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ABSTRACT

Symmetric homo-oligomers represent a majority of proteins, and determining their struc-
tures helps elucidate important biological processes, including ion transport, signal trans-
duction, and transcriptional regulation. In order to account for the noise and sparsity in the
distance restraints used in Nuclear Magnetic Resonance (NMR) structure determination of
cyclic (Cn) symmetric homo-oligomers, and the resulting uncertainty in the determined
structures, we develop a Bayesian structural inference approach. In contrast to traditional
NMR structure determination methods, which identify a small set of low-energy confor-
mations, the inferential approach characterizes the entire posterior distribution of confor-
mations. Unfortunately, traditional stochastic techniques for inference may under-sample
the rugged landscape of the posterior, missing important contributions from high-quality
individual conformations and not accounting for the possible aggregate effects on inferred
quantities from numerous unsampled conformations. However, by exploiting the geometry
of symmetric homo-oligomers, we develop an algorithm that provides provable guarantees
for the posterior distribution and the inferred mean atomic coordinates. Using experimental
restraints for three proteins, we demonstrate that our approach is able to objectively
characterize the structural diversity supported by the data. By simulating spurious and
missing restraints, we further demonstrate that our approach is robust, degrading smoothly
with noise and sparsity.

Key words: Bayesian inference, distance restraint, posterior distribution characterization, protein

complex structure determination.

1. INTRODUCTION

Protein structure determination by nuclear magnetic resonance (NMR) spectroscopy provides

insights into functional mechanisms, dynamics, and interactions of proteins in solution. Traditionally,

NMR structure determination has been formulated as an optimization problem (Güntert et al., 1991, Brünger,
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1993, Güntert et al., 1997), seeking a minimum-energy structure according to a potential that evaluates both

agreement with experimental data (e.g., distance restraints) and biophysical quality according to an empirical

molecular mechanics energy function. Because traditional methods typically employ heuristic optimization

methods, they are subject to the problem of only finding local minima. As a result, traditional methods are

repeated many times in the hope that the global optimum is captured in the ensemble of generated structures.

Identification of an optimum is especially difficult in cases where the data are noisy, sparse, and/or am-

biguous. While the computed ensemble illustrates structural variability, it does not provide an objective

measure of the uncertainty in atomic coordinates, because different members of the ensemble may have

different likelihoods. In addition, the traditional NMR ensemble does not provide guarantees that all plausible

solutions have been discovered.

In contrast to optimization-based approaches, Nilges and co-workers cast protein structure determination

by NMR as a statistical inference problem, inferential structure determination (or structural inference), in

which the goal is to compute the posterior distribution of plausible structures (Rieping et al., 2005b). The

posterior captures both the satisfaction of restraints (as a likelihood) and biophysical modeling terms (as a

prior). The inferential approach provides an objective measure of confidence and is not focused on trying to

find a single ‘‘optimal’’ solution (or ensemble of solutions that are optimal in different runs). Nilges and co-

workers developed a sampling-based method to perform structural inference for monomers, and applied it

to characterize the posterior distribution of the 59-residue Fyn SH3 domain, given 154 Nuclear Overhauser

Effect (NOE) restraints (Rieping et al., 2005b).

We develop here an algorithm that performs structural inference for symmetric homo-oligomers–protein

complexes comprised of identical subunits (monomer proteins) arranged symmetrically. Symmetric homo-

oligomers are a valuable target since they make up a majority of proteins (Goodsell and Olson, 2000); they

play pivotal roles in important biological processes including ion transport and regulation, signal trans-

duction, and transcriptional regulation. Experimentally, it is possible to distinguish intra-subunit restraints

(distance restraints between atoms within a subunit) from inter-subunit ones (distance restraints between

atoms in different subunits) by isotopic labeling strategies and X-filtered NOESY experiments (Ikura and

Bax, 1992, Lee et al., 1994, Zwahlen et al., 1997, Walters et al., 1997). As a result of this, the complex

structure determination can proceed by first determining the subunit structure as it exists in complex, and

then computing the oligomeric assembly (Oxenoid and Chou, 2005, Schnell and Chou, 2008, Wang et al.,

2009). Our problem (Fig. 1) is thus to compute the posterior distribution of homo-oligomeric complex

structures given the subunit structure, by evaluating their consistency with experimental data and their

packing quality. Having computed the posterior distribution over complex structures, we also infer other

quantities of interest, namely the means and variances of atomic coordinates.

Our inference algorithm characterizes the entire posterior distribution of a homo-oligomeric complex

structure, to within user-specified thresholds on allowed error in computing the posterior over structures

and the mean atomic coordinates. Error guarantees are possible due to our focus on symmetric homo-

FIG. 1. Structural inference of

symmetric homo-oligomers. Gi-

ven a subunit structure and set of

inter-subunit distance restraints,

we compute the posterior distri-

bution over all possible complex

structures, represented in terms of

a configuration space of sym-

metry axes. The posterior dis-

tribution evaluates the quality

(depicted via color and thickness)

of the satisfaction of the restraints

and the packing of the subunits.

By integrating over the posterior

distribution over axes (and there-

by structures) we obtain means

and variances for atomic coordi-

nates, depicted as a sausage plot (thicker implying greater variance). In the homo-dimer shown here, we fix one subunit

and evaluate possible axes and thereby positions of the other subunit.
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oligomers, whose complex structures can be specified in terms of their symmetry axes, enabling us to

employ a four degree-of-freedom representation which we call the symmetry configuration space (SCS).

We build upon our earlier work on searching symmetry configuration spaces (Potluri et al., 2006, 2007), but

this article represents a significant extension in order to support inference and compute error bounds, which

account for experimental noise and uncertainty. Our algorithmic approach, hierarchical subdivision with

error guarantees, stands in contrast to sampling techniques, such as the replica-exchange MCMC algorithm

employed by Nilges and co-workers (Rieping et al., 2005b, Habeck et al., 2005), which may under-sample

the high-dimensional and very rugged posterior distribution of a monomer, and does not characterize (or

place bounds on) the error in inferred quantities. Unlike sampling methods, we account for both the

individual and aggregate effects of leaving out possible conformations. That is, by applying provable

bounds on the error of the posterior (including the underlying normalization constant), we ensure that we

have not missed any high quality conformations or a large number of lower quality conformations, either of

which could result in incorrect inferences.

2. METHODS

As mentioned, the subunit structure as it exists in complex can be obtained prior to complex structure

determination (Oxenoid and Chou, 2005, Schnell and Chou, 2008, Wang et al., 2009). Thus, we are given

the subunit structure (Euclidean coordinates pi for each atom i) and a set of n distance restraints

R¼fr1, . . . , rng (each specifying an atomic pair and allowed distances). We assume here that the oligo-

meric number has also been previously determined (e.g., from ultracentrifugation), but see our previous

work (Potluri et al., 2006) for a discussion of how to score possible oligomeric states based on how well the

restraints fit as well as empirical energy functions. If we fix the position of the initial subunit structure, then

the homo-oligomeric complex structure is completely specified by the symmetry axis (Fig. 2a). We focus

on cyclic symmetry Cn, in which we position at the origin one fixed subunit, and obtain the complex

structure by rotating the fixed subunit structure around the symmetry axis c to generate the other subunit(s).

Thus, the symmetry axis c, can be used to parametrize all possible oligomer structures.

