs as follows: 
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iij^k 

E{njk) = 
'ns-k 2{nT-j) ns-J 2(nT - k) 

•f nT(nT - 1) ' ^ nT(nT - 1) (nT) \ns) 

2[(nr - j)(ns -k) + (ns - j){nT - k)} 

(5.1.8) 

(5.1.9) 

and if-j = k 

E(njj) = 
ns-J 

E 2{nT-j) 2(nT - j)(ns - j) 
(5.1.10) 

O t l ^ n r - l ) n T ( n T - l ) ( 3 

So combining above results, for 1 < m < ns < TIT, the expected number of either-way 

(j, fc)-adjacent gene pairs is 

2 m ( m - l ) [ ( n r - j ) ( n s - A : ) + ( n s - j ) ( n T - f c ) ] • / • 

E(njk) = < (5.1.11) 

j = k 

Also we can get the expected number of either-way (^f/^-adjacency gene clusters 

2m(m-l)(nT-j)(ns-j) 

* 4 ( « T - I ) 2 C S ) ' 

E[N(ns,nT,m,e,i>)} 
6 ip min(9,ip) fc-1 

j = l fc=l fc=2 j=\ 

8<ip<m EE 
j=l fe=l 

min{9,ij>) fc-i 

- E E 
fc=2 j = l 

2m(m - l)[(nr - j ) ( n s - fc) + (n s - j)(nT - k)} 

4K-i)20 
2m(m - l ) [ (n r - j ) ( n 5 - k) + {ns - j ) ( n r - k)] 

E 
4(nx-l)20 

2m(m - l ) (n T - j ) ( n s - j) 

4K-i)2© 
2m(m — 1) 

4K-i)2© 
[(2^0 - 0 2 )n s n T 

1 
+ ^e{62 - ^ 6 - ^ + 9- 2iP){nT + ns) 

(5.1.12) 
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Figure 5.1: The expected number of either-way (1, #)-adjacency and (0,0)-adjacency 

gene clusters. 

If 1 < m < ns = UT = n and 1 < 9 = %p < m, we have 

nT»Tf /.M m(m-l)92(2n-9-l)2 , r , , „ x 
E[N(n,m,9)] = J , ^ , L. (5.1.13) 

If 1 < m < ns = UT = n and 0 = 1, 1 < ip < m, vre have 

2m(m - l)[(2if> - l)n2 - (^2 + 3 ^ - 2)n + {ip2 + if) - 1)] 
E[N(n,m,i/;)] = 

n2(n — l ) 2 

(5.1.14) 

Figure 5.1 shows the expected number of either-way (1, #)-adjacency gene clusters 

(left) and (#,#)-adjacency gene clusters (right) as a function of 9 and shared genes 

number m where each genome has 50 genes in total. 



Chapter 6 

The Generalized Adjacency Model 

for Multiple Genome Comparison 

In the previous chapters, the generalized adjacency model for the comparison of two 

genomes is studied and the "natural" parameter values were found based on the uni­

form weight system with cut-off point k* and percolation threshold. In this chapter, 

I will extend this model to the comparison of three genomes. It is straightforward to 

extend the generalized gene cluster in three-genome comparison to multiple-genome 

comparison. 
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6.1 Definitions for Multiple Genome Comparison 

Definition 6.1.1. Let U.m be a sequence of m integers, i.e. I lm = -Ki^ • • • ^m o,nd 

Qm be a permutation of m genomes, G\, G2, •. •, Gm. We say two genes x and y of 

Qm are one-way U.m-adjacent in Qm if these two genes are x ~ y in the genome Gi 

for all genomes in Qm. Let Yl'm = < 7Ti7r2 . . . 7rm >l. We define genes x and y of Qm 

to be either-way U'm-adjacent in Qm if there exists a permutation Y[m constructed 

by elements 7Ti, 7T2,..., 7rmj such that x and y are one-way Hm-adjacent in Qm. 

