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The Complexity of the Dirichlet Model

for Multiple Alignment Data
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ABSTRACT

A model is a set of possible theories for describing a set of data. When the data are used to select
a maximum-likelihood theory, an important question is how many effectively independent
theories the model contains; the log of this number is called the model’s complexity. The
Dirichlet model is the set of all Dirichlet distributions, which are probability densities over the
space of multinomials. A Dirichlet distribution may be used to describe multiple-alignment
data, consisting of n columns of letters, with c letters in each column. We here derive, in the limit
of large n and c, a closed-form expression for the complexity of the Dirichlet model applied to
such data. For small c, we derive as well a minor correction to this formula, which is easily
calculated by Monte Carlo simulation. Although our results are confined to the Dirichlet model,
they may cast light as well on the complexity of Dirichlet mixture models, which have been
applied fruitfully to the study of protein multiple sequence alignments.

Key words: alignment, computational molecular biology, dynamic programming, multiple

alignment, sequence analysis.

1. INTRODUCTION

When attempting to describe a set of data, one frequently may choose among many alternative

theories. In general, the more free parameters a theory has available, the better it will be able to

describe the data. However, a theory with too many free parameters will tend to ‘‘overfit’’ the data—modeling

its noise rather that its regularities—and this can lead to poor predictions on new data. One approach to

avoiding this problem is the Minimum Description Length (MDL) principle (Grünwald, 2007). In short,

consider a theory to be a probability distribution over the space of all possible data and a model to be a

parametrized set of theories. The MDL principle then implies that one should seek to minimize the de-

scription length of the data given a model, plus the description length of the model. Formally, the description

length of the data given a model is the negative log probability of the data as implied by the maximum-

likelihood theory from the model. The description length or complexity of a model is the log of the number of

effectively independent theories it contains. A central element of MDL theory is the formal definition of

model complexity, and its calculation for specific models. This article studies the complexity of the Dirichlet

model applied to multiple alignment data.
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Multiple alignments of protein or DNA data can be formally rather complex, for example, allowing

sequences to contain gap characters, or imposing additional structure, such as sequence weights, or a

phylogenetic tree relating the sequences. In this article, we consider only a simplified version of multiple

alignment data, consisting of n columns, with each column containing c letters chosen from an alphabet of

size L; no ‘‘gap’’ characters are allowed. A simple, default way to model such data is by means of a

multinomial distribution, which assigns each letter type a probability. However, when the sequences are

related and properly aligned, the various letters tend to appear with differing frequencies from one column

to another, and the multinomial model can take no account of this.

An elegant approach to describing multiple alignment data for protein sequences is the Dirichlet mixture

model (Brown et al., 1993; Sjölander et al., 1996). This model postulates that the data in a given column

can be described by a multinomial distribution, but that this multinomial may vary from column to column.

It postulates further that the multinomials themselves are drawn randomly and independently, following a

Dirichlet mixture distribution, which is a simple linear combination of several Dirichlet distributions. We

have not been able to analyze the complexity of Dirichlet mixture models, and so here study the simpler

case of single Dirichlet models, which often are rich enough to describe well multiple DNA sequence

alignment data. Elsewhere (Ye et al., 2011), we generalize our results by heuristic argument to the Dirichlet

mixture models appropriate for protein sequences.

Below, we first review some basics of MDL theory and of Dirichlet models. Second, we derive a closed-

form analytic formula for the complexity of the Dirichlet model applied to multiple alignment data in the

limit of large n and c. Third, we derive an expression for the complexity of the Dirichlet model for arbitrary

c in the form of a definite L-dimensional integral. Finally, we describe how this integral may be evaluated

accurately and efficiently using Monte Carlo simulation, even when L is large.

2. MATHEMATICAL BASICS

2.1. The minimum description length principle

The minimum description length principle (Grünwald, 2007) has a substantial body of theory, but we

summarize here only those elements we will need. A specific theory is taken to be equivalent to a probability

distribution over the space of all possible sets of data. We will assume that alternative theories may be

parametrized by y, which lies within the k-dimensional space Y, and a model M is the set of all theories in

Y. The complexity of M, represented by COMP(M), can be thought of as the log of the effective number of

independent theories M contains, a notion that can be formalized as described in Grünwald (2007).

COMP(M) depends both on M and on the quantity of data it is used to describe, and may be obtained by

integrating over Y a measure of the density of independent theories. In brief, if the data consist of n

independent observations, then given certain reasonable assumptions, it can be shown that for large n

COMP(M, n)¼ k

2
log

n

2p
þ log

Z
H

ffiffiffiffiffiffiffi
jJhj

p
dhþ o(1), (1)

where jJyj is the determinant of the Fisher information matrix for M (Grünwald, 2007). Intuitively, the

greater the value of this determinant, and the greater n, the greater the density of independent theories. In

this article, we derive jJyj for the Dirichlet model, and seek to evaluate the integral in eq. (1). It is

traditional to use logs to the base 2 in eq. (1), and therefore to express model complexity in bits.