We compute the posterior distribution p(c j R) over oligomer structures in terms of the symmetry axis c.

Given the posterior, we also infer the expectation E(qij j R) and variance var(qij j R) of the atomic

coordinates qij for each atom i in each rotated subunit j (Fig. 1). Unfortunately, the posterior distribution is

difficult to compute and to integrate analytically, and in cases of sparse and noisy data, sampling methods

may get trapped in local minima and may miss important contributions to the posterior, either individually

or in aggregate. In contrast, we approximate the integral with a discrete sum over cells defining contiguous

sets of axes at a resolution that is sufficiently fine to consider the axes as making a uniform contribution.

While there are too many such cells to simply enumerate all of them, we recognize that many have a

sufficiently small posterior that they can be safely ignored without impacting our inferences. Thus, we

develop a hierarchical subdivision algorithm (Fig. 3) to find the high-quality cells and provide guarantees

FIG. 2. Symmetry configuration

space (SCS). (a) Each structure is

defined by a point S2 · R2in the

configuration space of symmetry

axes. Each subunit is depicted by a

cylinder; the structure is obtained

by rotating the fixed subunit (sha-

ded cylinder) by the angle of

symmetry around the symmetry

axis (line). A distance restraint is

shown between an atom at position

p on the fixed subunit and one at

position q0 on the adjacent subunit.

(b) An SCS cell C � S2 · R2 de-

fines a set of symmetry axes (green region) and thereby a corresponding set of structures. We can bound the possible

positions q0 over these structures.
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on the resulting error introduced due to eliminating other cells. The algorithm also obeys restrictions on the

allowed error in expected atomic coordinates inferred from the cells it returns.

We first summarize our earlier work on representing and computing with a configuration space repre-

sentation of symmetry axes (Section 2.1). We then present our inferential framework based on this rep-

resentation see (Section 2.2), our error bounds (Section 2.3), and our hierarchical subdivision algorithm for

computing the posterior and performing the inference (Section 2.4).

2.1. Symmetry configuration space

For cyclic symmetry, Cn, the symmetry is completely specified by a line representing its axis. The line

representing the symmetry axis can be specified by the position where it intersects the xy plane at (x, y),

relative to the fixed subunit at the origin, and its orientation (y, f), relative to the major axis of the fixed

subunit which we orient along the z-axis. Thus, all possible axes belong to a SCS, S2 · R2 (Potluri et al.,

2006), with orientations from the two-sphere S2 and translations from the xy plane R2 (Fig. 2a).

Given a symmetry axis c¼ (a, t) 2 S2 · R2 and an angle of rotation a¼ 2pj / m for subunit

j 2 f1, . . . , (m� 1)g (treating the 0th subunit as the fixed one), we compute the coordinates q0 for an atom

in a rotated subunit from corresponding coordinates q for the same atom in the fixed subunit:

q0 ¼ T (c, q, a)¼Ra(a)(q� t)þ t (1)

where Ra(a) 2 SO(3) is a rotation by a radians around the unit vector a.

In our algorithm for computing the posterior, we consider simultaneously a set of axes in a cell of the

SCS (Fig. 2b). An SCS cell is given by the Cartesian product of the individual lengths in each of the four

dimensions [xl, xh] · [yl, yh] · [yl, yh] · [fl, fh]. Note that the SCS cell represents a continuously infinite set

of structures. We previously derived a geometric bound, using convex hulls and/or axis-aligned bounding

boxes, for the possible coordinates q0 under rotation by a around an axis c in a cell C (Potluri et al., 2006).

q0 2 B(C, q, a) (2)

We can use this geometric bound on the rotated positions to evaluate feasibility of a distance restraint

within a cell. Consider distance restraint ri on the distances between positions pi and qi
0, where the first

atom is in the fixed subunit and the second in the neighboring subunit in the cyclic symmetry, rotated by 2p/

m for oligomeric number m. We geometrically bound the minimum l(C) and maximum u(C) distances

between these positions under rotations around axes c 2 C:

li(C) � min
c2C
kpi�T (c, qi, a) k � ui(C) (3)

FIG. 3. Hierarchical subdivision of SCS. The

4-dimensional SCS is depicted as two two-

dimensional regions: a sphere representing the

orientation space S2 and a rectangle re-

presenting the translation space R2. We com-

pute a bound for the best posterior of a

configuration in the cell (shaded red for high

posterior to blue for low posterior), and re-

cursively subdivide cells. Ultimately (bottom

left of the tree), we find cells representative of

structures with high posterior, and can elimi-

nate cells (right side of the tree) guaranteed to

have a total probability mass less than a user-

specified cutoff.
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For the geometric computations giving these bounds, we refer the reader to Potluri et al. (2006). In Section

2.3, we apply these bounds to derive upper and lower bounds on the posterior p(c j R).

2.2. Inferential framework

We develop here a Bayesian model for the posterior distribution over axes p(c j R), along with ex-

pectations and variances of atomic coordinates. Our basic framework is like that of Nilges and co-workers

(Rieping et al., 2005b). However, our formulation exploits the symmetry in the problem and thus expresses

the distribution in terms of the four-dimensional symmetry configuration space.

To compute posterior p(c j R), we apply Bayes’ rule and integrate out a nuisance parameter s that is

independent of c and encodes the error in the system including both experimental noise and systematic

effects such as internal dynamics (Lipari and Szabo, 1982) and spin diffusion (Macura and Ernst, 1980).

p(c j R)¼
Z

p(c, r j R) dr (4)

/
Z

p(R j c, r)p(c)p(r) dr (5)

In the following sections, we individually examine the various factors: likelihood p(R j c, s) and priors p(c)

and p(s). We then consider how to properly integrate over the configuration space and infer quantities in

the conformation space.

2.2.1. Restraints likelihood p(R j c, s). The distance restraints R are conditionally independent

given the structure (defined by c):

p(R j c, r)¼
Yn

i¼ 1

p(rijc, r) (6)

To evaluate a single restraint ri, we adopt the log-normal distribution advocated by Nilges and co-

workers (Rieping et al., 2005a, Habeck et al., 2006) as a better representation of the errors in NOE distances

and NMR data than the traditional flat-bottom harmonic well (FBHW). The FBHW suffers from problems

including subjectiveness associated with fixing the bounds for the well (Nilges et al., 2006); the log-normal

more gracefully degrades, and we integrate out its variance parameter s. Furthermore, the log-normal is

non-negative and multiplicative.

Thus, given a symmetry axis c and variance s, the inter-subunit NOE restraint ri has a log-normal

likelihood over the observed distances between atoms in the restraint:

p(ri j c, r)¼ 1ffiffiffiffiffiffi
2p
p

rdi

exp � 1

2r2
log2 gi(c)

� �
, (7)

where, to abbreviate subsequent equations, we define gi(c) for axis c and restraint i as the ratio between the

observed and desired distances for the restrained pair of atoms:

gi(c)¼ di

kpi�T (c, qi, 2p=m) k : (8)

The position pi is on the fixed subunit and qi
0 is taken on the neighboring subunit (obtained by rotating

position qi in the fixed subunit by 2p/m).