Definition 6.1.2. For two sequences S and T with the same integer elements, let 

S' and T" be two decreasing sequences corresponding to S and T. Let S'[i] (orT'[i\) 

be the ith element of the sequence S' (or T'). We define the sequence S to be a 

predecessor of the sequence T, represent d by S -< T, if there is an integer i such 

that S'[i] < T'[i] and S'[j] = T'[j] for all j < i. The sequence T is successor of the 

sequence S, represent d by T >- S, if S -< T. If S'[i] = T'[i] for all i, then S and 

T are equal, represent d by S x T'. 

Definition 6.1.3. Letunm be the weight on two genes that are one-way Hm-adjacent 

in Qm, such that 

1. all 0Jnms are non-negative and equal, where IITO is a sequence constructed by 

element 7Ti, 7T2,..., 7rm 

^- E T ^ I E " 2 " = I ' ' ' Eirm=i wnm
 = 1> where n is the total number of genes in a 

genome 

1 "< 7Ti7T2 . . . 7rm > " means the decreasing sequence constructed by elements TTI,TT2, • • •, 7rm-



6.2. THE STUDY OF GENERALIZED ADJACENCY CLUSTERS FOR THREE GENOME COMPARISON 78 

Definition 6.1.4. Let Eg be the set of all i-adjacencies in S, where 1 < i < 0 and 0m 

be a sequence of 6s, say {0\,02, • • • ,9m}- We define a subset of C QV to be a one­

way Il0m generalized adjacency gene cluster, or one-way Hgm-adjacency 

cluster, if it consists of the vertices of a connected component of the generalized 

adjacency graph, G?J = (V, f^i EG%)-

Definition 6.1.5. Let Ee
s be the set of all i-adjacencies in S, where 1 < i < 0 and 

0m be a sequence of 0s, say {0i,02,---,0m}- We define a subset of C C V to be 

an either-way Ugm generalized adjacency gene cluster, or either-way Hem-

adjacency cluster, if it consists of the vertices of a connected component of the 

generalized adjacency graph, Gg^1 = (V, {Jnf) flUi^Gi)-

6.2 The Study of Generalized Adjacency Clusters 

for Three Genome Comparison 

6.2.1 Definitions for Three Genome Comparison 

Definition 6.2.1. We say genes x and y of three genomes R, S and T are one-way 

(i,j,k)-adjacent if they are i-adjacent in the genome R, j-adjacent in the genome 

S and k-adjacent in the genome T. Let i < j < k. We say x and y are either-

way (i,j,k)-adjacent if they are i-adjacent in one of three genomes, j-adjacent in 

another genome and k-adjacent in the remaining genome. 

Definition 6.2.2. Let 10^ be the weight on two genes that are one-way (i,j,k)-

adjacent, such that 

1. 0 < uiijk = oJikj = Ujik = ujjki = tukij = Ukji, i,j,ke {1, 2 , . . . , n — 1} 

a v—(fi-1 r~Mi-1 v—\n— 1 -i 
*• L,i=l 2 ^ = 1 Z^fc=l Uijk ~ J-
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(a) iW < r « 

(b) iW = r(D and «P) < r(2) 

(c) i(D = r^) , i(2) = r® and i& < r(
3) 

where i^ < i<& < %W, the set {i^,i^,i^} = {i,j,k} 

and r<3> < r^ < r'1*, the set {r^\ r<2\ r^} = {r, s, t}. 

Definition 6.2.3. Let Ee
s be the set of all i-adjacencies in S, where 1 < i < 9. 

We define a subset of C C V to be a one-way (9,<j),i/j) generalized adjacency 

gene cluster, or one-way (0,0, ^ -adjacency cluster, if it consists of vertices of 

a connected component of the generalized adjacency graph, GRp£ = (V, E^DEgf) 

Et). ' 

Figure. 6.1 illustrates how genomes # = 1 2 3 4 5 6 7 8 9, 5 = 2 1 5 7 8 3 6 4 9 

and T = 1 2 6 7 8 4 9 5 3 determine the one-way (2, 3,4)-adjacency clusters, {1, 2} 

and {3,4,5,6,7,8}. 

