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ABSTRACT

Understanding drugs and their modes of action is a fundamental challenge in systems med-
icine. Key to addressing this challenge is the elucidation of drug targets, an important step in
the search for new drugs or novel targets for existing drugs. Incorporating multiple biological
information sources is of essence for improving the accuracy of drug target prediction. In this
article, we introduce a novel framework—Similarity-based Inference of drug-TARgets
(SITAR)—for incorporating multiple drug-drug and gene-gene similarity measures for drug
target prediction. The framework consists of a new scoring scheme for drug-gene associations
based on a given pair of drug-drug and gene-gene similarity measures, combined with a
logistic regression component that integrates the scores of multiple measures to yield the final
association score. We apply our framework to predict targets for hundreds of drugs using
both commonly used and novel drug-drug and gene-gene similarity measures and compare
our results to existing state of the art methods, markedly outperforming them. We then
employ our framework to make novel target predictions for hundreds of drugs; we validate
these predictions via curated databases that were not used in the learning stage. Our
framework provides an extensible platform for incorporating additional emerging similarity
measures among drugs and genes. Supplementary Material is available at www.liebertonline
.com/cmb.
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1. INTRODUCTION

Deciphering drug targets is a primary task in the development of new drugs, in finding new ways to

utilize existing drugs, and in pinpointing their side effects. Experimental identification of drug-target

associations remains a laborious and costly task (Haggarty et al., 2003), calling for faster computational

prediction methods. Such methods can be used to augment the limited available information on drug targets,

which is in sharp contrast to the vast number of compounds existing in chemical databases.
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Early attempts in computational prediction included docking simulations (Cheng et al., 2007) and text

mining (Zhu et al., 2005). The former, however, can be applied only to targets with known three-

dimensional (3D) structure. The latter searches for co-occurrences of drugs and genes in texts, and is

limited to current knowledge and prone to detection problems due to multiple gene and compound names.

Additional attempts were based on reverse engineering of gene regulatory networks, inferring possible

targets from cellular responses to administered drugs (di Bernardo et al., 2005; Gardner et al., 2003; Mani

et al., 2008). These methods suffer from the complex and noisy nature of molecular networks. Recently,

several algorithms have been proposed to predict drug-target associations by combining drug-drug and

gene-gene similarity measures (Bleakley and Yamanishi, 2009; Campillos et al., 2008; Keiser et al., 2009;

Yamanishi et al., 2008). The key assumption underlying these algorithms is that similar drugs tend to share

similar targets (Mitchell, 2001). This has been observed with respect to chemical similarity (Martin et al.,

2002; Schuffenhauer et al., 2003), side effect similarity (Campillos et al., 2008), and more.

Several authors had previously predicted drug-target interactions by combining chemical drug-drug

similarity and sequence-based gene-gene similarity (Bleakley and Yamanishi, 2009; Yamanishi et al.,

2008). Keiser et al. (2009) compared the chemical structure of drugs to a compendium of ligands, known to

modulate the function of protein receptors, providing indirect connections between drugs and targets via

these ligands. Several approaches, concentrating mainly on indirect drug-gene associations, employed

additional similarity measures to gain insights on drugs. Specifically, protein-protein interaction (PPI)

network similarity was used in Hansen et al. (2009) to predict drug-gene genetic interactions (termed

‘‘pharmacogenes’’), and gene expression data was combined with drug-response data in Kutalik et al.

(2008) to infer co-modules of genes and drugs. Last, a recent approach used information on compound-

induced fitness defects of yeast deletion strains to predict drug-targets in S. cerevisiae (Hillenmeyer et al.,

2010).

Different similarity measures utilize different attributes of drugs or genes, hence the use of just one or a

few of them may miss information that is relevant to predicting new associations. In particular, the two-

dimensional (2D) chemical space does not always comply with three-dimensional (3D) structural simi-

larity (Kuhn et al., 2008). Moreover, sequence similar targets tend to bind the same ligands in the case of

G-protein coupled receptor (GPCR) targets but less so for protein kinases (Kuhn et al., 2008). The use of

pharmacological information is limited to marketed drugs whose indication/side effect information is

available (Campillos et al., 2008).