2.2.2. Prior p(s). The log-normal variance s is a classical example of a nuisance parameter. Thus, its

prior is derived through Jeffrey’s method of maximizing Fisher’s information index ( Jeffreys, 1946):

p(r)¼ 1=r: (9)

2.2.3. Prior p(c). Laplace postulated that in the absence of sufficient reason, each point in the

parameter space should be assigned a uniform prior (Kass and Wasserman, 1996). We follow the same rule

and assign equal probability to those symmetry axes that yield structures without steric clashes. In order to

produce a data-driven inferential approach, we currently use a weak prior, only distinguishing whether or

not a structure has steric clashes.
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p(c)¼ 0, if complex structure has steric clash

1, otherwise:

�
(10)

If desired, a stronger prior, incorporating energy evaluation based on a molecular mechanics force field,

could instead be employed.

Section 2.2.5 below details how to appropriately define (and integrate) such a probability distribution

over the SCS parameterization.

2.2.4. Marginalizing over s. Since s denotes the experimental and systematic error, we can inte-

grate over all possible values of s to eliminate it:

p(c j R)¼
Z 1

0

p(c, r j R)dr

/ p(c)

Z 1
0

r� (nþ 1) exp

 
� 1

2r2

Xn

i¼ 1

log2 gi(cÞ
!

dr

/ p(c)
Xn

i¼ 1

log2 gi(c)

 !� n=2

: (11)

The integral is obtained by substituting for 1
2r2

Pn
i¼ 1 log2 gi(c) and multiplying the numerator and de-

nominator by 2n=2� 1=
P

log2 gi(c). This yields a gamma function expressed as an integral. Since the

gamma function is in terms of n, a constant, we drop it in the proportionality of Eq. 11.

2.2.5. Probability distributions in SCS. While our symmetry configuration space representation

greatly reduces the degrees of freedom and thus leads to a better characterization of the posterior (including

error bounds), it also complicates the inferential process, since the quantities of interest are in the con-

formation space. Our posterior probabilities are integrals over the SCS, which we have parameterized as

described in Section 2.1. If one does not use an appropriate volume element, then integrating over this

parameterization is likely to introduce bias due to the non-uniform sampling density of the parameteri-

zation.

Intuitively, the problem is similar to defining a uniform distribution on a sphere. Simply taking uniform

intervals in y and f of spherical coordinates does not work, since it over-represents the poles. This

overrepresentation of poles is an arbitrary bias introduced by the particular parameterization used (i.e.,

spherical coordinates). To remove the bias of the parameterization, we need to define a mathematical area

element. Likewise, to integrate over a sphere, a Jacobian is employed to account for the coordinate

transformation. In the case of the sphere, the surface area is the invariant volume defining the uniform

distribution.

Returning to symmetry axes and building upon this analogy, integrating with respect to SCS volume (dx

dy dy df) would result in a different probability measure upon translation/rotation of the same portion of

the space. To perform probabilistic inference, the probability density must be integrated with respect to a

volume that is invariant to these Euclidean transformations. It has been shown that this invariant volume is

well-defined and is completely determined (up to a constant factor) by requiring integrals of probability

density to be invariant under change of coordinate frames. Such an invariant infinitesimal volume is

defined in many classical texts on the subject of stochastic and geometrical probability (Moran and

Kendall, 1963; Santaló, 2002). Applying that approach with SCS parameters gives an infinitesimal in-

variant volume dm:

dl¼ j cos h j sin h dh d/ dx dy (12)

where dm is a function of c which is specified by (y, f, x, y). Thus, to integrate over the SCS, we do so with

respect to dm instead of the four SCS parameters, thereby correctly distributing the probability density over

the axes.

2.2.6. Posterior p(c j R). Finally, to define the posterior probability, we divide Eq. 11 by normal-

ization factor Z:
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p(c j R)¼ 1

Z
p(c)

Xn

i¼ 1

log2 gi(c)

 !� n=2

(13)

where

Z¼
Z

X
p(c)

Xn

i¼ 1

log2 gi(c)

 !� n=2

dl (14)

O denotes the SCS and, as discussed above, the integration is with respect to the invariant volume dm (Eq.

12).

2.2.7. Inference using posterior. Given the posterior (Eq. 13), we compute the mean atomic co-

ordinates and their variances, integrating over the posterior density for the symmetry axis according to the

transformation yielding rotated subunits (Eq. 1):

Eðq0 j RÞ ¼
Z

X
q0pðc j RÞ dl ð15Þ

varðq0 j RÞ ¼
Z

X
ðq0 � Eðq0ÞÞTðq0 � Eðq0ÞÞ pðc j RÞ dl; ð16Þ

where q0 ¼ T (c, q, a), O is again the SCS and dm the invariant volume. var is the covariance matrix since q0

is a vector but we are only interested in the variance of the components of the vector with themselves and

hence we only compute the diagonal elements of the matrix and we use the term ‘‘variances’’ in Section 3

for the sum of the diagonal elements in this matrix.

2.3. Error bounds

The previous section gave a statistical framework for the posterior distribution over axes in the SCS (and

thereby, complex structures), along with expected atomic coordinates and variances in them. The following

section will develop a hierarchical subdivision algorithm to compute the distribution and integrate over it.

This section establishes error guarantees that will be used by that algorithm, taking advantage of the

structure of the configuration space to go beyond sampling-based methods in providing such guarantees.

We leverage geometric bounds (Potluri et al., 2006) to bound the individual factors of the posterior

distribution in Eq. 13. This lets us compute upper and lower bounds to the unnormalized probability density

inside a cell. Since the normalization factor Z in Eq. 14 is the sum of the unnormalized density over entire

space, we obtain upper and lower bounds on Z from bounds on the unnormalized density. The upper and

lower bounds on the posterior density, when used with non-negativity of the integrand, give upper and

lower bounds for the total posterior probability integral within a cell. These bounds on cells are then used in

conjunction with the triangle inequality to obtain bounds on the error in inferred mean atomic coordinates if

these cells are eliminated.

2.3.1. SCS cell volume. The invariant volume for a cell is given by the integral of the infinitesimal

invariant volume (Eq. 12). If cos y is positive in the range [yl, yh], then we have:Z
C

dl¼
Z

C

j cos h j sin h dh d/ dx dy

¼ [� 1

2
cos2 h]

hh, /h, xh, yh

hl , /l , xl , yl

¼ 1

2
( cos2 hl� cos2 hh)(/h�/l)(xh� xl)(yh� yl) (17)

If cos y is negative in the range [yl, yh], then there is a negative sign in front of the integral in Eq. 17. If

cos y changes signs in this range, we split the integral accordingly and evaluate each part.

2.3.2. Upper bound on the posterior within a cell. Let us first compute an upper bound on the

value of p(c j R) (Eq. 13) for an axis c in an SCS cell C (a contiguous set of axes; see again Fig. 2b). To do

so, we compute upper bounds on the terms in the numerator and a lower bound on the normalization factor
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in the denominator. The normalization factor is the integral of the numerator and can be expressed (Eq. 19)

as sum of the probability masses in SCS cells by breaking the integral. Thus, to compute the lower bound

on the normalization factor, we also have to compute the lower bound on the probability mass in each SCS

cell, which is the term in the numerator.

8c 2 C : p(c j R) � 1

Zl

max
c2C

p(c) max
c2C

Xn

i¼ 1

log2 gi(c)

 !� n=2

(18)

Z � Zl¼
X
C2X

min
c2C

p(c) min
c2C

Xn

i¼ 1

log2 gi(c)

 !� n=2Z
C

dl (19)

To compute these, we need both lower and upper bounds on p(c) as well as the restraint likelihood sum

(
Pn

i¼ 1 log2 gi(c))� n=2.

