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ABSTRACT

We consider the following problem: given a set of gene family trees, spanning a given set of
species, find a first speciation which splits these species into two subsets and minimizes the
number of gene duplications that happened before this speciation. We call this problem the
Minimum Duplication Bipartition Problem. Using a generalization of the Minimum Edge-
Cut Problem, we propose a polynomial time 2-approximation algorithm for the Minimum
Duplication Bipartition Problem. We apply this algorithm to the inference of species trees
on synthetic datasets and on two datasets of eukaryotic species.
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1. INTRODUCTION

Gene duplication is a fundamental evolutionary mechanism for important groups of eukaryotes

such as vertebrates (Blomme et al., 2006), insects (Hahn et al., 2007), plants (Sanderson and McMahon,

2007) or fungi (Wapinski et al., 2007). Gene duplications, together with gene losses, result in gene families,

which can contain several copies of a certain gene in a given genome. Recent advances in methods for

reconstructing phylogenetic trees for individual gene families have resulted in large sets of accurate gene

trees for eukaryote species, such as TreeFam (Li et al., 2006). Phylogenomics aims at reconstructing the

evolution of species (genomes) by inferring a species tree from a set of gene trees. The Minimum Duplication

Problem (MD Problem), also known as the Gene Tree Parsimony Problem (GTP Problem), is to infer, from a

set of gene trees, a species tree that induces an evolutionary history with a minimum number of gene

duplications. This problem is NP-hard (Ma et al., 2000), and is neither fixed-parameter tractable (FPT) using

the number of gene duplications as parameter, nor approximable with a constant ratio (Bansal and Shamir,

2011; Guillemot, 2008). Recent advances in local search heuristics proved to be useful (Bansal et al., 2007)

and have been applied on several eukaryotic datasets with interesting results (Sanderson and McMahon,

2007; Wehe et al., 2008), but with no optimality guarantee.

Recently, Chauve and El-Mabrouk (2009) and Scornavacca et al. (2011) described a formal link between

the Minimum Duplication Problem and a problem of supertrees (Bininda-Edmonds, 2004), where, given a

set of uniquely leaf-labeled gene trees (there is at most one copy of each gene in each genome), the goal is
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to reconstruct a species tree that disagrees with the minimum number of gene trees (Byrka et al., 2010).

This problem—a version of the MD Problem restricted to uniquely leaf-labeled trees—is NP-hard too, even

in the simple case where each gene tree is a rooted triplet (Bryant, 1997). For supertree problems, greedy

heuristics based on the principle of computing successive optimal speciations, modeled as edge-cuts in a

graph whose vertices are the considered species, are now standard (Page, 2002; Semple and Steel, 2000). In

such heuristics, each Minimum Edge-Cut splits the set of considered species into two subsets, corre-

sponding to a speciation which results in two distinct lineages. Computing an optimal first speciation (a first

speciation that disagrees with the least number of rooted triplets) is tractable, as the Minimum Edge-Cut

problem is tractable. A complete species tree can then be obtained from a series of locally optimal

speciations.

In the present work, we consider the Minimum Duplication Bipartition (MDB) Problem: given a set of

gene trees (where a gene occurs any number of times), find a bipartition of the considered genes (corre-

sponding to a speciation) that minimizes the number of duplications that happened before this speciation. A

first motivation for this problem is that it leads, as for supertree problems, to natural greedy heuristics to

reconstruct a species tree from a set of gene trees. Our work is also motivated by understanding the

combinatorial properties of speciations with respect to gene duplications. Our main result is a polynomial

time 2-approximation algorithm for the Minimum Duplication Bipartition Problem that generalizes the

Minimum Edge-Cut approach used in supertrees. Although our focus here is primarily theoretical, we also

provide experimental results, on small simulated datasets, and two real eukaryotic large-scale datasets.

We first define, in Section 2, gene trees, species trees, duplications, and the optimization problems

considered in this article. In Section 3, we show how the Minimum Duplication Bipartition Problem can be

described as a variant of the classical Minimum Edge-Cut Problem. Then we use this description to reduce

the Minimum Duplication Bipartition Problem to a Set Function Minimization Problem. We finally de-

scribe a 2-approximation algorithm through a Minimum Hypergraph Cut Problem. In Section 4, we

describe results of experiments on simulated and real eukaryotic data, illustrating our algorithm in a

realistic phylogenomics context.

2. PRELIMINARIES: OBJECTS, PROBLEMS, BACKGROUND

Consider, G¼f1, 2, . . . , kg as a set of integers representing k different species (genomes).