To overcome these limitations, we have designed a new prediction scheme—Similarity-based Inference

of drug-TARgets (SITAR)—that integrates multiple measures to facilitate the prediction task. Our con-

tribution is twofold: (i) We introduce novel drug-drug similarity measures and combine them into the

prediction process; and (ii) we propose a way of integrating the drug-drug and gene-gene similarities to

create classification features. The result is a new drug-target prediction algorithm, which markedly out-

performs previous methods and can cope with new drugs with no known targets.

2. RESULTS AND DISCUSSION

2.1. SITAR: an algorithm for predicting drug targets

We designed a drug-target prediction algorithm with three main components (Fig. 1): (i) drug-drug and

gene-gene similarity computations; (ii) combining the drug and gene similarity measures into classification

features; and (iii) feature selection and prediction using logistic regression. In the following, we describe

these components in detail.

2.2. Similarity measures

In order to overcome the limitations engulfed in using similarity measures of a single type, we set out to

incorporate a multitude of similarity measures, including both novel and already published ones. Overall,

we considered five drug-drug similarities and three gene-gene similarities from different biological and

chemical sources. The drug-drug similarity measures were computed using chemical, registered and pre-

dicted drug side effects (Kuhn et al., 2010) of the drug, drug response gene expression profiles, and the

Anatomical, Therapeutic and Chemical (ATC) classification system. The gene-gene similarity measures

used are based on sequence, closeness in a protein-protein interaction network, and semantic Gene
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Ontology (GO) similarities. Overall, 315 drugs and 250 protein targets were represented in all measures,

spanning 782 known associations.

2.3. Feature construction and classification

At the heart of our algorithm lies the process of exhaustive construction of classification features that

span the entire pairwise space of drug-target measures’ combinations. That is, each feature is constructed

based on one drug-drug similarity measure and one gene-gene similarity measure. It is calculated by

combining the drug-drug similarities between the query drug and other drugs and the gene-gene similarities

between the query gene and other target genes across all true drug-target associations. The features are

automatically combined using a logistic regression classifier that is coupled with a wrapper feature se-

lection procedure and yield the final classification scores.

2.4. Feature selection and performance evaluation

We performed feature selection using both forward selection and backward elimination, converging to

a selected set of ten features, constructed from pairs of drug-drug and gene-gene similarity measures. The

area under the precision-recall curve (AUPR) scores before and after the feature selection phase, as well as

the AUPR achieved when using each of the ten selected features are listed in Table 1. Similar results were

obtained when using an SVM classifier (see Methods below, as well as Table S1 in the Supplementary

Material, available at www.liebertonline.com/cmb). Examining the individual contribution of each of the

FIG. 1. Algorithm pipeline, com-

prised of formation of drug-drug

and gene-gene similarity matrices

(A), integration of the similarities to

classification features (B), and clas-

sification with wrapper feature se-

lection (C).
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features, we find that the best AUPR scores are achieved using the ligand-based drug-drug similarity of

Keiser et al. (2009) together with sequence similarity for genes (AUPR¼ 0.85). The least contributing

combination is the drug co-expression together with PPI network closeness (AUPR¼ 0.54). Accordingly,

we find that the best drug-drug similarity averaged over all gene-gene similarities is the ligand similarity

(AUPR¼ 0.83 – 0.02), and the worst is the co-expression similarity (AUPR¼ 0.67 – 0.11). For genes, the

best gene-gene measure across all drug-drug similarities is the GO semantic similarity, and the worst is the

PPI closeness measure. We note that the feature selection process did not affect the results significantly, but

we expect it to have more impact when additional similarity measures are incorporated as features.