Recall that our structural prior p(c) captures whether or not there is a steric clash. Thus, the upper and

lower bound on p(c) within a cell C are set to 0 if the geometric bound B(C, q, a) (Eq. 2) for the position q0

of at least one rotated atom falls within the van der Waals envelope of the fixed subunit, guaranteeing a

steric clash. Likewise, both of the bounds are 1 if the bound on q0 is outside the vdW envelope for all

rotated atoms, so that no axis will cause any steric clash. If neither of these two cases hold, then the lower

bound for p(c) for c 2 C is 0 and the upper bound is 1.

The upper and lower bounds on the restraint likelihood sum can be written in terms of the lower and

upper bounds, respectively, of the individual log terms.

max
c2C

Xn

i¼ 1

log2 gi(c)

 !� n=2

�
Xn

i¼ 1

min
c2C

log2 gi(c)

 !� n=2

(20)

min
c2C

Xn

i¼ 1

log2 gi(c)

 !� n=2

�
Xn

i¼ 1

max
c2C

log2 gi(c)

 !� n=2

(21)

Since log2 is a convex function with a global minimum at 1, log2 gi(c) increases on both sides of gi(c)¼ 1. From

the definition of gi (Eq. 8), this happens when kpi�T (c, qi, a)k¼ di. Employing the lower bounds li(C) and

upper bounds ui(C) on kpi�T (c, qi, a)k over c 2 C and Eq. 3, we can write the bounds for the log terms as:

min
c2C

log2 gi(c)¼
0, if li(C) � kpi�T (c, qi, a)k � ui(C)

min log2 di

li(C)
, log2 di

ui(C)

� �
, otherwise

(
(22)

max
c2C

log2 gi(c)¼ max
c2C

log2 di

li(C)
, log2 di

ui(C)

� �
(23)

Note that we have computed lower bounds on the individual probability terms in Eq. 18. This enables us to

define the lower bound on the unnormalized probability density r that we use in Section 2.4. The lower

bound can be written as:

8c 2 C : q(c j R) � min
c2C

p(c) min
c2C

Xn

i¼ 1

log2 gi(c)

 !� n=2

(24)

A sum of this bound over cells is the lower bound on the normalization factor.

2.3.3. Error bound on eliminated probability mass. We can derive an upper bound on the

probability mass of an eliminated cell by using the upper bound on the posterior that was derived in Eq. 18.

The upper bound on the posterior can be written as:

P(C j R)¼
Z

C

p(c j R)dl

� max
c2C

p(c j R)

� �Z
C

dl (25)
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2.3.4. Error bounds on expected structure. When we omit a portion of the SCS in computing

expected atomic coordinates, we introduce error into our characterization of the structure. We define the

structural error as the average of the errors in the individual backbone atom positions. Thus, to bound the

error from omitting part of the SCS, we must compute the effect on the expected coordinates of each atom

(Eq. 15).

In the derivations that follow, we represent the unnormalized conditional probability density by r that we

introduced in Section 2.3.2. Thus:

q(c j R)¼ p(c)
Xn

i¼ 1

log2 g(c, qi, a)

 !� n=2

(26)

Suppose we leave out cell C in the computation of the expectation. We define the resulting error for a

single atomic position q as:

d(C, q)¼
�����
R

X T (c, q, a)q(c j R)dlR
X q(c j R)dl

�
R

XnC T (c, q, a)q(c j R)dlR
XnC q(c j R)dl

����� (27)

We can write the integrals in the first term of Eq. 27 as sums of integrals over C and the rest of the SCS.

Through simple algebra, we can cancel a few terms. Then by applying the triangle inequality and using

non-negativity of the integrand, we can derive the following inequality:

d(C, q) �
kE(T (c, q, a) j R) kmax

c2C
q(c j R)

R
C

dlþ max
c2C
kT (c, q, a) kmax

c2C
q(c j R)

R
C

dlR
XnC q(c j R)dl

(28)

The algorithm we present in the next section will compute the denominator. The geometric bounds (Eq.

2) give the maximum atomic coordinates for q0 ¼ T (c, q, a), and we have already derived bounds for all the

probabilistic terms except the expectation kE(T (c, q, a) j R)k, which we can write as:

kE(T (c, q, a) j R)k¼
k
R

X T (c, q, a)q(c j R)dl k
Z

(29)

In this equation, we already have a lower bound on Z. The integral over O can be broken into the integral

over C and that over O\C. Applying the triangle inequality on this sum, along with the inequality on the

norm of an integral for a non-negative integrand, we can derive:��� Z
X
T (c, q, a) q(c j R) dl

��� � max
c2C
kT (c, q, a)kmax

c2C
q(c j R)

Z
C

dlþ
���Z

XnC
T (c, q, a) q(c j R) dl

��� (30)

Our algorithm will provide the integral over O\C, and we have already discussed bounds for the other

terms. Combining these bounds and equations, and substituting into Eq. 28 gives us the final inequality for

the error in expectation:

d(C, q) � 1R
XnC q(c j R)dl

�
max
c2C
kT (c, q, a)kmax

c2C
q(c j R)

Z
C

dlþ
maxc2C q(c j R)

R
C

dl

Zl

�
�

max
c2C
kT (c, q, a)kmax

c2C
q(c j R)

Z
C

dlþ
��� Z

XnC
T (c, q, a)q(c j R)dl

����� (31)

From the bounds for a cell C, we can derive bounds for a set C of cells, replacing the integral over C with

a sum of integrals over C 2 C:���Z
C
T (c, q, a)q(c j R)dl

���¼ ���X
C2C

Z
C

T (c, q, a)q(c j R)dl
���

�
X
C2C

��� Z
C

T (c, q, a)q(c j R)dl
��� (32)

The upper bound in Eq. 28 can be rewritten in terms of the individual cells by using Eq. 32.
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2.4. Hierarchical subdivision algorithm

To compute the posterior distribution, along with expectations and variances in atomic coordinates, we

develop a hierarchical subdivision algorithm. The algorithm is illustrated in Figure 3, and pseudocode is

provided in Algorithm 1. While we also used hierarchical subdivision in our earlier approach (Potluri et al.,

2006), the algorithm here is structured so as to support structural inference with error guarantees.

We start with a set C0 of cells covering the region of interest in the SCS. While the entire SCS is the

Cartesian product of the state space of the four random variables—x 2 [�1,1], y 2 [�1,1],

h 2 [0, p], and / 2 [0, 2p]—we can truncate the probability density to zero beyond a finite range of x and y

values (Potluri et al., 2006). We select such x and y boundaries of the finite range so that a homo-oligomer

that has a symmetry axis with x, y beyond this xy patch would be biophysically unfeasible for most y, f.

This results from our choice for the z axis as the principal axis of the fixed subunit, along with the fact that

protein complexes are packed together, rather than floating loosely in space. If we encounter homo-

oligomers that have axes that are nearly parallel to the xy-plane, and hence have x, y outside our finite

range, then we can change our translation parameters to either {y, z} or {x, z} by considering each and

choosing the one that does not have this problem.