2.2. The Dirichlet model

A finite alphabet A consists of L letters, which can be conveniently identified with the first L natural

numbers. A multinomial distribution over A is defined by a vector ~pp of L positive probabilities that sum to

1. Because of this linear constraint, the space OL of all multinomial distributions over A is (L� 1)-

dimensional. A Dirichlet distribution is a probability density over OL. It is parametrized by an L-dimen-

sional vector ~aa of positive real numbers, and has probability density defined as

f (~xx) � Z
YL

j¼ 1

x
aj � 1
j , (2)
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where Z � C(
P

j aj)=
QL

j¼ 1 C(aj) is a scalar chosen so that integrating f (~xx) over OL yields 1. It is con-

venient to define a�
P

jaj, and to define qj� aj /a. Then (~qq, a) is an alternative parametrization of the

Dirichlet distribution, which still has only L free parameters because the qj must sum to 1. The set of all

Dirichlet distributions over OL forms the Dirichlet model DL.

A multiple alignment consists of n columns of letters from A, with each column containing c letters.

Then, to say that the alignment is described by a particular Dirichlet distribution is shorthand for saying that

the Dirichlet distribution generates a particular multinomial ~pp for each column, and the letters in that

column are then generated by ~pp.

3. THE COMPLEXITY OF THE DIRICHLET MODEL FOR ALIGNMENTS
WITH LARGE n AND c

3.1. The Fisher information matrix

Our goal is to calculate the integral in eq. (1), where Jy is the Fisher information matrix for the

Dirichlet model. When L is large, evaluating the determinant of this L · L matrix is a potentially chal-

lenging problem, both analytically and computationally. However, as we will see, the matrix has the

special form

Mj, j0 ¼ dj, j0 Dj�D: (3)

In Appendix A, we prove the useful lemma that the determinant of a matrix of this form can be written as

the product

det M¼ F
YL

j¼ 1

Dj, (4)

where

F � 1�D
XL

j¼ 1

D� 1
j : (5)

This will greatly simplify the computation of the integral in question.

To derive an expression for DL’s Fisher information matrix, first consider a particular column of

observations~yy, in which the counts for the various letters are given by~cc, so that
PL

j¼ 1 cj¼ c. As described

in Sjölander et al. (1996) and Altschul et al. (2010), given the Dirichlet distribution with parameters~aa, the

probability of observing the data in this column is given by

P(~yy)¼ C(a)

C(aþ c)

YL

j¼ 1

C(ajþ cj)

C(aj)
: (6)

Note that P(~yy) represents the probability for the specific column~yy, not for all columns that yield letter count

vector ~cc.

Taking logs of both sides of eq. (6), we have

ln P(~yy)¼ lg (a)� lg (aþ c)þ
XL

j¼ 1

lg (ajþ cj)� lg (aj)
� �

, (7)

where lg(x) represents ln G(x).

The (j, j0)th entry of the Fisher information matrix is given by

Jj, j0 (~aa)¼E � q2 ln P(~yy)

qajqaj0

� �
¼
X
~yy

P(~yy)
q2[� ln P(~yy)]

qajqaj0
: (8)

An alternative form for eq. (6), useful for calculating expectation values, is described in Appendix B.
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From eq. (7), we may express the quantity averaged in eq. (8) as

q2[�ln P(~yy)]

qajqaj0
¼ dj, j0 w0(aj)�w0(ajþ cj)

� �
� w0(a)�w0(aþ c)½ �, (9)

where the trigamma function c0(x) is the first derivative of the digamma function c(x)� d lg(x)/dx. Since c

is held fixed in our analysis, the only term in eq. (9) that has a nontrivial average is dj, j0c0(ajþ cj). Therefore

Jj, j0 (~aa)¼ dj, j0 w0(aj)�E[w0(ajþ cj)]
� �

� w0(a)�w0(aþ c)½ �
¼ dj, j0Dj�D, (10)

where

Dj¼w0(aj)�E[w0(ajþ cj)]; (11)

D¼w0(a)�w0(aþ c): (12)

Our Fisher information matrix therefore takes the form of eq. (3), so we can calculate jJ(~aa)j using eqs. (4)

and (5).

3.2. The asymptotic behavior of jJ(a~qq)j
We will consider later the exact calculation of Dj and D of eqs. (11) and (12). In the case that aj and a are

large, however, we can derive closed-form asymptotic expressions for these quantities, and for the F that

they imply.

To start, we note that for large x, w0(x)¼ 1=xþ 1=(2x2)þO(x� 3). Therefore, eq. (12) implies that

D¼ 1

a
� 1

aþ c
þO(a� 3)¼ c

a(aþ c)
þO(a� 3): (13)

Furthermore, as we show in Appendix C, for large aj, E[w0(ajþ cj)]¼w0(ajþE[cj])þO(a� 3
j ), and

E[cj]¼ caj/a. Writing aj as aqj, these imply that

Dj¼
1

aqj

� 1

aqjþ cqj

þO(a� 3)¼ c

qja(aþ c)
þO(a� 3): (14)

Unfortunately, because D and Dj appear only as a ratio in eq. (5), using eqs. (13) and (14) in an attempt to

approximate F yields 1�D
PL

j¼ 1 Dj
� 1 � 1�

PL
j¼ 1 qj¼ 0. If one wishes to express F accurately to the

order a�2, one needs to obtain Dj and D to the order a�4. We show how to do this in Appendix C, and that

the resulting asymptotic formula for F takes the form

F¼ (L� 1)(c� 1)

2a(aþ c)
þO(a� 3): (15)