We further assessed the classification quality of different target types (GPCRs, ion channels, enzymes,

and nuclear receptors), as in Bleakley and Yamanishi (2009). The results are listed in Table 2, with GPCRs

attaining the best scores.

2.5. Comparison to other drug-target prediction methods

We compared our method to two state-of-the-art methods:

(i) The kernel regression-based method (KRM) of Yamanishi et al. (2008) embeds drugs and targets

into a unified Euclidean space termed the ‘‘pharmacological space,’’ using a regression model.

Predicted interacting drug-gene pairs are those that are closer to each other below a certain threshold

in the pharmacological space.

(ii) The bipartite local models (BLMs) method of (Bleakley and Yamanishi, 2009) constructs local

models to learn drug-target associations based on additional targets of the query drug and additional

drugs targeting the query target. We note that the SEA tool of Keiser et al. (2007) provides receptors

code names that cannot be mapped to our list of targets, precluding a direct comparison to their

method. Figure 2 displays the precision-recall curves of the three methods, and Table 3 summarizes

the AUPR and AUC scores between the different methods, overall demonstrating the marked im-

provement obtained by our new method (AUPR of 0.908, exceeding the KRM and BLM methods by

0.07 and 0.15 AUPR difference, respectively).

Table 1. AUPR and AUC Scores Calculated Using Different Feature Sets

Drug similarity Gene similarity AUPRa AUCb

All features 0.905 0.935

Selected features 0.908 0.935

Ligand Sequence similarity 0.851 0.867

Ligand GO semantic similarity 0.845 0.867

Predicted Side Effect GO semantic similarity 0.832 0.863

ATC similarity GO semantic similarity 0.81 0.858

Ligand PPI closeness 0.809 0.844

Chemical GO semantic similarity 0.805 0.84

ATC similarity PPI closeness 0.762 0.809

Chemical Sequence similarity 0.749 0.763

Predicted Side Effect PPI closeness 0.729 0.759

Co-expression Sequence similarity 0.724 0.748

aAll standard deviations are below AUPR of 0.01.
bAll standard deviations are below AUC of 0.005.

Table 2. AUPR Scores Calculated for Different Target Types

Target type Number AUPR AUC

GPCR 49 0.939 0.946

Ion channels 37 0.889 0.927

Enzymes 94 0.877 0.922

Others 56 0.87 0.935

Nuclear receptors 14 0.851 0.863
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2.6. Novel predictions

After demonstrating the utility of our method in predicting drug target associations, we set out to predict

novel targets for drugs in our data set. We focused on the best scoring gene for each drug, obtaining

putative novel targets for 307 of the 315 drugs used in this study. To validate these predictions, we

compared the predicted associations to those reported in two other sources of drug-target interactions that

were not used in the learning process: the Therapeutic Target Database (TTD) (Zhu et al., 2010) and the

Matador database (Gunther et al., 2008). TTD included only six interactions that were not part of our

original data. Two of them were predicted by us ( p< 2.4e�4). Matador, on the other hand, reported 219

additional interactions, out of which we predicted thirteen ( p< 8.4e�12).

For an additional validation, we utilized information on drug-related pathways of KEGG (Kanehisa et al.,

2010) and REACTOME (Matthews et al., 2009) databases, as cataloged in the Comparative Tox-

icogenomics Database (CTD) (Davis et al., 2009). Out of the 315 drugs used in this paper, 217 drugs are

associated with known pathways in CTD. For each drug, we constructed a merged list of genes that appear

in all the pathways associated with that drug. We then searched for enrichment of the predicted targets of

each drug in this merged list. We found 20 drugs whose pathways are enriched for our predicted targets (at

a false discovery rate [FDR] of 0.05). For comparison, we randomly permuted the association between drug

target predictions and drug pathways and recomputed the number of enriched drugs. Across 100 such

permutation tests, 9.2 – 3.4 drugs were enriched on average, with all tests attaining less than 20 enrich-

ments ( p< 0.01).