Algorithm 1 Hierarchical subdivision algorithm

Input: C0: initial set of cells from feasible region of S2 · R2

Input: R: set of distance restraints

Input: z0: maximum pruned probability mass

Output: P: posterior distribution, a set of (cell, posterior) pairs

P/ ;
C  C0 // cells for the next level

z/z0 // remaining allowed error

Zl/ lower bound on Z for C0 // Eq. 19

while C is not empty do // expand the next level

V  
P

C2C
R

C
dl // invariant volume, Eq. 17

C0  ; // cells for the next level

for C 2 C do

u/ upper bound on P(C j R) using current Zl // Eq. 25, Eq. 18

if u< (z/V) $ C dm then // prune cell

z/z � u

else if C is small enough then // accept cell

p/r(c j R) $ C dm for the centroid c of C // unnormalized Eq. 13

add to P the pair (C, p)

else

subdivide C into C1 and C2

C0  C0 [ fC1, C2g
// Update Zl for subdivision, using rmin from Eq. 24

Zl  Zl� qmin(C j R)
R

C
dlþ qmin(C1 j R)

R
C1

dlþ qmin(C2 j R)
R

C2
dl

end if

end for

end while

The algorithm proceeds level-by-level through a hierarchical subdivision of the input cells. At a given

level, each cell is considered independently of the rest. There are three possibilities for a cell under

consideration: it can be safely pruned according to our error bounds, it is small enough to be considered a

leaf (it is ‘‘accepted’’), or it is partitioned into two smaller cells for the next level. The process continues

until reaching a level at which no cell needs to be subdivided.

We prune cells when our error bounds allow us to determine that ignoring them will have a ‘‘small

enough’’ effect on the results. To make this determination, we maintain two global quantities. One quantity

is Zl, the lower bound on the normalization constant, by which we evaluate the relative amount of posterior

mass in a cell vs. other cells (used in upper-bounding the cell’s contribution). We start with the value for the

initial cells, from Eq. 19, and each time we split a cell, we subtract out the parent cell’s contribution and

add in the children’s contributions to Zl. The other quantity, z, is the remaining amount of probability mass
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we can still prune. We start with a user-specified maximum value z0, and each time we prune a cell, we

reduce the remaining prunable mass by the upper bound on the probability mass in that cell. Given the

current values of these quantities and the bound on the probability mass contribution of a cell (Eq. 25), we

can safely prune that cell if its contribution is no more than z multiplied by the fraction of the total invariant

volume (Eq. 17) that it occupies.

We consider a cell to be accepted (a leaf node) when the structures it represents are very similar. We

employ our previous approach of evaluating this by computing average backbone RMSD among the

structures represented by the corners of the cell, and terminating when that average is within a threshold t0

(e.g., 1 Å) (Potluri et al., 2006).

To subdivide a cell, we split one of the dimensions in half, employing the heuristic from our earlier

method (Potluri et al., 2006). Intuitively, the goal is for restraint violations to be concentrated in one of the

children, resulting in a low (potentially prunable) posterior.

Our pruning focuses on ensuring that we have sufficient probability mass represented in the posterior. In

addition, we also want to ensure that we limit the error in expected atomic coordinates. We check this after

the search is complete. We compute the error in expectation due to the pruned cells (Section 2.3.4). If this

error is guaranteed to be less than a user-specified threshold e on the allowed error, the algorithm is finished.

Otherwise, we must run it with a tighter z so that we eliminate less probability mass. In practice, we have

not needed to do that; the z restriction is strong enough to ensure small enough error in expected atomic

coordinates.

The breadth-first structure of this algorithm allows us to implement the algorithm in parallel on a

cluster. To fully use the capacity of the compute cluster and to start with tighter bounds, we initialize C0 to

be a uniformly sampled grid of 217 cells. Our implementation uses Apache Hadoop (http://hadoop.

apache.org), an open source implementation of Map/Reduce (Dean and Ghemawat, 2004), which provides

a framework for parallelizing the code, taking care of machine failure, scheduling jobs, and partitioning the

data.

3. RESULTS

We tested our approach on three protein complexes for which intra-subunit and inter-subunit NOEs had

been separated and subunit structures determined from the intra-subunit NOEs. The homo-dimeric topo-

logical specificity domain of Escherichia coli MinE (King et al., 2000) has 50 residues per subunit with 183

inter-subunit NOE restraints, the homo-trimeric coiled-coil domain of chicken cartilage matrix protein

(CCMP) (Wiltscheck et al., 1997) has 47 residues per subunit and 49 inter-subunit NOE restraints and a

transmembrane peptide of Glycophorin A (GpA transmembrane peptide) (MacKenzie et al., 1996) has 40

residues per subunit with 6 inter-subunit NOE restraints. We obtained reference ensembles (20 members

each) of structures deposited in the protein databank (PDB) (Berman et al., 2000)—MinE: pdb id 1EV0;

CCMP: pdb id 1AQ5; GpA transmembrane peptide: pdb id 1AFO. We took as the reference structures the

member of each ensemble identified by the authors to be the best representative, and used for the subunit

structure the first chain of the reference structure. We obtained the inter-subunit NOEs and assigned

chemical shifts from the BioMagResBank (BMRB) (Seavey et al., 1991). The restraints are fairly well-

dispersed in the structures (Fig. 4), except for the GpA transmembrane peptide, which has only six

restraints, all between the lower halves of its two helices.

We set our expectation error threshold e to 0.3 Å, maximum pruned probability mass threshold z to 0.1,

and our acceptable cell threshold t to 1 Å. The hierarchical decomposition algorithm took 10–36 hours on a

30 node cluster, with the slowest time for CCMP when using only 16 of the original 49 restraints.

3.1. Posterior

The hierarchical decomposition for MinE produced a set of 35,000 accepted cells, with a total volume of

1.81 Å2-rad2 out of the original 1257 Å2-rad2. Note that these and all subsequent SCS volumes are with

respect to our invariant volume dm, and thus independent of the coordinate frame. The top row of Figure 5

plots both the log posterior probabilities of these cells (top left), in decreasing order and the translation and

orientation components of the accepted cells, colored by log posterior (top middle/right). We simply show

the ‘‘raw’’ unnormalized log posteriors, though our bound on the normalization constant in fact permits us

to normalize them to within an error bound. The maximum a posteriori (MAP) cell has an unnormalized
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log posterior of �246. The probabilities drop steeply after the MAP up to the 1500th cell (first black square

on the plot), which has a posterior of �300 and a backbone root-mean-square deviation (RMSD) to the

MAP of 0.8 Å. In general, these first cells span a small portion of the configuration space (0.1 Å2-rad2) and

represent similar structures (0.9 Å average backbone RMSD from the MAP, over ten samples drawn from

this region). After that, there is a steady decrease in the posterior for the next 32,000 cells (between the two

black squares in the plot), when we reach a posterior of �410 before another sharp drop-off leading down

to cells that were pruned. Compared to the highest-posterior cells, the middle-range ones (posteriors

between �300 and �410) are spread out in the SCS (1.5 Å2-rad2) and have greater structural diversity (2.2

Å average backbone RMSD from the MAP over ten samples in the region).