Now, using eq. (4) and the asymptotic eqs. (14) and (15) for the Dj and F, we are able to calculate the

determinant we require in the limit of large a:

jJ(a~qq)j � (L� 1)(c� 1)cL

2aLþ 1(aþ c)Lþ 1
QL

j¼ 1 qj

: (16)

It will be useful to derive an expression for jJ(a~qq)j in the small a limit as well. In short, analysis of the exact

expressions (26) and (27) derived below shows that as a! 0, D¼ 1=a2þO(1) and

Dj¼ 1=(a2qj)þ
	Pc� 1

k¼ 1 1=k


=(aqj)þO(1), implying F¼ a

Pc� 1
k¼ 1 1=kþO(a2). This implies that for small a,

jJ(a~qq)j �
Pc� 1

k¼ 1 1=k

a2L� 1
QL

j¼ 1 qj

: (17)

3.3. The complexity of DL for large n and c

To derive a formula for COMP (DL, n, c) in the limit of large n and c, we first consider the integral of eq.

(1). Note that this integral involves all the parameters aj arbitrarily close to 0. However, as we argue below,
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as c grows the relative contribution to the integral from small aj vanishes, so in the limit of large c it is valid

to use the asymptotic eq. (16) throughout the range of integration. In this limit, we can for simplicity

replace c� 1 by c in the numerator of eq. (16). This allows us to write

I¼
Z 1

0

� � �
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
jJ(~aa)j

p
d~aa

¼
Z

XL

d~qq

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jJ(a~qq)j

p
aL� 1da

�
Z

XL

d~qq

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 1

2

cLþ 1

aLþ 1(aþ c)Lþ 1
Q

j qj

s
aL� 1da

¼
ffiffiffiffiffiffiffiffiffiffiffi
L� 1

2

r
c

Lþ 1
2

Z
XL

Y
j

q
� 1=2
j d~qq

" # Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aL� 3

(aþ c)Lþ 1

s
da

" #

�
ffiffiffiffiffiffiffiffiffiffiffi
L� 1

2

r
c

Lþ 1
2 [I1][I2], (18)

where I1 represents the integral over ~qq and I2 the integral over a. As described in the supplementary

material to Altschul et al. (2009),

I1¼
pL=2

C(L=2)
, (19)

so we turn our attention to I2. Letting b� a/c and then tan2f� b, we can write this integral as

I2¼
1

c

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL� 3

(bþ 1)Lþ 1

s
db¼ 1

c

Z p
2

0

tanL� 3 /
secLþ 1 /

2 tan / sec2 / d/

¼ 2

c

Z p
2

0

sinL� 2 / cos / d/¼ 2

c(L� 1)
: (20)

Combining eqs. (18), (19), and (20) yields

I �
ffiffiffiffiffiffiffiffiffiffiffi

2

L� 1

r
c

L� 1
2

pL=2

C(L=2)
: (21)

Finally, substituting eq. (21) for the integral in eq. (1) yields

COMP(DL, n, c)¼ L

2
log nþ L� 1

2
log cþALþ o(1), (22)

where AL is an alphabet-size dependent constant given by

AL¼ � log C(L=2)� 1

2
log (L� 1)� L� 1

2
: (23)

Specifically, for protein sequences A20¼�30.093 bits, and for DNA sequences A4¼�2.292 bits.

Eq. (22) is valid only for large n and c. However, as we show in the next section, it requires only a minor

adjustment for small c. Provocatively, when L� 1, one can use Stirling’s approximation to rewrite eqs.

(22) and (23) as

COMP(DL, n, c) � 1

2
log

(enc=L)L

2pc

� �
: (24)

Note here that nc/L is the number of observations per model parameter.

We omit a formal proof that it is valid to calculate the integral as we have done, in the limit of large c, by

using the asymptotic formula (16) for jJ(a~qq)j over the complete domain of integration. However, in outline,

the required reasoning proceeds as follows. First, after transforming into the (~qq, a) coordinate system, the
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integral is split into large-a and small-a domains. Using eq. (17), an asymptotic analysis of the integral over

the small-a domain shows that it grows as
ffiffiffiffiffiffiffiffiffiffi
log c
p

, whereas the integral over the large-a domain grows as

c(L�1)/2, as described above. Therefore, in the limit of large c, the small-a domain may be ignored when one

takes the log of the sum of these two integrals. Furthermore, because a¼ c tan2f after the substitutions

above, the lower limit of the domain of the large-a integral, expressed as f, shrinks to zero as c grows.

Similar arguments may be applied to ~qq near the boundaries of OL.

4. THE COMPLEXITY OF THE DIRICHLET MODEL FOR ARBITRARY c

4.1. Exact formulas for Dj and D

The derivation of eq. (22) assumes n and c are large. Whereas in practice n� 100 for typical multiple

alignment data sets to which eq. (22) might be applied, c can be quite small (Ye et al., 2011). Therefore, we

here take the alternative approach of deriving a calculable expression for the Dirichlet model’s jJyj, and of

estimating the definite integral of eq. (1) by Monte Carlo simulation. Given eqs. (4), (5), and (10), we need

only derive an expression for Dj¼E[c0(aj)�c0(ajþ cj)].