The distribution of target types in our novel predictions is different from the general distribution of

known targets. Specifically, nuclear receptors and GPCRs are overrepresented in our novel predictions

relative to their general abundance in all the targets (relative abundance in novel predictions is 2.4 and 1.9

times the relative abundance in drug targets for nuclear receptors and GPCRs, respectively). This over-

representation is attributed to higher scores achieved by drugs associated with nuclear receptors and GPCRs

due to higher sequence similarity of nuclear receptors and GPCRs relative to other targets (two and 1.7

times more similar than ion channels, respectively). In addition, nuclear receptors are much closer to each

other on the PPI network (average PPI distance between nuclear receptors is smaller by a factor of 0.6 from

all other types). We note that dopamine receptor D3 (DRD3), having only two known interactions in our

data, had exceptionally high occurrence in our novel prediction set (28 times). Dopamine receptor D3 is

primarily predicted to be targeted by drugs indicated for Parkinson’s disease and schizophrenia (eight out of

FIG. 2. Precision-recall curves

of our logistic regression classifier,

KRM and BLM methods.

Table 3. Comparison of AUPR and AUC Scores Calculated Using Different Methods

Measure type AUPR AUC

This work 0.908 0.935

KRM (Yamanishi et al., 2008) 0.838 0.884

BLM (Bleakley and Yamanishi, 2009) 0.754 0.814
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nine existing in DrugBank). It is noteworthy that half of the predicted drugs targeting DRD3 are also

indicated for Parkinson’s disease or schizophrenia. These predictions make DRD3 a promising candidate

for further investigation.

Next, we applied our method to provide novel predictions for drugs that have no known interacting targets

in DrugBank. There are 20 such drugs that are included in all our similarity measures. Applying a cross-

validation scheme and choosing a classification threshold maximizing the F1-measure, we could predict

targets for 14 drugs. The top 5 scoring predictions are listed in Table S2 in the Supplementary Material.

Evaluating our set of top predictions for drugs with unknown targets, we find indirect evidence for the first

four of the top five associations. Specifically, Theobromine is predicted to target Adenosine A1 receptor

(Adora1). Theobromine, derived from the cacao bean, belongs to the methylxanthine class of chemical

compounds. Other methylxanthine derivatives such as Caffeine and Theophylline are reported to target

Adenosine A1 receptors (Fredholm and Persson 1982). Cefotetan is predicted to target Paraoxonase 1

(PON1). Cefotetan belongs to the Cephamycin class of antibiotics, which is often classified with second

generation Cephalosporins; the latter inhibits PON1 (Sinan et al., 2006). Rolitetracycline is predicted to

target Cytochrome C (CYCS) and Caspase 3 (Casp3) with equal score. Rolitetracycline is a member of the

tetracycline family of antibiotics. Other members from this family such as Minocycline and Doxycycline

are reported to inhibit Cytochrome C (Minocycline [Zhu et al., 2002])) and Caspase 3 (Minocycline and

Doxycycline [Chen et al., 2000; Mouratidis et al., 2007]). Last, Sulfamerazine is predicted to target Dihy-

drofolate reductase (Dhfr). Sulfamerazine belongs to antibacterial sulfonamides whose inhibition of Dihy-

drofolate reductase has been extensively studied (Rollo, 1970).

Last, we applied our method to detect genes that to date are not recognized as drug targets. In order to

reduce the number of tested genes, we constructed a list of the most promising targets in the following way:

for each of the 250 known targets, we took the most similar gene in at least one of the three used gene-gene

similarity measures (sequence similarity, closeness on the protein-protein interaction network and GO

semantic similarity). We thus ended with 135 potential new targets on which we applied a similar pro-

cedure as in the case of drugs with no known targets: we performed a 10-fold cross validation to obtain a

classification threshold that was used to classify the 135 potential targets. We then considered the top ranked

predicted drug for each of the 135 potential targets. The top five drug predictions are listed in Table S3 in the

Supplementary Material, all of which are supported by current knowledge as discussed below. Specifically,