Gene and species trees, bipartitions. A species tree on G is a rooted tree with exactly k leaves, where

each i 2 G is the label of a single leaf. A tree is a complete binary tree if every internal vertex has exactly

two children. A gene tree on G is a complete binary tree where each leaf is labeled with an integer from G.

A gene tree is a formal representation of a phylogenetic tree of a gene family F , that is a set of genes that

all originate from a single ancestral gene; a leaf labeled i in a gene tree represents a gene belonging to F
and located on genome i. A gene tree is uniquely leaf-labeled if no two leaves have the same label. A gene

tree is a rooted triplet if it has exactly three leaves (and then two internal vertices).

Given a tree T whose leaves are labeled by integers from G and a vertex x of T, we denote by L(x) (resp.

L(T)) the subset of G defined by the labels of the leaves of the subtree of T rooted at x (resp. the leaves of T).

If x is an internal vertex, we denote by x‘ and xr the two children of x.

A bipartition B on a set S is a partition of S into two subsets S1 and S2. We represent a bipartition by a,

possibly non-binary, species tree on S containing exactly three internal vertices—the root v and its two

children v‘ and vr—such that L(v‘)\ L(vr)¼;, L(v‘)[ L(vr)¼ S, L(v‘)¼ S1 and L(vr)¼ S2.

Reconciliation between Gene Trees and Species Trees. The Lowest Common Ancestor Mapping (LCA

mapping) is central in the problem of reconciling a gene tree and a species tree. Given a gene tree T and a

species tree S on G, the LCA mapping M maps vertices of T to vertices of S as follows: for a vertex x of T,

M(x)¼ v is the unique vertex v of S such that L(x)� L(v) and, either v is a leaf of S or L(x) is not included in

the leaf set of any child of v. In other words, v is the deepest among all possible. A vertex x of T is then a

duplication with respect to S if M(x)¼M(xr) and/or M(x)¼M(x‘); otherwise, x is called a speciation with

respect to S (Fig. 1). The same definitions apply to a forest F of gene trees on G. The duplication cost of F

given S denoted by d(F, S) is the number of vertices of F that are duplications with respect to S. Note that

the definitions of duplication and speciation apply to a species tree that is a bipartition on the set G, as these

definitions do not depend on the species tree being binary.
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If L(x‘)\L(xr)= ;, then x is a duplication vertex with respect to any species tree S on G. Such a vertex is

called an apparent duplication. Vertices of F that are not apparent duplications are called non-apparent

duplications. Given a bipartition B on G with root v, a duplication vertex x of F with respect to B is said to

precede the first speciation with respect to B if M(x)¼ v. Such vertices are called pre-duplications. We

denote by d1(F, B), the number of pre-duplications of F with respect to B.

Inferring parsimonious species trees and speciations. It is well known that d(F, S) is the minimum

number of gene duplication events required in any evolutionary scenario that resulted in F (Chauve and El-

Mabrouk, 2009; Górecki and Tiuryn, 2006), which leads to the following optimization problem called the

Minimum Duplication Problem (MD Problem): given a gene tree forest F, find a species tree S such that

d(F,S) is minimum.

The MD Problem is NP-hard (Ma et al., 2000), even in the case where every gene tree is a uniquely leaf-

labeled and rooted triplet (Bryant, 1997), in which case it is in fact equivalent to a supertree problem called

the Minimum Rooted Triplet Inconsistency (MRTI) Problem. This link with supertrees is important as

recent hardness results on the MRTI Problem imply that

� first, the MD Problem is W[2]-hard, and thus not FPT (Bansal and Shamir, 2011; Guillemot, 2008)

(contrary to what was claimed in Stege [1999]),
� second, it cannot be approximated within a constant ratio unless P¼NP (Byrka et al., 2010).

Hence, for solving the MD Problem, one has to rely on exponential time algorithms (Hallett and Lagergren,

2000) or local-search methods with no optimality guarantee (Bansal et al., 2007; Wehe et al., 2008).

In Chauve and El-Mabrouk (2009), it was shown that the MD Problem is in fact a variant of a supertree

problem (see also Scornavacca et al. [2011], which explores the link between gene duplications and

supertrees). Greedy heuristics for hard supertree problems based on computing successive speciations

events have proved to be effective (Semple and Steel, 2000), and in Chauve and El-Mabrouk (2009), an

application of such a heuristic showed promising results on synthetic data. This motivates the introduction

of the main problem we study in this article:

Minimum Duplication Bipartition Problem (MDB Problem):

Input: A gene tree forest F on G;

Output: A bipartition B on G such that d1(F, B) is minimum.

Before discussing previous works, we state an obvious, but useful, property related to duplication

vertices of a forest of gene trees F on G.