The posterior has a fairly sharp peak, and the high-posterior axes are aggregated in terms of translation

and orientation. We compared these results against the structures in the reference ensemble. The MAP

structure is very similar to the reference ensemble (Fig. 6, left), with a backbone RMSD of 0.5 Å from the

closest member of the ensemble. The members of the reference ensemble are highlighted in Figure 5: marks

on the x-axis of the posterior distribution and outlines for containing cells in the translation/orientation

plots. All the reference axes are also found by our inference algorithm. The reference axes have fairly high

posteriors, though clearly there are numerous solutions determined by the inference algorithm that are

similar or better. Of course, the actual posterior value depends on the scoring system; the point is that a 20-

member ensemble greatly underestimates the generally acceptable variation in conformations (as re-

presented by axes).

We also compared our results against those obtained from our earlier ‘‘binary’’ approach (Potluri et al.,

2006), which checks only whether or not each restraint is satisfied. Again, the new method identifies all

axes found by the earlier algorithm, along with many more. The binary approach is sensitive to restraint

violation, and does not adequately represent the space when allowing for that. For example, in MinE the

cell centered at (2.19, 1.56, 1.29, 5.29) is rejected by the binary approach since 22 restraints out of 183 are

violated. However, this cell is kept by the inference approach since its posterior is still sufficiently high, as

18 of the violations are all less than 1 Å and the other 4 are less than 1.5 Å. In fact, the cell containing this

axis has a log posterior of �311.7 and is in the top ten percent of the accepted cells according to its

posterior.

For CCMP, our algorithm accepted �106 cells, with a total volume of 43.8 Å2-rad2 out of 2513 Å2-rad2.

Figure 5 (middle row) shows the posterior and the translation/orientation components for the cells. The log

posterior decreases fairly smoothly from the MAP (�98.4) for 2.7 · 105 cells, to an inflection point (first

black square on the plot) at a posterior of �118, and then again for another 7.5 · 105 cells before dropping

sharply (second black square) for the final 2.7 · 103 accepted cells. Unlike with MinE, the high-posterior

cells are fairly dispersed in the SCS and in conformation space. The volume occupied by cells from the

MAP to the inflection point is 4.4 Å2-rad2 with an average backbone RMSD to the MAP of 4.9 Å over ten

random samples drawn from this region, while the cells after the inflection point comprise the majority of

the volume (39.3 Å2-rad2) with an average backbone RMSD of 8.9 Å over ten random samples in the

region.

In comparison to the closest member in the reference ensemble, the MAP structure has a backbone

RMSD of 1.5 Å (Fig. 6, middle). The maximum backbone RMSD is between the backbone Cas at the base

of the helices of the two structures. As with MinE, our method identifies with a high posterior all structures

in the reference ensemble (highlighted in the figure). The orientation components of high posterior cells in

CCMP are grouped into two clusters. These two groups contain axes that are similar but point in opposite

FIG. 4. Reference structures

(cyan) and inter-subunit distance

restraints (black) for MinE (183

restraints), CCMP (49), and GpA

transmembrane peptide (6). For

CCMP, restraints are only shown

between chains A and B, to avoid

clutter.
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directions. Hence, the structures with highest probability in both groups are very close, but chain B

superimposes on chain C of the other and vice versa to yield a backbone backbone RMSD of 2.5 Å. Like in

earlier cases, our method also finds those axes identified by the binary algorithm.

For GpA transmembrane peptide, the algorithm accepted �107 cells which had a total volume of 954.9

Å2-rad2 out of 1257 Å2-rad2. This was the least pruning of all the three proteins and it can be attributed to

its having only six inter-subunit NOE restraints. Figure 5 (bottom row) plots the posterior, again with the

reference ensemble highlighted. The form of the posterior curve is very similar to what we saw for the other

proteins: a small set of cells with a high posterior (from �5.7 for the MAP), followed by a significant drop

in the posterior (down to �13.4 at the first black square after 5.0 · 104 cells), and a smooth degradation

(�20.2 at the second black square after 1.4 · 107 cells). The volume occupied by the cells from the MAP to

the first square is 3.4 Å2-rad2 while the cells between the first and second black square constituted the

majority of the volume (885.5 Å2-rad2). The cells constituting the drop off after the second cell occupy a

volume of 66.0 Å2-rad2. The ten random samples drawn from the volume occupied by cells from the MAP

FIG. 5. Posterior distributions. (Left) Unnormalized log posterior for accepted cells. Red points on the x-axis indicate

posteriors computed for members of the reference ensembles. (Right) Projections of SCS onto translation and ori-

entation components, colored by posterior (different scales for different proteins). Cells containing reference structures

are outlined in green. Since many cells can share their translations or orientations with other cells, the color of a

translation or orientation is shown colored according to the highest posterior cell in that region. For CCMP, p was

added to y for display purposes (to bring together equivalent cells).
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to the first square have an average backbone RMSD of 2.4 Å from the closest member of the reference

ensemble. The rest of the volume is occupied by cells with high backbone RMSDs (average of 9.8 Å in ten

random samples from the region). While the translation and orientation projections in Figure 5 (bottom

row) display a trend like those for the other proteins, the small number of restraints leads to a relatively

small amount of pruning and a large number of low posterior cells.

3.2. Inferred means and variances

The means and variances obtained by the inferential approach are directly reflective of the ensemble that

fits the data. This is in contrast to the means and variances that one may compute from the top twenty

structures obtained from SA/MD methods which are only within the discrete set of top structures. Note that

a ‘‘centroid’’ of an ensemble is different from the actual mean, in that the mean allows for differentially

weighted contributions. Furthermore, the mean must be with respect to the entire space and not just a

selected set; it is ‘‘unbiased’’ in that sense. In our method, the mean is computed to within a bound on the

possible error from the ‘‘true’’ mean structure.

Figure 7 shows ‘‘sausage plot’’ representations of the means and standard deviations (square roots of

computed variances) of atomic coordinates inferred by our method. For MinE, the mean structure has

backbone RMSD 0.45 Å from the reference structure and 0.03 Å from our MAP estimate. Since there are

183 restraints, the structure is quite constrained, and standard deviations range only from 0 to 0.37 Å along

the backbone, with an average of 0.11 Å. For CCMP, the mean structure has a backbone RMSD of 1.7 Å

from the closest member of the reference ensemble and 0.5 Å from the MAP. The standard deviations of

backbone Ca atoms range from 0 to 4.62, with a mean of 1.44 Å. The ‘‘loosest’’ parts are at the tips of the

helices. While there is a restraint that reaches there (Fig. 4, middle), the structural uncertainty results from

an interplay among all the restraints, and there is apparently not sufficient reinforcement to fully pin down

the structure there. Finally, Figure 7 (right) shows the sausage plot for GpA transmembrane peptide. The

standard deviations of backbone Ca atoms range from 0 to 15.45 Å, with a mean of 4.33 Å. The MAP

structure for GpA transmembrane peptide has a backbone RMSD of 0.83 Å with the closest member of the

reference ensemble (Fig. 6, right). The backbone RMSD of the computed mean structure with the closest

member of the reference ensemble is 1.7 Å. The lower half of the helices in GpA transmembrane peptide

are more tightly restrained through the six NOE restraints shown in Figure 4 (right). Therefore, this part of

the helix in the second subunit shows the least variance.

FIG. 6. MAP structures (cyan)

superimposed with closest member

of reference ensembles (blue).