Fluorometholone is predicted to target calreticulin (CALR). Fluorometholone is a glucocorticoid, which is

a class of steroid hormones that binds to the glucocorticoid receptor (GR). Interestingly, it has been shown

that CALR binds to the GR, thus inhibiting the effect of glucocorticoids (Burns et al., 1997). Menadione

(vitamin K3) is predicted to target coagulation factor III (tissue factor, F3). According to DrugBank,

Menadione is involved as a cofactor of vitamin K–dependent coagulation factors II, VII, IX, and X, two of

which are known to be part of the tissue factor pathway (Thomson et al., 2002). In addition, tissue factor is

known to be targeted by coagulation factor VIIa, which is itself a vitamin K–dependent glycoprotein.

Methyldopa, primarily used for hypertension, is predicted to target nitric oxide synthase 1 (neuronal;

NOS1). It has been shown that Methyldopa is associated with changes in nitric-oxide synthesis (Podjarny et

al., 2001). Clofibrate is predicted to target apolipoprotein E (APOE). According to DrugBank, Clofibrate

inhibits the synthesis and increases the clearance of apolipoprotein B, which is part of the low-density

lipoproteins (LDL). APOE has a role in the conversion of very-low-density lipoproteins to LDL (Ehnholm

et al., 1984). Finally, Bacitracin, an antibiotic, is predicted to target thrombospondin 1 (Thbs1/TSP1).

While we could not find a direct connection between the two, it is noteworthy that Bacitracin acts by

interfering with bacterial cell wall maintenance of Gram-positive organisms (Stone and Strominger, 1971).

Interestingly, it has been shown that TSP1 promotes cellular adherence of Gram-positive pathogens via the

recognition of peptidoglycan, the main component of the cell wall (Rennemeier et al., 2007).

3. CONCLUSION

We introduced a novel method, SITAR, for predicting drug-target interactions. Our method incorporates

an extensive set of drug-drug and gene-gene similarity measures. Newly incorporated drug-drug similarities

are based on predicted side effects, gene expression drug response profiles, and the ATC classification

system. The classification features are constructed based on a new score integrating the drug-drug and

gene-gene similarity spaces. These features are integrated via a logistic regression classifier, combined with
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a feature selection process. Our method is flexible and allows the incorporation of new emerging mea-

sures without altering already computed scores on other measures. Using our method, we show marked

improvement of classification performance over previous drug-target prediction approaches.

We provide novel predictions of drug-target interactions and validate them against public databases.

Last, we predict targets for drugs which to-date have no known targets.

Having shown that our method is robust with respect to different score choices, selected features, and

different classification methods, it seems that the primary reason for the increased performance compared to

previous methods stems from the use of multiple similarity measures. Each of the resulting features alone

does not have enough predictive power, but the combination of multiple features allows the classification

procedure to perform well. Accordingly, we noticed that using a low number of features (less than five)

deteriorates the results. Nevertheless, our method can be enhanced in several ways. First, one could improve

and expand the measures used. Of special interest is improving the gene co-expression similarity based on the

Connectivity Map data, which currently exhibits the worst performance. Another extension would be to

increase the number of represented drugs and genes shared between the different measures. This could be

achieved either by predicting missing similarities from existing ones (Atias and Sharan, 2010) or by in-

corporating imputation methods to overcome missing information in some of the measures.

4. METHODS

4.1. Similarity measures

We defined and computed five drug-drug similarity measures and three gene-gene similarity measures.

All similarity measures were normalized to be in the range [0, 1].

We used the following drug-drug similarity measures:

(1) Chemical-based: Canonical simplified molecular input line entry specification (SMILES) of the drug

molecules were downloaded from DrugBank (Wishart et al., 2008). Hashed fingerprints were

computed using the Chemical Development Kit (CDK) with default parameters (Steinbeck et al.,

2006). The similarity score between two drugs is computed on their fingerprints according to the

two-dimensional Tanimoto score (Tanimoto, 1957), which is equivalent to the Jaccard score ( Jac-

card, 1908) of their fingerprints, i.e., the size of the intersection over the union when viewing each

fingerprint as specifying a set of elements.