By definition of the trigamma function, and using eq. (38) from Appendix B,

Dj¼E
Xcj � 1

k¼ 0

1

(ajþ k)2

" #

¼ C(a)=C(aj)

C(a� aj)

Xc

cj ¼ 0

c!

cj!(c� cj)!
·
Z 1

0

xcj þ aj � 1
Xcj � 1

k¼ 0

1

(ajþ k)2

" #
(1� x)c� cj þ a� aj � 1dx: (25)

In eq. (25), the term 1/(ajþ k)2 is present only in cj¼ kþ 1 to cj¼ c. This allows us to write

1

(ajþ k)2

Xc

cj ¼ kþ 1

c!

cj!(c� cj)!
xcj (1� x)c� cj ¼ 1

(ajþ k)2
1�

Xk

h¼ 0

c!

k!(c� k)!
xh(1� x)c� h

" #
:

Given that Z 1

0

xu� 1(1� x)v� 1dp¼ C(u)C(v)

C(uþ v)
,

we may then rewrite Dj as

Dj¼
C(a)=C(aj)

C(a� aj)

Xc� 1

k¼ 0

1

(ajþ k)2

C(a� aj)

C(a)=C(aj)
�
Xk

h¼ 0

c!

h!(c� h)!

C(aþ c� aj� h)

C(aþ c)=C(ajþ h)

" #

¼
Xc� 1

k¼ 0

1

(ajþ k)2
1�

Xk

h¼ 0

c!

h!(c� h)!

C(a)C(ajþ h)C(aþ c� aj� h)

C(aj)C(a� aj)C(aþ c)

" #

¼
Xc� 1

k¼ 0

1

(ajþ k)2
1�G

Xk

h¼ 0

C(ajþ h)C(aþ c� aj� h)

h!(c� h)!

" #
, (26)

where G¼ c!G(a) / [G(aj)G(a� aj)G(aþ c)]. Note that the inner sum increases by a single term for each

increase in k, so that Dj can be computed in time proportional to c. The expression for Dj in eq. (26) is exact

for arbitrary values of aj> 0 and arbitrary integers c> 0. The exact series expression for D for arbitrary c

and a can also be written as

D¼
Xc� 1

k¼ 0

1

(aþ k)2
: (27)

Eqs. (26) and (27) allow us to calculate F using eq. (5), and therefore to calculate the integrand in eq. (1) at

arbitrary ~aa.
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An interesting case arises when c¼ 1. Here one obtains the exact results D¼ 1/a2, and Dj¼ 1/(qja
2).

Consequently, F¼ 1�D
PL

j¼ 1 D� 1
j ¼ 0. This supports the correctness of our asymptotic results above for

the factor F, which also yield zero upon substituting c¼ 1. Intuitively, alignments that are only one letter

deep lack sufficient information to distinguish among Dirichlet distributions within DL, underdetermining~aa
and therefore yielding zero independent distributions. Such individual sequences, in contrast, are sufficient

to distinguish among alternative multinomial distributions.

4.2. Monte Carlo evaluation of the definite integral

Monte Carlo evaluation of the definite integral requires only a way to sample points randomly from the

integration domain, and a way to calculate the integrand at each point, as described above. Practical

problems with accuracy can arise, however, if the integrand varies greatly over its domain, or even

diverges. Especially in high dimensions, a ‘‘flat’’ integrand is desirable, and it is of course trivial to find the

definite integral when the integrand is constant.

Using Monte Carlo techniques to evaluate the definite integral of eq. (1) presents two main chal-

lenges: first, that the domain of integration is infinite in all L dimensions; second, that the integrand

can vary greatly. Both problems can be mitigated by carefully chosen changes of variable. As we

describe these changes below, we omit detailed derivation of the Jacobian determinants that accom-

pany them.

Eqs. (26), (27), (4), and (5) express the integrand as an easily calculated function of ~aa. We begin by

replacing the variables of integration~aa with the alternative parameters (~qq, a), where aj� aqj. This confines

the L� 1 free parameters of ~qq to the finite domain OL, but leaves (0, ?) as the domain of the remaining

parameter a.

Deferring our discussion of a, we consider first the variables ~qq in greater detail. As implied by an

examination of the integral I1 in section 3.3, the integrand diverges near the boundaries of OL, even though

the definite integral remains finite. This divergence, however, increases the variance of Monte Carlo

estimates, because they are affected disproportionately by ~qq sampled near the boundaries of OL. For-

tunately, we can eliminate this problem by sampling~rr uniformly from the unit (L� 1)-sphere (Marsaglia,

1972), and letting qj � r2
j ; note that ~qq is thereby automatically confined to OL. The domain of integration

remains finite, but after multiplication by the Jacobian determinant, the integrand becomes essentially flat

as a function of ~rr.

Turning to the final variable a, there are many ways to render its domain finite. However, guided by an

analysis of the integral I2 in section 3.3, we choose to replace a by g using the equation

a � Lc
c2

1� c2
: (28)

This has two desired effects. First, it transforms the domain of integration to the finite (0, 1). Second, it

renders the integrand flat both as g approaches 0, and as g approaches 1, with a smooth transition between

these two regimes near the center of g’s domain.