FIG. 7. Inferred means and

standard deviations in atomic co-

ordinates, represented as sausage

plots. The fixed subunit is shown in

blue with a zero standard devia-

tion. The color and thickness of the

adjacent subunit represent the

standard deviation in the positions

of the backbone atoms. Note that

the standard deviations are on dif-

ferent scales for different proteins.
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3.3. Robustness to missing restraints

We studied the robustness of our method to missing data. For MinE, we selected restraint subsets of sizes

91, 49, and 35 from the original 183 (�50%, 25%, and 20%), randomly choosing the restraints from the

entire set. We generated five such datasets for each number of restraints. Similarly, for CCMP we generated

random subsets of sizes 27 and 16 from the original 49 (�50% and 30%). We did not perform this test for

GpA transmembrane peptide since it already has only 6 restraints. For each subsampled dataset, we first

evaluated the volume of the pruned portion of the SCS, to see how many more conformations would be

consistent with the reduced restraint set. We then compared the mean and MAP structures for the reduced

set with those for the original, to evaluate the effects on these representative structures. Finally, we

compared the variances in the atomic coordinates, to assess the increase in structural uncertainty.

Table 1 summarizes the trends over the different restraint sets. For MinE, even with only 35 of the 183

restraints, almost 99% of the volume is still pruned, suggesting that the posterior distribution is close to

zero for most of the SCS. The various backbone RMSDs are also relatively small, as sufficient constraint

remains to yield structures much like those with the full set of restraints. Since, the reference ensembles

contains the structures that have the highest likelihood of occurrence, the backbone RMSDs of these

structures to the MAP are in general smaller than those to the mean. For CCMP, the amount of pruning falls

off more sharply, and the backbone RMSD values increase more. This is largely due to the fact that the

absolute number of restraints is much smaller. To compute the expectation within the error tolerance, we

must include a larger number of cells.

With fewer restraints, more cells contribute a significant probability mass. Figure 8 illustrates the

expansion in accepted SCS with fewer cells; a similar trend is observed for CCMP. The volume of 1.81 Å2-

rad2 with 183 restraints expands to 2.44 Å2-rad2 with 91, 4.33 Å2-rad2 with 48, and 9.23 Å2-rad2 with 35

(means taken across 10 datasets). Due to algorithmic pruning choices, some (low posterior) cells accepted

with more restraints may actually be rejected with fewer restraints, though we found very few cells with a

volume less than 0.25 Å2-rad2 to have this opposite trend.

Figure 9 plots the mean atomic variances for the Ca atoms, under the different random sets of restraints.

While creating the random sets of restraints, we did not ensure that the sets with smaller number of

restraints are subsets of those with larger number of restraints (except for the full restraint set). However,

the trends in the plots in Figure 9 show that the atoms with large variances essentially remain the same

across different sets of restraints. By taking out restraints, many low posterior axes no longer have a

negligible posterior and therefore the variance increases. The highest variance in CCMP is at the tips of the

helices, as shown in red in its sausage plot (Fig. 7, middle).

These results suggest that our approach degrades smoothly with data sparsity, appropriately representing

and evaluating the increasing uncertainty in the resulting conformations.

3.4. Robustness to noise

We evaluated the robustness of the inference approach to experimental noise, including both uncertainty

in the distance (exceeding the specified bounds) and spurious restraints. We call both scenarios ‘‘noisy’’

restraints, recognizing that while experimental restraints already include some padding to allow for

Table 1. Effects of Missing Restraints on Inference

Protein Restraints Pruned% RMSD1 RMSD2 RMSD3 RMSD4

MinE 183 99.8 0.0 0.5 0.0 0.5

91 99.8 – 0.01 0.2 – 0.16 0.5 – 0.03 0.2 – 0.10 0.5 – 0.09

49 99.6 – 0.08 0.4 – 0.09 0.4 – 0.09 0.5 – 0.20 0.5 – 0.28

35 99.3 – 0.18 0.8 – 0.42 0.9 – 0.50 0.7 – 0.38 0.9 – 0.47

CCMP 49 97.8 0.00 1.5 0.0 1.8

27 91.4 – 1.32 0.3 – 0.24 1.4 – 0.20 1.3 – 0.90 2.7 – 0.86

16 68.6 – 4.42 0.6 – 0.28 1.6 – 0.36 1.3 – 0.51 2.6 – 0.64

Pruned%, percentage of SCS volume pruned; RMSD1, reduced-restraint MAP versus full-restaint MAP; RMSD2, reduced-restraint

MAP versus reference ensemble; RMSD3, reduced-restraint mean versus full-restraint mean; RMSD4, reduced-restraint mean versus

reference ensemble. All RMSDs are computed with backbone atoms. The RMSD to closest structure in reference ensemble is shown.
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uncertainty in distance estimation, algorithms must also be able to handle violations. We simulated noise in

a manner that reflects realistic systematic structural variation and uncertainty, instead of simply adding

random noise. In addition to the representative structure whose first chain we used as our input subunit, the

deposited NMR ensemble contains a number of other structures. We simulated restraints (identifying pairs

of protons within 6 Å) from another member of the ensemble, and identified those that were violated in the

representative structure. With respect to the reference structure, some of these ‘‘noisy’’ restraints have small

violations and some are significantly violated. For the MinE dimer, model 9 was the most different (3.7 Å

backbone RMSD) from the reference structure. It yielded 24 noisy restraints, 16 violated by more than 1 Å

and two by as much as 19 Å. For the CCMP trimer, model 4 was the most different (6.6 Å), and yielded 8

noisy restraints (1 violated by more than 30 Å). We formed sets of augmented restraints by combining our

experimental restraints with these noisy restraints.

We re-ran our inference algorithm with these noisy datasets. For MinE, it accepted 128,000 cells

covering 4.4 Å2-rad2, compared to 1.8 Å2-rad2 without the noise. Even with the noisy data, the accepted

cells still include those representing the reference ensemble and 40% of the original cells. This then yields

increased uncertainty in conformation space; the MAP has a backbone RMSD of 2.3 Å from the original

and 2.5 Å from the closest structure in reference ensemble, and a mean 2.2 Å from the original and 2.4 Å

from the closest structure in the reference ensemble.

For CCMP, our algorithm accepted 7 · 105 cells covering 24.2 Å2-rad2, compared to 43.8 Å2-rad2 in the

original. These solutions include the reference ensemble and 60% of the original cells. The MAP remain

essentially the same, with an backbone RMSD of 0.0 Å from the original and 1.5 from the reference, and

similarly the mean has a backbone RMSD of only 0.3 Å from the original and 2.0 Å from the reference.

All noisy restraints for MinE are concentrated in the upper and lower loops of the dimer where there are

no existing non-noisy restraints. Therefore, the addition of noisy restraints results in higher posteriors for

the axes representing structures with the noisy restraints satisfied in those loop regions. On the other hand,

FIG. 8. Translation and orientation parameters of accepted MinE cells for different subsets of restraints (one dataset

for each number of restraints). Colored cells are those eliminated with more restraints but not with fewer restraints.
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for CCMP the added noisy restraints are all in the middle of the helices where there are non-noisy restraints.

The structures in which the noisy restraints are satisfied tend to violate these non-noisy restraints, which

out-number them. Hence, the noisy restraints do not impact the eventual posterior distribution in CCMP to

the extent observed for MinE.