(2) Ligand-based: The Similarity Ensemble Approach (SEA) (Keiser et al., 2007) relates protein re-

ceptors based on the chemical 2D similarity of the ligand-sets modulating their function. Given a

drug’s canonical SMILES, the SEA search tool compares it against a compendium of ligand-sets and

computes E-values for those ligand sets. To compute a drug-drug similarity, we queried drugs using

their canonical SMILES on the SEA tool. To obtain robust results, we queried the drug against the

two ligand databases provided in the tool (MDL Drug data report and WOMBAT [Olah et al., 2005])

and used two different methods to compute the drug fingerprint (Scitegic ECFP4 and Daylight),

resulting in four lists of similar ligand sets. Unifying the four lists and filtering drug-ligand set pairs

with E-values >10�5, we obtained a list of relevant protein-receptor families for each drug. Finally,

the similarity between a pair of drugs was computed as the Jaccard score between the corresponding

sets of receptor families. We note that, due to a partial mapping of the receptor families to proteins,

we could not use the drug-receptor associations directly as classification features.

(3) Expression-based: Gene expression responses to drugs were retrieved from the Connectivity Map

project (Lamb et al., 2006). We experimented with three different methods to calculate drug simi-

larity from Connectivity Map ranked gene expression profiles: (i) Spearman rank correlation coef-

ficient; (ii) calculating a Jaccard score between the 500 most differentially expressed genes (250

most up-regulated and 250 most down-regulated genes); and (iii) using the method proposed by

(Iorio et al., 2009), employing Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) as

a similarity measure. We dealt with multiple experiments per drug as follows: In the Spearman

calculation, we averaged over the d1xd2 different correlation coefficients obtained between the d1

experiments of one drug against the d2 repeated experiments of the second drug. In the Jaccard case,

we used differentially expressed genes that appeared in at least 50% of the gene expression responses

to the same drug. The method proposed by Iorio et al. (2009) handles repeated experiments of the

same drug through iterative merging.
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(4) Side-effect based: Drug side effects were obtained from SIDER (Kuhn et al., 2010), an online

database containing drug side effects associations extracted from package inserts using text mining

methods. Recently, we developed an algorithmic framework to predict side effects for drugs by

combining side effect information on known drugs with their chemical properties (Atias and Sharan,

2010). Following this work, we defined the similarity between drugs according to the Jaccard score

between their top ten predicted side effects.

(5) Annotation-based: We used the World Health Organization (WHO) ATC classification system

(Skrbo et al., 2004). This hierarchical classification system categorizes drugs according to the organ

or system on which they act, their therapeutic and their chemical characteristics. ATC codes were

obtained from DrugBank. To define a similarity between ATC terms, we used the semantic similarity

algorithm of Resnik (1999). This algorithm associates probabilities p(x) with all the nodes (i.e.,

terms) x in the hierarchy and calculates the similarity of two drugs as the maximum over all their

common ancestors c of –log (p(c)).

The gene-gene similarity measures we used include:

(1) Sequence similarity: based on a Smith-Waterman sequence alignment score (Smith et al., 1985).

Following the normalization suggested in Bleakley and Yamanishi (2009), we divide the Smith-

Waterman score between two protein sequences by the geometric mean of the scores obtained from

aligning each sequence against itself.

(2) Closeness in a protein-protein interaction (PPI) network: Human protein-protein interactions were

compiled from the literature (Breitkreutz et al., 2008; Ewing et al., 2007; Rual et al., 2005; Stelzl

et al., 2005; Xenarios et al., 2002). The distances between each pair of genes were calculated on their

corresponding proteins using an all-pairs shortest paths algorithm. Distances were transformed to

similarity values using:

S(p, p0)¼Ae� bD(p, p0) (1)

where S(p,p0) is the computed similarity value between two proteins, D(p,p0) is the shortest path between

these proteins in the PPI network, and A, b are free parameters.