Property 1. Let x be a vertex of F. Given a bipartition B on G with root v, x is a pre-duplication with

respect to B if and only if there exists a pair {s, t}� L(v‘) · L(vr) such that {s, t}� L(x‘) or {s,t}� L(xr).

Previous work. As far as we know, the MDB problem was introduced in Stege (1999), where an

exponential time algorithm was proposed. Unlike the MD Problem, it is obviously FPT, as there are 2jGj

possible bipartitions and computing the number of pre-duplications associated to a bipartition can be done

FIG. 1. A gene tree T and a species

tree S on a set of genome G¼
f1, 2, 3, 4g. The LCA mapping from

vertices of T to vertices of S is indi-

cated by dashed lines linking verti-

ces. The vertices of T that are

duplications with respect to S are

represented by square vertices; the

black colored square vertices corre-

spond to pre-duplications while the

grey colored square vertices are

the duplications that are not pre-

duplications. Here, the first speciation

of S is the bipartition with root v such

that L(vl)¼ {1, 3} and L(vr)¼ {2, 4}.

a, b and g are apparent duplications.

MINIMUM DUPLICATION SPECIATION PROBLEM 1043

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2011.0108&iName=master.img-000.jpg&w=288&h=117


in polynomial time. It was also shown in Chauve and El-Mabrouk (2009), although not formally stated, that

if there exists a bipartition such that all pre-duplications are apparent duplications, then such a bipartition

can be computed in polynomial time. However, the hardness of the MDB Problem is still an open problem.

In Chauve and Ouangraoua (2009), it was shown that if F contains a single gene tree, the MDB Problem is

3-approximable; an alternative combinatorial model, based on prefix of gene trees was also introduced.

However, in the more general case of a forest F with t gene trees, the approximation ratio is not constant: if

a parsimonious first speciation implies d duplications, then the algorithm described in Chauve and

Ouangraoua (2009) computes a first speciation that can imply up to 2dþ t duplications. In the present work,

we improve on this result and we show that the MDB Problem can be approximated with a constant ratio of

2 in polynomial time.

Related optimization problems. Given a connected graph G¼ (V, E), an edge-cut of G is an edge set

E0 �E whose removal disconnects the graph G. A bipartition B with root v, on the set of vertices of G,

induces a unique edge-cut of G, denoted by EG(B), composed of the edges (s, t) 2 E such that s 2 L(v‘) and

t 2 L(vr). So, EG(B)¼f(s, t) 2 E k s 2 L(v‘), t 2 L(vr)g. Hence, a subset X of V induces a bipartition on V:

if we denote its root by v, then L(v‘)¼X and L(vr)¼V�X. We denote this bipartition by BV (X) and the

edge-cut of G induced by BV (X) is denoted by EG(X) (EG(X)¼EG(BV (X))).

The Minimum Edge-Cut (MEC) Problem asks for a bipartition on the vertices of G inducing an edge-

cut of G of minimum cardinality. If the edges of G are labeled on a given set S of labels, given an edge-

cut E0 of G, the label-set of E0 denoted by label(E0) is the subset of S composed of the labels of the edges

in E0. The following cut problem is a natural generalization of the MEC Problem and is essential in our

algorithm:

Minimum Labeled-Edge-Cut (MLEC) Problem:

Input: A connected edge-labeled graph G¼ (V, E);

Output: A bipartition B on V such that the cardinality of label(EG(B)) is minimum.

A set function is a function f : 2V ! R defined from the set of the 2jVj subsets of a finite set V onto the

real numbers R. The set V is called the ground set of f. The Set Function Minimization Problem asks to find

a non-empty subset X of V such that f (X) is minimum. A submodular function is a set function f with

ground set V such that for any subsets A and B of V, f (A)þ f (B)� f (A[B)þ f (A\B). Several combi-

natorial optimization problems have been linked to submodular functions (Fujishige, 2005), in particular

the MEC Problem. Given a submodular function f, the following optimization problem, which is tractable

(Iwata and Orlin, 2009), is a special case of the Set Function Minimization Problem:

Submodular Function Minimization (SFM) Problem:

Input: A submodular function f : 2V ! R with ground set V;

Output: A non-empty subset X of V such that f (X) is minimum.

Remark 1. The Minimum Edge-Cut problem is a special case of the SFM Problem: given a graph

H¼ (V, E), if we denote by g the cut-set function defined from 2V to R that associates to a subset X of V the

number of edges in the edge-cut EH(X), then g is a submodular function. The problem of finding a subset of

vertices X�V that minimizes g(X) is then equivalent to the Minimum Edge-Cut problem on H. However,

the MLEC Problem is not an SFM Problem, and, due to its relationship with the Minimum Label-Cut

problem (Chauve and Ouangraoua, 2009), is in fact NP-complete, even when each edge label appears at

most two times in the graph (Zhang et al., 2011; Fellows, 2010).