Figure 6.1: Determination of one-way (2,3,4)-adjacency clusters of genomes R, S, T. 
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Definition 6.2.4. Let E6
S be the set of all i-adjacencies in S, where 1 < i < 9. We 

define a subset ofC C V to be an either-way (9, </>, ip) generalized adjacency gene 

cluster, or either-way (9,(j), ̂ - ad jacency cluster, if it consists of vertices of a 

connected component of the generalized adjacency graph, GR^ = (V, (E^DEgD 

£^)u(£7^n£;Jn£$)u(Ejn£;|n£^)u(£;^n£^nE|.)u(J^nf;|n^)u(£^n£?|n£§.)). 

Figure. 6.2 illustrates how genomes # = 1 2 3 4 5 6 7 8 9, 5 = 2 1 5 7 8 3 6 4 9 

a n d T = 1 2 6 7 8 4 9 5 3 determine the (2,3,4) clusters {1,2} and {3,4,5,6, 7,8, 9}. 

Figure 6.2: Determination of either-way (2,3,4) clusters of genomes R,S,T. 
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Definition 6.2.5. The similarity function of three genomes R, S and T is 

n—1 n—1 n—1 n—1 n— 1 n—1 

SIM(R,S,T) = Y,Y,H 
i = l ^=1 fc=i t = l ; = 1 i = l 

(6.2.1) 

where uxyz is the weight of an (x,y,z)-adjacency; nxyz is the number of gene pairs 

(g, h) that are x-adjacent on R, y-adjacent on S and z-adjacent on T. 

6.2.2 The "Natural" Weight Function for Three Genome Com­

parison 

Theorem 6.2.6. Letak= U(81fc-l-9\/81fc2 - 2fc)i + ±(81£;-l-9V81fc2 - 2k)~* + 

1J ~ L v 6A;J. The either-way (i, j , k)-adjacency weight u) that maximizes the similarity 

function (6.2.1) has 

&, if 1 <t < s < r < ak., 

^rst — \ 
or l<s<r = ak.,l<t<s- Js2 - 2k* + \r(r - l)2 

(6.2.2) 

(6.2.3) 

0, otherwise 

where k* is a natural number and maximizes the function 

Iak-l r s ak s-^3s2-6k+ak(ak-l)
2 ' 

•ft*) = k 12YsY2nrst + Yl E n'«kst 
I r = l s = l t = l s=l t=l j 

where n'xyz = nxyz + nxzy + nyxz + nyzx + nzxy + nzyx and nxyz is the number of gene 

pairs x-adjacent on R, y-adjacent on S and z-adjacent on T. (See Figure 6.3 for the 

3-dimensional volume measured by k*.) 

Proof. Similar to the proof of Theorem 3.2.5, we can transform the three-dimensional 

weight ujrst to a non-increasing sequence and prove it is a uniform system. Now we 

will seek the cut-off point for the weights, i.e. k*. 
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A / * 

ak-l 
% • 

Figure 6.3: k is augmented starting at the origin, in the triangular pyramid. Values 

of u}rst in other parts determined by symmetry. 

In Figure 6.3, we obtain that the value of A; is between the volume of the triangular 

pyramid OABC and OA'B'C, so we have 

k = K(r - l ) 2 + \s2 - \{s - tf, l<t<s<r<n-l (6.2.4) 

and 

^ r ( r - l ) 2 < k< ^ r 2 ( r + l) (6.2.5) 

Solving Equation (6.2.5) , we obtain the bound of r, 

r > \[{Slk - 1 - 9V8lk2-2k)^ + (81A: - 1 - 9y/Slk2 - 2h)~* - \], 

r < \[(81k - 1 - 9V81A;2-2A;)3 + (81Jfc - 1 - 9\/81fc2 - 2k)~* + \] (6.2.6) 

Because r and k are all natural numbers, r must be [|(81fc — 1 — 9\/81fc2 — 2A;)s + 

f (81fc - 1 - 9V&lk2 - 2fc)"3 + | J . 