(3) Gene Ontology (GO) semantic similarity: GO annotations (Ashburner et al., 2000) were downloaded

from UniProt ( Jain et al., 2009). Semantic similarity scores between targets were calculated ac-

cording to Resnik (1999), using the csbl.go R package (Ovaska et al., 2008). All three ontologies

were used in the computation as similar drugs are expected to interact with proteins that act in

similar biological processes, or have similar molecular functions or reside in similar compartments.

4.2. Combining measures

We view the drug target prediction problem as a classification problem, where the goal is to learn a

classifier that can distinguish true and false drug-target associations. True drug-target interactions were

retrieved from KEGG DRUG (Kanehisa et al., 2010), DrugBank (Wishart et al., 2008), and DCDB (Liu

et al., 2010). An independent set of drug-target interactions was downloaded from Matador (Gunther et al.,

2008) for validation purposes only. The classification features that we use are constructed from scores

calculated on pairs combined of one of M drug-drug measures (five in our case) and one of N gene-gene

similarity measures (three in our case), resulting in an MxN set of drug-gene measure features for each

drug-target association (15 in our case). For a given pair of measures (i.e., feature), the score of a given

association (d,t) is calculated by considering the similarity, according to the given pair of measures, of all

true drug-target interactions to this association. The computation is done as follows: First, for each true

interaction (d0,t 0) we compute the drug-drug similarity S(d,d0) and the target-target similarity S(t,t 0). Next,

we combine the two similarities to a single score. Finally, we integrate the scores of all true interactions to

form the classification feature.

We experimented with several ways of combining the two similarities and integrating the scores over the

various true associations, aiming to compute a score that would differ as much as possible between true and

false drug-target interactions. This difference was tested using the Wilcoxon rank sum test for equal medians.

To combine a drug-drug and a gene-gene similarity, we considered two types of averaging functions:

arithmetic mean and geometric mean. The two options scored similarly ( p< 1e�10) with a slight advantage to
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geometric mean (AUPR difference<0.01), which we used in the sequel. To integrate the scores of the known

associations, we studied the effect of averaging the top-k scores for various selections of k and discovered that

taking only the top scoring drug-target interaction yields the lowest p-value, as can be seen in Figure 3. This

effect was observed also under the arithmetic mean score.

To conclude, we used the maximum value over the following weighted version of geometric mean to

score drug target associations:

Score(d, t)¼maxd0 , t0 6¼d, t S(d, d0)r � S(t, t0)(1� r), 0 � r � 1 (2)

The optimization of the scoring parameter r was done in a cross validation setting.

4.3. Measure construction considerations

The transformation of a data source into a similarity measure can be done in various ways. In order to

choose a transformation that will perform well in drug target prediction, we applied the Wilcoxon rank sum

test to choose the transformation with greatest separation power. Precisely, a suggested drug-drug similarity

measure was combined with all the gene-gene similarity measures to form classification features. A

Wilcoxon rank-sum test was then applied to each of these features to test whether the medians of the

distributions of feature values on true and false drug-targets interactions differ. The logarithms of the

resulting p-values were averaged to yield the separation score for that suggested measure. An analogous

procedure was applied to score gene-gene similarity measures.

We used these separation scores to specify two measures: the co-expression based drug similarity and the

PPI-based gene similarity. For the co-expression based drug similarity, Jaccard-based similarities scored

better (average rank sum p< 7e�89) than GSEA-based similarities (average rank sum p< 2e�35) and

Spearman-based similarities ( p< 3e�11). The decreased performance of the Spearman-based similarity

measure is understandable in light of the fact that gene expression profiles tend to be informative mainly with

regard to the top (upregulated) and bottom (downregulated) genes. For the PPI-based gene similarity, we used

the separation score in order to choose the optimal parameters A and b (equation 1). Hence, we picked b¼ 1

and chose A such that direct network neighbors would get a value close to 1 (A¼ 0.9). However, the results

were robust over a wide range of parameters; similar AUPRs (AUPR difference <0.003) were obtained with

b ranging from 0.5 to 2 and with A ranging from 0.5 to 1. Self similarities were set to 1.