Our original binary algorithm (Potluri et al., 2006) would fail with this set of noisy restraints, since they

are inconsistent and the algorithm eliminates a cell if even one NOE is violated. Therefore, we had

extended that approach, in the context of NOE assignment, to handle a fixed maximum number of vio-

lations (denoted by d) (Potluri et al., 2007). We tested the extended approach on our current datasets. We

found that for the augmented MinE dataset, no solutions were obtained when d was set at less than 15. As

we increased d from 15 to 20, the average backbone RMSD to the reference structure increased from 0.59 Å

to 0.75 Å and the non-overlapping volume increased from 0 Å2-rad2 to 0.021 Å2-rad2 (compared to 0.70 Å

and 0.0004 Å2-rad2 by the inference approach). With CCMP, we needed d� 4 to find any solutions; as d
increased from 4 to 9, the average backbone RMSD increased 0.92 Å to 0.99 Å, and the non-overlapping

volume increased from 0.0001 Å2-rad2 to 0.0081 Å2-rad2 (compared to 0.98 Å and 0.0001 Å2-rad2 by

inference).

Our inference approach is robust to noise: there is no need for a maximum number of restraint violations;

it degrades smoothly. It also appropriately accounts for the influence of noisy data on the resulting

structures, via the weighted integration.

4. CONCLUSION

We have developed an approach that performs structural inference for symmetric homo-oligomers. By

working with a configuration space representation and employing a hierarchical subdivision algorithm, our

approach gives error guarantees on the resulting posterior and inferred expectations in atomic coordinates.

The method provides a probability measure for sets of conformations, allowing for an objective assessment

of the information content in the data and the resulting constraint on the plausible structures. It can then

evaluate the resulting uncertainty in atomic coordinates.

In our case study applications, we have found that, in addition to all the structures found by previous

methods, our method also identifies other diverse structures with high posterior probabilities. That is, our

probabilistic restraint evaluation and complete characterization of the posterior distribution enables iden-

tification of structures that are missed when employing either binary restraint violation testing or stochastic

sampling of low-energy conformations. In particular, the set of twenty reference structures deposited in the

PDB suffers from the problem of under-sampling the conformation space. Furthermore, the inferred atomic

means provide a more accurate characterization of the structural uncertainty than a simple superposition of

an ensemble of low-energy representatives.

As NOESY experiments are subject to noisy and missing data, the input set of distance restraints may

include some distance restraints that are violated to a small extent (even after padding) or completely

spurious, and may not include some correct distance restraints. Our approach takes into account such

sources of uncertainty and degrades smoothly. With simulated missing data, most of the originally accepted

cells were still accepted, and consequently the MAP and mean structures were not very different from those

obtained with the full set of restraints. We simulated noisy restraints, we found similar robustness, with

results similar to those obtained from the original set of restraints.

Our approach currently evaluates structural quality only in terms of steric clash, rather than in terms of

finer-grained molecular mechanics modeling. The posterior is driven by restraint satisfaction, and the prior

only prunes structures that display serious steric clashes. This leads to a ‘‘data-driven’’ search for and

evaluation of structures, with conclusions regarding structural uncertainty based mainly on the experi-

mental data. We were able to use a binary structural prior since, as in our previous work (Potluri et al.,

2006), we assumed that the subunit structure was fixed (solved as it exists in complex, from the intra-

subunit subset of the NMR data). While we previously performed energy minimization on the side-chains

as a post-processing step, that is not as appropriate here, since that would affect the probabilities and error

cutoffs, and thus our inference moments would no longer be provably accurate. The posteriors obtained

here essentially ‘‘flatten out’’ the possible side-chain conformations for a backbone, and the distribution

that we compute should therefore be interpreted as the posterior over backbones rather over complete

homo-oligomeric structures including side-chains.
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In future work, we would like to better account for biophysical plausibility by incorporating a Boltzmann

prior representing molecular modeling energies. The key challenge is to efficiently and tightly bound such a

prior over an SCS cell. This is analogous to the move from energy minimization after pruning rotamers

with Dead-End Elimination (DEE) (Desmet et al., 1992), which loses the global minimum energy guar-

antee of DEE, to minimized-DEE (Georgiev et al., 2008), which accounts for possible energy minimization

when considering pruning and thus regains the provable guarantee.
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Güntert, P., Braun, W., and Wüthrich, K. 1991. Efficient computation of three-dimensional protein structures in

solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA,

HABAS and GLOMSA. J. Mol. Biol. 217, 517–530.

Güntert, P., Mumenthaler, C., and Wüthrich, K. 1997. Torsion angle dynamics for NMR structure calculation with the

new program DYANA. J. Mol. Biol. 273, 283–298.

Habeck, M., Nilges, M., and Rieping, W. 2005. Replica-exchange Monte Carlo scheme for Bayesian data analysis.

Phys. Rev. 94, 01805.

Habeck, M., Rieping, W., and Nilges, M. 2006. Weighting of experimental evidence in macromolecular structure

determination. Proc. Natl. Acad. Sci. USA 103, 1756–1761.

Ikura, M., and Bax, A. 1992. Isotope-filtered 2D NMR of a protein peptide complex: study of a skeletal-muscle myosin

light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114, 2433–2440.

Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proc. R. Soc. A 186, 453–461.

Kass, R.E., and Wasserman, L.A. 1996. The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 91,

1343–1370.

King, G.F., Shih, Y.L., Maciejewski, M.W., et al. 2000. Structural basis for the topological specificity function of

MinE. Nat. Struct. Biol. 7, 1013–1017.

Lee, W., Revington, M.J., Arrowsmith, C., et al. 1994. A pulsed-field gradient isotope-filtered 3D C-13 HMQC-

NOESY experiment for extracting intermolecular NOE contacts in molecular-complexes. FEBS Lett. 350, 87–90.

Lipari, G., and Szabo, A. 1982. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in

macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

MacKenzie, K.R., Prestegard, J.H., and Engelman, D.M. 1996. Leucine side-chain rotamers in a glycophorin A

transmembrane peptide as revealed by three-bond carboncarbon couplings and 13C chemical shifts. J. Biomol. NMR

7, 256–260.

Macura, S., and Ernst, R.R. 1980. Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy.

Mol. Phys. 41, 95–117.

1774 CHANDOLA ET AL.



Moran, M.G., and Kendall, P.A.P. 1963. Geometrical Probability. Charles Griffin & Co. Ltd., London.

Nilges, M., Habeck, M., O’Donoghue, S.L., et al. 2006. Error distribution derived NOE distance restraints. Proteins 64,

652–664.

Oxenoid, K., and Chou, J.J. 2005. The structure of phospholamban pentamer reveals a channel-like architecture in

membranes. Proc. Natl. Acad. Sci. USA 102, 10870–10875.

Potluri, S., Yan, A.K., Chou, J.J., et al. 2006. Structure determination of symmetric protein complexes by a complete

search of symmetry configuration space using NMR distance restraints and van der Waals packing. Proteins 65, 203–

219.

Potluri, S., Yan, A.K., Donald, B.R., et al. 2007. A complete algorithm to resolve ambiguity for inter-subunit NOE

assignment in structure determination of symmetric homo-oligomers. Protein Sci. 16, 69–81.

Rieping, W., Habeck, M., and Nilges, M. 2005a. Modeling errors in NOE data with a log-normal distribution improves

the quality of NMR structures. J. Am. Chem. Soc. 127, 16026–16027.

Rieping, W., Michael, H., and Nilges, M. 2005b. Inferential structure determination. Science 309, 303–306.
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