With these changes of variable, accurate Monte Carlo estimation of the definite integral in question

becomes tractable, even for large L. We have implemented a program to perform this estimation, and

applied it to a variety of L and c. Generalizing eq. (22) to small c by writing

COMP(DL, n, c)¼ L

2
log nþ L� 1

2
log cþDL, cþALþ o(1), (29)

our calculated values of DL,c are given in Table 1. Using 107 sample points for each definite integral, the

standard errors for our estimates of DL,c are all �0.0004 bits. The differing qualitative behavior of DL,c for

L¼ 2 and L	 3 may be understood, in the light of eq. (20), as arising from the differing qualitative

behavior near f¼ 0 of sin L�2f for these L.

As can be seen by examining Table 1, and as our theory from the previous section asserts, for each L the

correction term DL,c approaches 0 as c gets large. Remarkably, the asymptotic eq. (22) is accurate to within

1 bit in all instances, and to within 0.4 bits except when L¼ 2 and c� 3. Thus, in many practical

applications, DL,c may be completely ignored, or approximated by a small constant dependent on L and

typical values of c.
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4.3. Perspective on the complexity of the Dirichlet model

It is worth trying to gain a conceptual perspective on eq. (29). First, as should be intuitively clear, the

greater the number of columns n in one’s data, or the number of observations c per column, the easier it is

to distinguish among alternative Dirichlet distributions, and thus the greater the complexity of the model.

However, why the differing dependencies on n and c? Consider the alternative parametrization of a

Dirichlet distribution (~qq, a) described above. The location parameters ~qq can be viewed as specifying

a multinomial distribution with L� 1 free parameters. If one were to describe the data using only a

multinomial model, there would be nc observed letters, and the complexity of the model would grow as
L� 1

2
log nc. Using instead a Dirichlet model introduces the additional parameter a. Increasing n corre-

sponds to sampling more multinomial distributions, and thus can be seen as relevant to estimating a, the

concentration of these distributions about their mean. That a is a single parameter means the additional

model complexity it introduces should grow as 1
2

log n. In contrast, increasing c corresponds only to

taking more observations from each multinomial sampled. While a larger c helps to constrain the location

parameters of a Dirichlet distribution, it is in essence of no help in constraining the distribution’s

concentration.

In practice, multiple alignment data frequently consist of n columns in which c varies by column, but we

do not propose to analyze with rigor a generalization of the problem to this case. However, the perspective

described above suggests that, for such data, it is appropriate to extend eq. (29) simply by using �cc, the mean

number of observations per column, in place of c.

5. CONCLUSION

We have derived an analytic formula, eq. (22), for the complexity COMP(DL, n, c) of the Dirichlet model

DL applied to multiple alignment data with large n and c. To calculate this complexity for small c, we have

derived an easily evaluated expression for the determinant required by the relevant definite integral. Using

this expression, we have applied Monte Carlo estimation to find COMP(DL, n, c) for arbitrary c, as given by

eq. (29).

The Dirichlet models studied here, although tractable, are too simple to describe accurately multiple

alignment data from protein sequences. In a companion article (Ye et al., 2011), we study Dirichlet

mixtures (Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010), which are better suited to

proteins but too complex to analyze rigorously. There, we extend by informal arguments the results of this

article to the more general and more broadly applicable case of Dirichlet mixtures.

Table 1. Values of D
L,c

, in Bits

c

L 2 3 4 6 10 20 40 100

2 �0.725 �0.480 �0.369 �0.259 �0.165 �0.084 �0.037 �0.003

3 �0.055 0.071 0.111 0.136 0.144 0.136 0.118 0.090

4 0.198 0.235 0.229 0.210 0.183 0.148 0.117 0.082

5 0.310 0.285 0.254 0.215 0.179 0.141 0.109 0.074

6 0.360 0.293 0.250 0.207 0.170 0.134 0.103 0.070

7 0.378 0.287 0.241 0.198 0.164 0.129 0.099 0.067

8 0.381 0.277 0.231 0.191 0.159 0.126 0.096 0.065

9 0.375 0.266 0.222 0.186 0.156 0.124 0.094 0.063

10 0.367 0.256 0.216 0.182 0.154 0.121 0.092 0.062

12 0.346 0.243 0.208 0.178 0.151 0.119 0.090 0.061

15 0.320 0.231 0.201 0.174 0.148 0.117 0.088 0.059

20 0.294 0.222 0.196 0.171 0.145 0.113 0.086 0.057

All values are calculated by Monte Carlo simulation, as described in the text, using 107 random points, and have a standard error

�0.0004 bits. For protein sequences L¼ 20 and additional values of D20,c are provided in Ye et al. (2011).
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APPENDIX

A. The determinant of a matrix with special form

To prove the lemma described in eqs. (3–5), we first establish a general equality in linear algebra:

det
A B
C D

� �
¼ det A � det D�CA� 1B

� �
¼ det D � det A�BD� 1C

� �
, (30)

where A and D are invertible square matrices, while B and C are rectangular matrices. The equality (30)

follows from the decompositions

A B

C D

� �
¼ A 0

C I

� �
I A� 1B

0 D�CA� 1B

� �
¼ I B

0 D

� �
A�BD� 1C 0

D� 1C I

� �
,

and the fact that det[XY]¼ det X � det Y when X and Y are square matrices of the same dimension.