Consider s and t. We show by solving t in Equation (6.2.4) that 
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Figure 6.4: The expectation of k* simulated by random permutation in three-genome 

comparison. 

Hence, we set the conclusion of the theorem. • 

This theorem shows that most sensitive values of the parameters, 6, cf> and ip in 

three-genome comparison should be 0 = (f> = if) = |_-̂ (81fc — 1 — 9\/81&;2 — 2fc)s + 

f(81fc - 1 - V 8 1 P - 2fc)-3 + f J ~ L v ^ J t o And the (0,0. VO generalized ad­

jacency gene clusters. We can use the E[k*] to estimate k*. Figure 6.4 illus­

trates the simulation result of the expected value of k* (solid line) for genome sizes 

n = 10, 2 0 , . . . , 100,200,300,. . . , 1000 by calculating k* for each of 50,000 random 

permutations as in Theorem 6.2.6, and simply taking the mean. We also display the 

trend of the expected value of A;* as a function of genome size n (dashed line). 

In order to use the same method as in two-genome comparison to obtain k*, we 

need know what the nrsts are and whether they satisfy the same property as n^ in 
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the previous chapter, i.e. the total number of one-way (i, j)-adjacent gene pairs in 

two-genome comparison. 

Theorem 6.2.7. For three random genomes, R, S and T, with n genes, let nrst be the 

total number of one-way adjacent gene pairs, (x,y), that are r-adjacent in genome 

R, s-adjacent in genome S and t-adjacent in genome T. Then nrst, converges in 

distribution to the Poisson with parameter ^(n^i)* 

Proof. Events {x ~ yin genome S \x ~ y in genome R} and {x ~ y in genome T | x ~ 

y in genome R} are independent. Based on Definition (3.3.10) and Equation (3.3.11), 

then we get 

E ({x ~ y in R},{x ~ y in S}, {x ~ y in T}) 

— Pn ({x ~ y in R}, {x ~ y in S}, {x ~ y in T}) 

= Pn ({x ~ y in S} \ {x ~ y in R}) • Pn l{x ~ y in T} \ {x ~ y in R}) • Pn ({x ~ y in R}J 

4(n — s)(n — t)(n — r) 

n2(n — l ) 3 

Therefore 

(6.2.8) 

E{nrst) = (n — 1) • E ({x ~ y in R}, {x ~ y in S}, {x ~ y in T} J 

A(n — r)(n — s)(n — t) 
(6.2.9) 

n2(n — l ) 2 

Using the same idea as in Theorem 3.3.7, we conclude nTSt converges to the 

Poisson distribution with parameter '"~^2f"I^2 • d 

Based on the proof of Theorem 3.2.5 and Theorem 6.2.6, we know that for the 

parameter value selection, we consider l<j<i<n — lin two-genome comparison 

and l < t < s < r < n — l i n three-genome comparison to get the formula and 

the range of k because of the symmetry of weights (see Equation (3.2.19), (3.2.20), 
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(6.2.4) and (6.2.5)) and find that the parameter values should be |_\/2fcJ in two-

genome comparison and |_v6fcj in three-genome comparison. Using the same idea, 

we can obtain k in ra-genome comparison where m > 3, by considering 1 < Zi < i2 < 

• • • < im < n — 1 and find the parameter value to be approximatly [ \/m\ • k\. Thus, 

the parameter values of m-genome comparison, 0lt 92,..., 9m should be [ \ /m! • k\ to 

find a large number of generalized adjacencies, but not at the cost of unreasonably 

increasing the number of potential adjacencies. 