4.4. Prediction assessment and parameter optimization

We used a 10-fold cross validation scheme to evaluate the accuracy of our prediction algorithm. The

training set used for the cross validation included 782 true drug-target interactions and a randomly gen-

erated set of drug-gene pairs (not part of the positive set), twice larger than the positive set. We note that

taking negative set of equal size or three times larger did not alter the results significantly (data not shown)

(Li and Lai, 2007).

FIG. 3. -log(p-value) of the Wilcoxon rank sum test

for the distribution of scores of true versus false drug-

target associations. The score was computed by aver-

aging the top k scores, k ranging from 1 to 50.
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In order to improve the classification accuracy, we optimized the weight factor r in equation 2 and

performed feature selection on the 15 features associated with the various pairs of measures. Specifically,

we trained a logistic regression classifier where the data was divided into 10 parts and we iteratively

selected eight parts to be the training set, a ninth part was considered a test set on which we optimized the

parameter r and the 10th part was considered the validation set, on which the performance of the classi-

fication was assessed. We found that the AUPR was robust to the selection of the weight r, with slightly

better classification performance using r¼ 0.4 (AUPR difference <0.02).

To select features, we used a wrapper feature selection procedure, which is based on a classification

accuracy measure (Guyon and Elisseeff, 2003). A common method to avoid exhaustively searching for the

optimal set of features in terms of classification accuracy is through an iterative greedy algorithm. One

variant, termed forward selection, starts with an empty set and adds in each step the most contributing

feature, while another, termed backward elimination, starts with the full set and removes the least con-

tributing feature in each step. These two algorithms yield nested subsets of features from which a set

attaining the highest accuracy is finally chosen.

We considered two different scores as indicators for the classification accuracy: the Area Under the

Curve (AUC) of the Receiver Operating Characteristics (ROC) curve (Fawcett, 2005) and the AUPR curve

(Davis and Goadrich, 2006). Standard deviations for both measures were assessed by using 100 random

partitions of the training data into cross validation sets. Importantly, when dealing with uneven number of

true and false examples, precision-recall (PR) curves give a more informative picture of an algorithm’s

performance (Davis and Goadrich, 2006). Furthermore, Davis and Goadrich (2006) show that a curve

dominates in ROC space if and only if it dominates in PR space. Hence, we focus on the AUPR criterion as

an indication for classification performance. We evaluated the classification quality also in regard to

different target types, including enzymes, G-protein coupled receptors (GPCRs), ion-channels, and nuclear

receptors. The target type was inferred from DrugBank and Uniprot annotations.

The classification was done using MATLAB implemented logistic regression. A cutoff was selected

according to the best F1-measure, defined as the harmonic mean between the precision and recall. We also

tested a Support Vector Machine (SVM) classifier with different kinds of kernel functions (linear, poly-

nomial, radial basis function and sigmoid) using the LIBSVM package for MATLAB (Chang and Lin,

2001) with default parameters.

4.5. Computing novel predictions

To predict additional targets for drugs in our data set, we used a training set that included all the true

associations and a twofold larger randomly generated set of drug-gene pairs that are not known to interact.

We applied the trained classifier to all remaining drug-gene pairs to form our prediction set. To assign

prediction scores also to the random negative set that we used, we repeated the analysis with another

randomly picked negative set, distinct from the first one. Overall, we obtained classification scores for all

77,968 unknown drug-gene pairs. We used a classification threshold that yielded the best F1-measure. Out

of the resulting prediction set, we picked for each drug its maximal scoring target as the most promising

target. Overall, we could predict targets for 307 drugs.
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