To proceed, we rewrite the matrix M of eq. (3) as the product

M¼ d � I� bbT
� �

� d, (31)

where d is a diagonal matrix with elements dj, j0 ¼ dj, j0
ffiffiffiffiffi
Dj

p
, and b is a vector whose components are

bj¼
ffiffiffiffiffiffiffiffiffiffiffi
D=Dj

p
. Eq. (31) implies that

det M¼ det d � det I� bbT
� �

� det d: (32)

Using eq. (30), we observe that

det I� bbT
� �

¼ 1� bT b
	 


(33)

by considering the determinant of the matrix

1 bT

b I

� �
:

Since matrix d consists of diagonal elements only, we may write the determinant of M as

det M¼
YL

j¼ 1

ffiffiffiffiffi
Dj

p !2

1�
XL

j¼ 1

ffiffiffiffiffi
D

Dj

s !2
2
4

3
5¼F

YL

j¼ 1

Dj,

as stated in eqs. (4) and (5).

B. The expectation of a function of cj

To evaluate the asymptotic behavior of Dj and F, it is necessary to calculate expectation values of functions

that depend only on the count vector ~cc. For this purpose, it is convenient to elaborate eq. (6) as follows:

P(~yy)¼ C(a)

C(aþ c)

YL

j¼ 1

C(cjþ aj)

C(aj)

¼ C(a)QL
j¼ 1 C(aj)

Z
XL

YL

j¼ 1

x
cj þ aj � 1
j d~xx: (34)

Focusing now on ~cc, eq. (34) implies that we may write the expectation value of a function K(~cc) as

E[K(~cc)]¼
X
~yy

P(~yy)K(~cc)

C(a)QL
j¼ 1 C(aj)

X
c1, c2, ..., cL	0

Rjcj ¼ c

c!QL
j¼ 1 cj!

Z
XL

YL

j¼ 1

x
cj þ aj � 1
j K(~cc)d~xx: (35)
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If K depends on only one of the cj, we may integrate away all the xj0=j to simplify eq. (35). This amounts to

writing

X
c1, c2, ..., cL	0

Rjcj ¼ c

¼
Xc

cj ¼ 0

X
fc

j0 6¼j
	0g

R
j0 cj0 ¼ c� cj

, (36)

and

c!QL
j¼ 1 cj!

¼ c!

cj!(c� cj)!

(c� cj)!Q
j0 6¼j cj0 !

, (37)

so that

E[K(cj)]¼
X
~yy

P(~yy)K(cj)

¼ C(a)QL
j¼ 1 C(aj)

Xc

cj ¼ 0

c!K(cj)

cj!(c� cj)!

Z
XL

x
cj þ aj � 1
j (1� xj)

c� cj

Y
j0 6¼j

x
aj0 � 1

j0 d~xx

¼ C(a)QL
j¼ 1 C(aj)

Xc

cj ¼ 0

c!K(cj)

cj!(c� cj)!

Z 1

0

x
cj þ aj � 1
j (1� xj)

c� cj þ
P

j0 6¼j
aj0 dxj

·
Z 1

0

d (1� xj)
X
j0 6¼j

~xxj0 � 1

" # !Y
j0 6¼j

~xx
aj0 � 1

j0 d~xxj0

h i

¼ C(a)QL
j¼ 1 C(aj)

Xc

cj ¼ 0

c!K(cj)

cj!(c� cj)!

Z 1

0

x
cj þ aj � 1
j (1� xj)

c� cj þ a� aj dxj

· (1� xj)
� 1

Z
XL� 1

Y
j0 6¼j

~xx
aj0 � 1

j0 d~xxj0

h i

¼ C(a)=C(aj)

C(a� aj)

Xc

cj ¼ 0

c!K(cj)

cj!(c� cj)!

Z 1

0

xcj þ aj � 1(1� x)cþ a� cj � aj � 1dx: (38)

C. The asymptotic behavior of D, Dj, and F

As mentioned in the main text, to obtain F to the order a�2, we need to calculate D j and D to the order

a�4. Here we provide the details needed for this task.

One way to express the trigamma function is

w0(x)¼
X1
k¼ 0

1

(xþ k)2
,

which in the large x limit yields the asymptotic form

w0(x)¼ 1

x
þ 1

2x2
þ 1

6x3
þO(x� 5): (39)

For notational convenience, the nth derivative of the digamma function will be written as

c(n)(x)� dnc(x)/dxn. That is, c0(x) and c(1)(x) represent the same function dc(x)/dx. To seek the asymptotic

behavior of Dj, we introduce kj�E[cj], and expand the function c(1)(ajþ cj) around ajþ kj prior to taking

the average. In other words, we write

w(1)(ajþ cj)¼w(1)(ajþ kj)þ
X1
‘¼ 1

(cj� kj)
‘

‘!
w(‘þ 1)(ajþ kj), (40)
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which leads to

E w(1)(ajþ cj)
� �

¼w(1)(ajþ kj)þ
X1
‘¼ 2

E (cj� kj)
‘

� �
‘!

w(‘þ 1)(ajþ kj): (41)

The fact that c(‘þ1)(ajþ kj) is of order a�‘�1 makes eq. (41) an asymptotic expansion, provided that

E[(cj� kj)
‘] becomes independent of a in the large-a limit. We shall show this later by evaluating the

leading behavior of E [(cj� kj)
‘]. From eq. (41), it is evident that we need to compute up to at least the third

central moment to obtain Dj to the order a�4.