A hypergraph is a pair (V, E) where V is a set of vertices and E is a set of non-empty subsets of V called

hyperedges. Given a hypergraph G¼ (V, E), a bipartition B on V with root v induces a hyperedge-cut of G

defined by the following subset of E: EG(B)¼fe 2 E j e \ L(v‘) 6¼ ; and e \ L(vr) 6¼ ;g.

Minimum Hypergraph Cut (MHC) Problem:

Input: A hypergraph G¼ (V, E);

Output: A bipartition B on V such that the cardinality of EG(B) is minimum.
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3. A 2-APPROXIMATION ALGORITHM FOR THE MDB PROBLEM

We first describe how the MDB problem can naturally be translated into an edge-cut problem; however

the tractability of this edge-cut problem is unknown, as it cannot be reduced to an SFM problem. Next, we

describe our main result, that is an efficient 2-approximation algorithm for the MDB problem.

From now on, given a gene tree forest, we label arbitrarily its internal vertices with a set S of labels in

such a way that no two internal vertices have the same label.

3.1. A set function minimization problem

Given a gene tree forest F, we define the edge-labeled graph H(F)¼ (V, E) associated to F as follows

(Fig. 2): V¼ L(F) and there is an edge labeled with a 2 R between two vertices s and t of H(F) if and only if

there exists an internal vertex x of F labeled with a such that {s, t}� L(x‘) or {s, t}� L(xr). Lemma 1 shows

how the MDB problem can be described as a Minimum Labeled-Edge-Cut (MLEC) Problem.

Lemma 1. Let F be a gene tree forest on G. If B is a bipartition on L(F), then the set of labels of the

pre-duplications of F with respect to B is exactly the set label(EH(F)(B)).

Proof. If a is the label of a pre-duplication x in F with respect to the bipartition B with root v, then,

from Property 1, there is a pair (s, t) 2 L(v‘) · L(Vr) such that {s, t}� L(x‘) or {s, t}� L(xr), and thus (s, t) is

an edge of H(F) labeled with a; this edge is then contained in the edge-cut EH(F)(B). Conversely, if EH(B)

contains an edge (s, t) labeled with a 2 R, then, also from Property 1, there is a vertex of F labeled with a

that is a pre-duplication with respect to B. &

Remark 2. If a forest F of gene trees contains uniquely leaf-labeled triplets, then each label a appears

on a single edge, and the MDB problem is equivalent to the Minimum Edge-Cut problem on H(F), and then

tractable.

The MLEC Problem (and then the MDB Problem) can be reduced to a Set Function Minimization

Problem as follows: given an edge-labeled graph G¼ (V, E), we define the cut-set function fG : 2V ! R as a

function from the set of the subsets of V onto R such that, for any subset X of V, fG(X) is the cardinality of

the set of labels label(EG(X)). Solving the MLEC Problem on G can then be achieved by minimizing fG. In

the following, given a gene tree forest F, we simply denote by fG the cut-set function induced by an edge-

labeled graph G(F) associated to F.

Modeling the MDB problem as an edge-cut problem naturally leads to ask if this edge-cut problem is an

instance of the SFM problem, in which case it would be tractable. As noted in Remark 1, the MLEC

Problem is NP-hard. However, it is not difficult to see that the graphs used in Jha et al. (2002) to prove the

hardness of the Minimum label Cut Problem can not be obtained from gene tree forests. Unfortunately, the

cut-set function fG associated to an edge-labeled graph G is not always a submodular function, as shown

below.

Property 2. There exists a gene tree forest F such that the cut-set function fH, where H¼H(F), is not a

submodular function.

FIG. 2. A gene tree T on the set

of genomes G¼f1, 2, 3, 4g and the

corresponding edge-labeled graph

H(T). Apparent duplication vertices

of T appear as square vertices.
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For example (Fig. 3), consider a single gene tree T with four leaves {1, 2, 3, 4} and three internal vertices a,

b and c whose sets of children are respectively {b, c}, {1, 3} and {2, 4}. The edge-labeled graph H(T)

associated to T has four vertices {1, 2, 3, 4} and only two edges (1, 3) and (2, 4) labeled with a. If we consider

the subsets A¼ {1, 4} and B¼ {2, 4} of the set of {1, 2, 3, 4}, we see that fH(T)(A)¼ 1, fH(T)(B)¼ 0,

fH(T)(A[B)¼ 1 and fH(T)(A\B)¼ 1. Then, fH(T)(A)þ fH(T)(B)¼ 1< fH(T)(A[B)þ fH(T)(A\B)¼ 2, and fH(T)

is not a submodular function.