Chapter 7 

Conclusion and Open Questions 

7.1 Conclusion 

In this thesis, I first introduced the background of gene clustering (in Chapter 1) 

and some previous works of gene clustering (in Chapter 2). Then I considered two-

genome comparison with the same gene content and introduced the definition of a 

two-parameter class of gene proximity criteria (in Chapter 3), where two genes are 

said to be one-way (or either-way) (i, .^-adjacent if they are separated by i — 1 genes 

on a chromosome in one (or either one) of the genomes and j — 1 genes in the 

other. We define a one-way (or either-way) (9, ip) cluster in terms of a graph where 

the genes are vertices and edges are drawn between those (i, j)-adjacent gene pairs 

where min(i,,7') < mm(6,ijj) and m&x(i,j) < max(Q,ip). The connected components 

of the graph are then the one-way (or either-way) (6,ip) clusters. The virtue of 

generalized adjacency clusters is that they embody gene order considerations within 

the cluster. In contrast to r-windows [7] and max-gap clusters [1, 16], generalized 

adjacency cannot have two genes close together in one genome but far apart in the 

other, although the cluster could be very large. 
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As with other criteria, the quantities 9 and ip would seem arbitrary parame­

ters in our definition of a cluster. We remove some of this arbitrariness, by finding 

"natural values" for 9 and ^ as a function of n, the total number of genes in the 

genomes. We find two such functions; the first trades off the expected number, across 

all pairs of genomes, of generalized adjacencies against the parameters 9 and ip, with 

lower parameter values considered more desirable, i.e., it is good to find a large num­

ber of generalized adjacencies, but not at the cost of including unreasonably remote 

adjacencies (in Chapter 3). 

To do this we first define a wide class of similarities (or equivalently, distances) 

between two genomes in terms of weights on the (i, j)-adjacencies, namely any system 

of fixed-sum, symmetric, non-negative weights u> non-increasing in i and j . This is 

the most general way of representing decreasing weight with increasing separation of 

the genes on the chromosome. In any pair of genomes, we then wish to maximize 

the sum of the weights, which essentially maximizes the sensitivity of the criterion. 

Our main result is a theorem showing that the solution reduces to a uniform weight 

on gene separations up to a certain value of both 9 and ip, and zero weight on larger 

separations. 

If we are willing to accept the loss of sensitivity, and prefer to search for clusters 

more widely dispersed on chromosomes, there is a second set of "natural" parameter 

values that serve as an upper bound on the meaningful choices 9 and ip (in Chapter 4). 

These values are the percolation thresholds of the (9, tp) clusters. Beyond these values, 

tests of significance are no longer meaningful because all clusters rapidly coalesce 

together. It is no longer surprising, revealing or significant to find large groups of 

genes clustering together, even in pairs of random genomes. 

Percolation has been studied for max-gap clusters [16], but the main analytical re­

sults on percolation pertain to completely random (Erdos-Renyi) graphs. The graphs 
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associated with (9, ip) clusters manifest delayed percolation, so the use of Erdos-Renyi 

percolation values would be a "safe" but conservative way of avoiding dangerously 

high values of the parameters. I show how to translate known results on Erdoss-

Renyi percolation back to generalized adjacency clusters. I also introduced random 

bandwidth-limited graphs and use simulations to compare the delays of generalized 

adjacency and bandwidth-limited percolation with respect to Erdos-Renyi percola­

tion in order to understand what structural properties of generalized adjacency are 

responsible for the delay. 

After that, I extended my research to more general situations, i.e., two-genome 

comparison with different gene content (in Chapter 5) and multiple genome compar­

ison (in Chapter 6). I gave the definitions and some results from both theoretical 

analysis and simulation. 

7.2 Open Questions 

Locating k* analytically as a function of n 

In this thesis, I obtained a graph of the expected value of k* as a function of genome 

size n by simulating k* for each of 50,000 random permutations with some genome 

sizes n, for example n = 1000, 2000, . . . , 100000 in two-genome comparison. It remains 

to locate k* analytically as a function of n. 

Exploring other structural properties 

It would be interesting to find other structural properties, besides bandwidth, re­

sponsible for the delayed percolation of generalized adjacency graphs. In this thesis, 

I showed by simulation that bandwidth is partially responsible because the limited 

bandwidth graphs (Figure 4.8) show delay in the percolation. However, the delay 
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shown in limited bandwidth graphs is less than half that in generalized adjacency 

graphs, which means bandwidth constraint is not the only thing responsible for the 

delayed percolation behaviour of generalized adjacency graphs. 
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