Introducing the new variable v� cj� 1, we may now use eq. (38) of Appendix B to calculate kj:

kj �
X
~yy

P(~yy)cj¼
C(a)=C(aj)

C(a� aj)
c
Xc� 1

v¼ 0

Cc� 1
v

Z 1

0

xvþ aj (1� x)c� 1� vþ a� aj � 1dx

¼ C(a)=C(aj)

C(a� aj)
c

Z 1

0

xaj (1� x)a� aj � 1dx

¼ c
C(a)

C(aj)C(a� aj)

C(ajþ 1)C(a� aj)

C(aþ 1)
¼ c

aj

a
, (42)

as mentioned in the main text.

To compute the second central moment, we write

E (cj� kj)
2

� �
¼E[cj(cj� 1)]þE[cj]� k2

j ¼E[cj(cj� 1)]þ kj� k2
j , (43)

and

E[cj(cj� 1)]¼ C(a)=C(aj)

C(a� aj)
c(c� 1)

Xc� 2

v¼ 0

Cc� 2
v

Z 1

0

xvþ aj þ 1(1� x)c� 2� vþ a� aj � 1dx

¼ C(a)

C(aj)C(a� aj)
c(c� 1)

Z 1

0

xaj þ 1(1� x)a� aj � 1dx

¼ C(a)

C(aj)C(a� aj)
c(c� 1)

C(ajþ 2)C(a� aj)

C(aþ 2)

¼ c(c� 1)
aj(ajþ 1)

a(aþ 1)
: (44)

Therefore,

E[(cj� kj)
2]¼ caj

a
(c� 1)(ajþ 1)

aþ 1
þ 1� caj

a

� �
¼ cqj(1� qj)

aþ c

aþ 1
: (45)

The calculation of the ‘th central moment of cj employs the same idea. We first express

cr
j ¼

Xr� 1

m¼ 0

gm;rcj(cj� 1) � � � (cj�m) (46)

¼
Xr� 1

m¼ 0

gm;r
cj!

(cj�m� 1)!
,

where the coefficients gm;r depend on r and can be obtained in the following way. By setting cj¼ 1 in eq.

(46), we zero all terms except g0;r on the right hand side, and therefore see that g0;r¼ 1. With g0;r known,

we may then set cj¼ 2; the only nonzero terms on the right hand side of eq. (46) are then 2g0;rþ 2!g1;r.

With the left hand side now equal to 2r, and g0;r¼ 1, we easily solve for g1;r¼ 2r�1� 1. We may then set

cj¼ 3, 4, . . . etc. to solve respectively for g2;r, g3;r, . . . etc.
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Note that it is possible to express

E cj(cj� 1) � � � (cj�m)
� �

¼ C(a)c(c� 1) � � � (c�m)

C(aj)C(a� aj)

Z 1

0

xaj þm(1� x)a� aj � 1dx

¼ C(a)c(c� 1) � � � (c�m)

C(aj)C(a� aj)

C(ajþmþ 1)C(a� aj)

C(aþmþ 1)

¼ c(c� 1) � � � (c�m)
aj(ajþ 1) � � � (ajþm)

a(aþ 1) � � � (aþm)
: (47)

This means that for ‘	 2 we may write

E (cj� kj)
‘

� �
¼ (� 1)‘� 1(‘� 1)k‘j þ

X‘
r¼ 2

C‘
rE cr

j

h i
(� kj)

‘� r

¼ (� 1)‘� 1(‘� 1)k‘j þ
X‘
r¼ 2

C‘
r(� kj)

‘� r

· kjþ
Xr� 1

m¼ 1

gm;r
c!

(c�m� 1)!

aj(ajþ 1) � � � (ajþm)

a(aþ 1) � � � (aþm)

( )
: (48)

As an example, we may use this approach to obtain the third central moment

E (cj� kj)
3

� �
¼ c qj(1� qj)(1� 2qj)

(aþ c)(aþ 2c)

(aþ 1)(aþ 2)
: (49)

Because c is a fixed positive integer, in the large-a limit we may write the leading term in eq. (48) as

E (cj� kj)
2‘

� �
� (2‘� 1)!!

c‘a2‘� 2 (aþ c)

(aþ 1)(aþ 2) � � � (aþ 2‘� 1)
q‘j (1� qj)

‘ (50)

�!
a!1

(2‘� 1)!! c‘ q‘j (1� qj)
‘, (51)

E (cj� kj)
2‘þ 1

� �
� ‘

3
(2‘þ 1)!!

c‘ a2‘� 1 (aþ c) (1� 2qj)

(aþ 1)(aþ 2) � � � (aþ 2‘)
q‘j (1� qj)

‘ (52)

�!
a!1

‘

3
(2‘þ 1)!! c‘ (1� 2qj) q‘j (1� qj)

‘: (53)

In the limit of large aj (or kj), we note that

w(1þ ‘)(ajþ kj)

‘!
¼ (� 1)‘

q‘þ 1
j (aþ c)‘þ 1

1þ ‘þ 1

2qj(aþ c)
þO 1

(ajþ kj)
2

� �� �
: (54)

Therefore, the absence of a dependence and the presence of the factorials in eqs. (51) and (53) means that

the expansion in eq. (41) is asymptotic in a. That is, the larger a, the more terms in the expansion one may

retain to improve accuracy before the series becomes divergent.