We described in Chauve and Ouangraoua (2009) and Ouangraoua et al. (2010) the necessary conditions

for the cut-set function fH to be non-submodular. Based on these conditions, we were able to show that the

graph H(F) can be augmented into a graph I(F) in such a way that the (labeled) cut-set function fI is

submodular. This result, aside from its theoretical interest, lead to a 2-approximation algorithm for the

MDB Problem, based on solving a SFM Problem on the graph I(F). In Section 3.2 below, we describe

another 2-approximation through a direct link with the Minimum Hypergraph Cut problem, whose expo-

sition is simpler.

3.2. An approximation through the Minimum Hypergraph Cut problem

Given a gene tree forest F, we define the hypergraph J(F)¼ (V, E) associated to F as follows (Fig. 4):

V¼ L(F) and, for each apparent duplication x in F, L(x) is a hyperedge of J(F) and, for each non-apparent

duplication y in F, L(y‘) and L(yr) are two hyperedges of J(F).

Theorem 1. Let F be a gene tree forest with n vertices, on a set G of k genomes. If a most parsimonious

bipartition B* on L(F) has cost d1(F, B*)¼ d, then it is possible to compute in time O(kn) a bipartition B

s.t. d(F, B)� 2d by solving the MHC Problem on the graph J(F).

Proof. For any bipartition B on L(F), the cardinality of label(EH(B)) (resp. EJ(B)) is denoted by dH(B)

(resp. dJ(B)).

We first prove that, for any bipartition B on L(F) with root v, dH(B)� dJ(B)� 2*dH(B). It is relatively

straightforward. A label a 2 label(EH(B)) corresponds to at least one but at most two hyperedges in EJ(B):

if a is the label of an apparent duplication x, then we have a 2 label(EH(B)), L(x) 2 EJ(B); if a is the

FIG. 3. Illustration of Property 2:

a gene tree T (left) and the corre-

sponding graph H(T) (right), and

two vertex sets A and B that con-

tradict the submodularity of the cut-

set function fH.

FIG. 4. A gene tree T on the set of

genomes G¼f1, 2, 3, 4g and the

hypergraph J(F), where hyperedges

containing only one vertex are not

displayed. Apparent duplication ver-

tices of T appear as square vertices.
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label of a non-apparent duplication y, then we have a 2 label(EH(B)), L(y‘) 2 EJ(B) or L(yr) 2 EJ(B).

This proves that dH(B)� dJ(B)� 2 * dH(B).

Now, let B0 be a bipartition on L(F) inducing an optimal labeled edge-cut of H(F) (i.e., dH(B0) is

minimum). For any bipartition B on L(F), if dH(B)> 2 * dH(B0) then B cannot induce an optimal hyperedge-

cut of J(F): indeed, if dH(B)> 2 * dH(B0), as dH(B)� dJ(B) and dJ(B
0)� 2 * dH(B0), we have

dJ(B)� dH(B)> 2 * dH(B0)� dJ(B
0). Hence, for any bipartition B on L(F) that induces an optimal hyper-

edge-cut for J(F), we have dH(B)� 2 * dH(B0). This completes the proof that computing an optimal labeled

edge-cut for J(F) achieves a ratio 2 approximation for the MDB Problem.

The time complexity stated in Theorem 1 follows from the algorithm described in Mak, (2005) solving

the MHC Problem on a hypergraph G in time O(kn) where k (resp. n) is the number of vertices (resp.

hyperedges) of G. &

We showed in Ouangraoua et al. (2010) that the approximation ratio of 2 is tight. The approximation

algorithm also has the following straightforward algorithmic property.

Property 3. If there exists at least one parsimonious first speciation B0 such that all the corresponding

pre-duplications are apparent duplications in F, then solving the MHC Problem on J(F) gives a parsi-

monious bipartition.

To prove Property 3, we only need to note that if a first speciation B0 induces only pre-duplications which

are apparent, then B0 defines an optimal cut for both H(F) and J(F). Note however that this does not imply

that the cut-set function for H(F) is submodular.

4. EXPERIMENTAL RESULTS

We performed four different experiments.1 First, on several datasets of simulated gene families on 12

species (genomes) we studied the ability of the greedy approach—that infers a species tree by computing

successive parsimonious speciations—to recover the exact species tree, using an exhaustive exploration of

all possible speciations at each step (which was possible due to the fact we considered only 12 species).

Second, on the same simulated datasets, we replaced the exhaustive exploration of all possible speciations

at each step by our 2-approximation algorithm for computing a parsimonious speciation. Third, we applied

the approximation algorithm on a real dataset of 6808 gene families from 23 fungal genomes. Last, we

performed the same experiment on a real dataset of 18584 gene families from 50 eukaryotic genomes.

4.1. Experiment on simulated datasets

Datasets. We analyzed the four synthetic datasets that were studied in Chauve and El-Mabrouk (2009);

each dataset contains 100 gene trees. Each gene tree was generated from a single ancestral gene with

duplication (birth) and loss (death) rates computed using the software CAFE (Bie et al., 2006) from real

Drosophilia gene families (Hahn et al., 2007). The duplication/loss rates range from 0.02 event/million

years to 0.2 event/million years, and the number of duplication ranges from roughly 1000 (with rate 0.02) to

roughly 6000 (see Table 1 in Chauve and El-Mabrouk [2009]).

To balance the fact that each gene tree originates from a single ancestral gene (and then has no

duplication before the first speciation), and to consider datasets including gene families generated with

different duplication/loss rates, we created duplications that happened before the first speciation by clus-

tering the 400 gene trees of the four datasets into 100 clusters of random size, and for every such cluster of

a given size, say k, we generated a random binary tree with k leaves and replaced each leaf of this tree by a

gene tree of the cluster, which amounts to creating around 4 duplications that precede the first speciation.

We repeated this experiment ten times, generating ten different datasets.

Results. On each of the simulated datasets, we first observed that the greedy heuristic that computes

successive parsimonious speciations using an exhaustive exploration leads to the exact species tree (Fig. 5),

i.e. the one that had been used to generate the synthetic gene trees. Despite the relatively modest size of our

synthetic datasets (12 species), it illustrates the potential of this greedy heuristic in a phylogenomics

1Data and results available at www.cecm.sfu.ca/*cchauve/SUPP/RECOMBCG10.

MINIMUM DUPLICATION SPECIATION PROBLEM 1047



context, especially as the heuristic described in Chauve and El-Mabrouk (2009) inferred a slightly incorrect

species tree for the two datasets with the highest duplication/loss rates. Moreover, we observed that our

approximation algorithm provided the exact species tree every time. We believe this result can be explained

by the fact that most duplications that occurred during the generation of the gene trees are apparent

duplications (Fig. 5).

4.2. Experiment on a fungal dataset

Datasets. We uploaded from the Fungal Orthogroup Repository2 the 6808 fungal gene trees containing

genes belonging to at least three different species, among 23 ascomycete fungal species.

Results. Due to the large number of species in the real data set—6808 fungal gene trees from 23

species—we applied only our approximation algorithm. We observed that the inferred species tree is the

one widely accepted in yeasts phylogenomics3 (Fig. 6).

We also noticed that a significant number of speciations corresponded to apparent duplications only,

while some of them are associated with a large number of duplications. The apparent duplications cor-

respond to the speciation vertices labeled with 0% non-apparent pre-duplications in Figure 6. Such spe-

ciations are then parsimonious (see the discussion at the end of the previous section). Moreover, aside from

one branch (leading to the group containing Kwal, Agos, Klac, Sklu) of the species tree, where 103 pre-

duplications out of 322 (31% of the pre-duplications) are non-apparent, all other branches are associated

with very few non-apparent pre-duplications, which suggests that they might be parsimonious. Providing

the gene trees we analyzed are correct, this clearly suggests that traces of most duplications that occurred

during yeast evolution are still visible today.

4.3. Experiment on a large-scale eukaryotic dataset

Datasets. We uploaded from the release 58 of the Ensembl database the 18584 eukaryotic gene trees

(Vilella et al., 2009) containing genes belonging to 50 eukaryotic species, and obtained from CDS back-

translated protein-based multiple alignments (Vilella et al., 2009). The reference phylogeny of the 50

species is represented in Figure 7.

Results. We applied the same method as for the previous dataset, and obtained a species tree (Fig. 8)

that is close to the one widely accepted in fungi/metazoa phylogenomics (Fig. 7). Among the 38 reference

clades (i.e. set of species descending from the same internal vertex present in the reference tree), the

inferred species tree recovers 35 clades, and does not recover only 3 clades inside the eutherian group

(placental mammals): Xenarthra, Afrotheria, and Insectivora. However, the relative position of the species

FIG. 5. The species tree computed

for the fourteen synthetic datasets on

12 species. Each speciation (vertex)

of the tree is labeled with the total

number of duplications preceding

the speciation in all datasets, and

the proportion of non-apparent du-

plications.