With the aim of obtaining D and the Dj to the order a�4, we now continue the investigation of their large-

a behavior. Using eq. (39), we write the asymptotic expression for D as

D¼w(1)(a)�w(1)(aþ c)

¼ 1

a
þ 1

2a2
þ 1

6a3
þO(a� 5)

� �
� 1

aþ c
þ 1

2(aþ c)2
þ 1

6(aþ c)3
þO(a� 5)

� �

¼ c

a(aþ c)
1þ 1

2

1

a
þ 1

aþ c

� �
þ 1

6

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �� �
þO(a� 5): (55)
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Next, noting that kj¼ cqj, we find that

Dj¼w(1)(aj)�E[w(1)(ajþ cj)]

¼ c

aj(aþ c)
1þ 1

2qj

1

a
þ 1

aþ c

� �
þ 1

6q2
j

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �" #

� E[(cj� kj)
2]

2!
w(3)(ajþ kj)�

E[(cj� kj)
3]

3!
w(4)(ajþ kj)þO(a� 5)

¼ c

aj(aþ c)
1þ 1

2qj

1

a
þ 1

aþ c

� �
þ 1

6q2
j

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �" #

� cqj(1� qj)
aþ c

aþ 1

� �
1

q3
j (aþ c)3

þ 3

2q4
j (aþ c)4

" #

� cqj(1� qj)(1� 2qj)
(aþ c)(aþ 2c)

(aþ 1)(aþ 2)

� �
(� 1)

q4
j (aþ c)4

þO(a� 5)

¼ c

aj(aþ c)
1þ 1

2qj

1

a
þ 1

aþ c

� �
þ 1

6q2
j

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �(

� a(1� qj)

qj(aþ c)(aþ 1)
� 3

2

a(1� qj)

q2
j (aþ c)2(aþ 1)

þ a(1� qj)(1� 2qj)(aþ 2c)

q2
j (aþ c)2(aþ 1)(aþ 2)

)
þO(a� 5)

¼ c

aj(aþ c)
1þ a

(aþ c)(aþ 1)
þ 2a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)
þ 1

2qj

1

a
þ 1

aþ c

�


� 2a
(aþ c)(aþ 1)

þ 3a

(aþ c)2(aþ 1)
� 6a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)

�
þ 1

6q2
j

1

a2
þ 1

a(aþ c)

�

þ 1

(aþ c)2
� 9a

(aþ c)2(aþ 1)
þ 6a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)

��
þO(a� 5): (56)

When summing the terms associated with q� 2
j inside the second pair of square brackets, we find that the

final contribution becomes of order a�5, and thus may be dropped from the analysis. Also, the terms

associated with q� 1
j , when added, can be rearranged as

1

a
þ 1

aþ c
� 2a

(aþ c)(aþ 1)
þ 3a

(aþ c)2(aþ 1)
� 6a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)

¼ c

a(aþ c)
� 1

(aþ c)(aþ 1)
þO(a� 3): (57)

Consequently, we have

Dj¼
c

aj(aþ c)
1þ a

(aþ c)(aþ 1)
þ 2a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)




þ 1

2qj

c

a(aþ c)
� 1

(aþ c)(aþ 1)

� ��
þO(a� 5): (58)

Eqs. (55) and (58) allow us to express F to the order a�2. We first calculate
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D

Dj

¼ aj

a
1þ 1

2

1

a
þ 1

aþ c

� �
þ 1

6

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �� �

· 1� a
(aþ c)(aþ 1)

� 2a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)




� 1

2qj

c

a(aþ c)
� 1

(aþ c)(aþ 1)

� �
þ a2

(aþ c)2(aþ 1)2

�
þO(a� 3)

¼ qj 1þ 1

2

1

a
þ 1

aþ c
� 2a

(aþ c)(aþ 1)

� �
1� a

(aþ c)(aþ 1)

� �


þ 1

6

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �
� 2a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)

� 1

2qj

c

a(aþ c)
� 1

(aþ c)(aþ 1)

� ��
þO(a� 3)

¼ qj 1þ
1� q� 1

j

2

c

a(aþ c)
� 1

(aþ c)(aþ 1)

� �
þ 3

2

1

(aþ c)(aþ 1)

(

þ 1

6

1

a2
þ 1

a(aþ c)
þ 1

(aþ c)2

� �
� 2a(aþ 2c)

(aþ c)2(aþ 1)(aþ 2)

)
þO(a� 3) (59)

¼ qj 1þ
1� q� 1

j

2

c

a(aþ c)
� 1

(aþ c)(aþ 1)

� �( )
þO(a� 3), (60)

where the final expression comes from the fact that the last three terms in eq. (59) sum to order a�3. We

may now compute F to order a�2:

F¼ 1�D
XL

j¼ 1

D� 1
j ¼ c

2a(aþ c)
� 1

2(aþ c)(aþ 1)

� �XL

j¼ 1

(1� qj)þO(a� 3)

¼ (L� 1)
c

2a(aþ c)
� 1

2(aþ c)(aþ 1)

� �
þO(a� 3)

¼ (L� 1)(c� 1)

2a(aþ c)
þO(a� 3),

the result shown in eq. (15) of the main text.
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