2Version 1.1, www.broadinstitute.org/regev/orthogroups/.
3The same tree was obtained from www.broadinstitute.org/regev/orthogroups/.
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of these 3 clades compared to the others species remains congruent with recent studies on the phylogeny of

placental mammals (Kjer and Honeycutt, 2007; Murphy et al., 2007; Nikolaev et al., 2008; Prasad et al.,

2008).

First, we noticed that the two whole-genome duplications that occurred on the branch leading to the fish

(Danio rerio, … , Gasterosteus aculeatus), and on the branch leading to vertebrates (Danio rerio, … ,

Tursiops truncatus), both left traces that are still visible today: a high number of pre-duplications (3846,

9375) with a low proportion of non-apparent duplications (2%, 11%).

FIG. 6. The species tree computed

for the fungal datasets on 23 spe-

cies. Each speciation of the tree is

labeled with the number of dupli-

cations preceding the speciation

(pre-duplications), and the proportion

of non-apparent duplications. Species:

A. nidulans (Anid), N. crassa (Ncra),

Y. lipolytica (Ylip), K. waltii (Kwalt),

K. lactis (Klac), S. kluyveri (Sklu),

A. gossypii (Agos), S. castellii (Scas),

C. glabrata (Cgla), S. bayanus (Sbay),

S. mikatae (Smik), S. cerevisiae (Scer),

S. paradoxus (Spar), L. elongosporus

(Lelo), C. parapsilosis (Cpar), C. al-

bicans (Calb), C. tropicalis (Ctro), C.

lusitaniae (Clus), C. guilliermondii

(Cgui), D. hansenii (Dhan), S. pombe

(Spom), S. octosporus (Soct), S. ja-

ponicus (Sjap).

FIG. 7. The 50 considered eukaryotic species. Tree obtained from the NCBI taxonomy at www.ncbi.nlm.nih.gov.
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From a structural point of view, we notice that the 3 speciations which are responsible for missing the

monophyletic clades Xenarthra, Afrotheria, and Insectivora are characterized by very high numbers of pre-

duplications (31782, 13282, 12336), coupled with high proportions of non-apparent duplications (93%,

92%, 98%). Moreover, all the speciations obtained for the unresolved nodes (i.e. nodes having more than

two descending branches) of the reference tree (Eutheria, Euarchontoglires, Homininae, Laurasiatheria, and

Cetartiodactyla) alse have high numbers of pre-duplications (more than 5000), coupled again with high

proportions of non-apparent duplications (more than 90%).

In Table 1, we summarize the numbers of duplications associated with all the possible binary con-

figurations for the unresolved nodes of the reference tree. We can observe that our algorithm misses the

most parsimonious configuration for the roots of 4 clades: Eutheria, Afrotheria, Euarchontoglires, and

Laurasiatheria. This is caused by the choice of a first speciation that has the lowest local pre-duplication

cost, but leads to a non globally optimal configuration. These observations clearly suggests that con-

sidering a parsimony criterion in terms of gene duplications might not always be helpful to resolve

difficult speciations. One explanation is that issues in reconstructing accurate and consistent phylogenetic

trees might also impact the gene duplications signal, that is detected by reconciling gene trees and

species trees. In these cases, the consideration of parsimonious k-furcations (where a speciation is the

particular case where k¼ 2) instead of parsimonious speciations might help resolving the difficult

phylogenies.

5. CONCLUSION

We showed that computing a parsimonious first speciation in the gene duplication model can be ap-

proximated in polynomial time with a ratio of 2. As far as we know this is the first time a constant

approximation algorithm has been proposed in relation to the problem of inferring species trees using gene

duplications. This result was obtained by describing the problem in terms of edge-cuts in particular graphs,

which can be computed in polynomial time. This algorithm is also a natural generalization of the classical

FIG. 8. The species tree computed for the eukaryotic datasets on 50 species. Each speciation of the tree is labeled

with the number of duplications preceding the speciation, and the ratio of non-apparent duplications. The clades that are

missing regarding the NCBI reference tree are represented in red (Xenarthra), blue (Afrotheria), and green (Insectivora)

colors.
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minimum edge-cut algorithm that is used in supertree consistency problems, which is highlighted by its link

with the Submodular Function Minimization Problem.

From a theoretical point of view, the hardness of the Minimum Duplication Bipartition Problem is still an

open problem, but we conjecture the problem is NP-complete. It is interesting to note that, as for the Gene

Duplication Problem, when there is a parsimonious first speciation whose pre-duplications are all apparent

duplications, it can be detected in polynomial time. Also when F contains only uniquely leaf-labeled rooted

Table 1. Numbers of Duplications Associated to the Concurrent Binary Configurations

for the Unresolved Nodes of the Reference Tree

n1 n2 n3 n

Eutheria

((Xenarthra,Afrotheria),Boreoeutheria) 46791 42 46833

(Afrotheria,(Xenarthra,Boreoeutheria)) 42418 5724 48142

(Xenarthra,(Afrotheria,Boreoeutheria)) 34351 14115 48466

Afrotheria

(Echinops,(Procavia,Loxondonta)) 1329 74 1403

(Loxondonta,(Procavia,Echinops)) 6315 23 6338

(Procavia,(Echinops,Loxondonta)) 6774 22 6796

Euarchontoglires

(Primates,(Tupaia,Glires)) 10418 423 10841

(Glires,(Tupaia,Primates)) 11372 237 11609

(Tupaia,(Primates,Glires)) 9620 2480 12100

Hominimae**

(Gorilla,(Pan,Homo)) 6950 87 7037

(Pan,(Gorilla,Homo)) 12594 127 12721

(Homo,(Pan,Gorilla)) 13070 40 13110

Sciurognathi**

(Spermophilus,(Dipodomys,Murinae)) 1611 35 1646

(Dipodomys,(Spermophilus,Murinae)) 4493 15 4508

(Murinae,(Dipodomys,Spermophilus)) 4510 4 4514

Laurasiatheria

(Insectivora,(Chiroptera,Ferungulata)) 13436 11033 24469

(Chiroptera,(Insectivora,Ferungulata)) 23563 2806 26369

(Ferungulata,(Chiroptera,Insectivora)) 26450 98 26548

Ferungulata**

(Cetartiodactyla,(Equus,Carnivora)) 2267 19 2286

(Carnivora,(Equus,Cetartiodactyla)) 2303 61 2364

(Equus,(Cetartiodactyla,Carnivora)) 2380 87 2467

Cetartiodactyla**

(Vicugna,(Sus,(Bos,Tursiops))) 4135 1879 21 6035

((Vicugna,Sus),(Bos,Tursiops)) 7981 11 21 8013

(Sus,(Vicugna,(Bos,Tursiops))) 7425 659 21 8105

(Vicugna,(Tursiops,(Bos,Sus)) 4135 5199 65 9399

(Vicugna,(Bos,(Sus,Tursiops)) 4135 5442 5 9582

(Sus,(Tursiops,(Bos,Vicugna))) 7425 2379 4 9808

(Sus,(Bos,(Vicugna,Tursiops))) 7425 2396 4 9825

(Tursiops,(Vicugna,(Bos,Sus))) 13182 446 65 13693

(Tursiops,(Bos,(Sus,Vicugna))) 13182 586 11 13779

(Tursiops,(Sus,(Bos,Vicugna))) 13182 614 4 13800

((Vicugna,Tursiops),(Bos,Sus)) 13739 4 65 13808

(Bos,(Vicugna,(Sus,Tursiops))) 13431 452 5 13888

((Vicugna,Bos),(Sus,Tursiops)) 13978 4 5 13987

(Bos,(Sus,(Vicugna,Tursiops))) 13431 555 4 13990

(Bos,(Tursiops,(Vicugna,Sus))) 13431 553 11 13995

ni, number of duplications preceding the ith speciation; n, total number of pre-duplications associated to each binary configuration.

The cases where our algorithm recovers the most parsimonious configurations (i.e. inducing a minimum global number of

duplications) are marked with**.
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triplets, the graph H(F) does not need to be augmented as every label appears only once, and computing a

parsimonious first speciation can be done by computing a minimum edge-cut in H(F). However, as we

showed in the proof of Property 1, this tractability property no longer holds when quadruplets whose root is

a non-apparent duplication are considered instead of triplets, as the cut-set function is no longer sub-

modular. The role of non-apparent duplications, especially with respect to the non-submodularity of the

cut-set function of H(F), seems to be fundamental to the hardness of the problem, in particular to the

understanding of which families of gene tree forests are tractable or fixed-parameter tractable.

Our preliminary experiments showed that both the approach of inferring a species tree by computing

successive parsimonious speciations and our approximation algorithm for computing such speciations are

promising. However, we can notice that, on a large-scale eukaryotic dataset, some speciations, that were

already considered as difficult to resolve by traditional phylogenetic methods, are associated with an

unrealisticly large number of duplications and, more importantly, a large number of non-apparent pre-

duplications. We investigated alternative hypothesis for such speciations, that resulted in comparable

results. This suggests a possible way to characterize such difficult speciations, that are not supported by a

strong signal in gene trees.
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