
Optimally Orienting Physical Networks

Dana Silverbush?,1, Michael Elberfeld?,2, and Roded Sharan1

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel,
{danasilv,roded}@post.tau.ac.il

2 Institute of Theoretical Computer Science, University of Lübeck, 23538 Lübeck,
Germany, elberfeld@tcs.uni-luebeck.de

Abstract. In a network orientation problem one is given a mixed graph,
consisting of directed and undirected edges, and a set of source-target
vertex pairs. The goal is to orient the undirected edges so that a max-
imum number of pairs admit a directed path from the source to the
target. This problem is NP-complete and no approximation algorithms
are known for it. It arises in the context of analyzing physical networks of
protein-protein and protein-dna interactions. While the latter are nat-
urally directed from a transcription factor to a gene, the direction of
signal flow in protein-protein interactions is often unknown or cannot
be measured en masse. One then tries to infer this information by us-
ing causality data on pairs of genes such that the perturbation of one
gene changes the expression level of the other gene. Here we provide a
first polynomial-size ilp formulation for this problem, which can be ef-
ficiently solved on current networks. We apply our algorithm to orient
protein-protein interactions in yeast and measure our performance us-
ing edges with known orientations. We find that our algorithm achieves
high accuracy and coverage in the orientation, outperforming simplified
algorithmic variants that do not use information on edge directions. The
obtained orientations can lead to better understanding of the structure
and function of the network.

Key words: network orientation, protein-protein interaction, protein-
dna interaction, integer linear program, mixed graph

1 Introduction

High-throughoutput technologies are routinely used nowadays to detect
physical interactions in the cell, including chromatin immuno-precipita-
tion experiments for measuring protein-dna interactions (pdis) [10], and
yeast two-hybrid assays [6] and co-immunoprecipitation screens [8] for
measuring protein-protein interactions (ppis). These networks serve as
the scaffold for signal processing in the cell and are, thus, key to under-
standing cellular response to different genetic or environmental cues.

? These authors contributed equally to this work.

While pdis are naturally directed (from a transcription factor to its
regulated genes), ppis are not. Nevertheless, many ppis transmit signals in
a directional fashion, with kinase-substrate interactions (kpis) being one
of the prime examples. These directions are vital to understanding signal
flow in the cell, yet they are not measured by most current techniques. In-
stead, one tries to infer these directions from perturbation experiments. In
these experiments, a gene (cause) is perturbed and as a result other genes
change their expression levels (effects). Assuming that each cause-effect
pair should be connected by a directed pathway in the physical network,
one can predict an orientation (direction assignments) to the undirected
part of the network that will best agree with the cause-effect information.

The resulting combinatorial problem can be formalized by represent-
ing the network as a mixed graph, where undirected edges model in-
teractions with unknown causal direction, and directed edges represent
interactions with known directionality. The cause-effect pairs are modeled
by a collection of source-target vertex pairs. The goal is to orient (assign
single directions to) the undirected edges so that a maximum number of
source-target pairs admit a directed path from the source to the target.

Previous work on this and related problems can be classified into the-
oretical and applied work. On the theoretical side, Arkin and Hassin [1]
studied the decision problem of orienting a mixed graph to admit di-
rected paths for a given set of source-target vertex pairs and showed that
this problem is NP-complete. The problem of finding strongly connected
orientations of graphs can be solved in polynomial time [3, 5]. For a com-
prehensive discussion of the various kinds of graph orientations (not nec-
essarily reachability preserving), we refer to the textbook of Bang-Jensen
and Gutin [2].

For the special case of an undirected network (with no pre-directed
edges), the orientation problem was shown to be NP-complete and hard
to approximate to within a constant factor of 11/12 [12]. On the posi-
tive side, Medvedovsky et al. [12] provided an ilp-based algorithm, and
showed that the problem is approximable to within a ratio of O(1/ log n),
where n is the number of vertices in the network. The approximation ratio
was recently improved to O(log log n/ log n) [7]. The authors considered
also the more general problem on mixed graphs, but the polylogarithmic
approximation ratio attained was not satisfying as its power depends on
some properties of the actual paths.

On the practical side, several authors studied the orientation prob-
lem and related annotation problems using statistical approaches [16, 13].

However, these approaches rely on enumerating all paths up to a certain
length between a pair of nodes, making them infeasible on large networks.

Our main contribution in this paper is a first efficient ilp formulation
of the orientation problem on mixed graphs, leading to an optimal solution
of the problem on current networks. We implemented our approach and
applied it to a large data set of physical interactions and knockout pairs
in yeast. We collected interaction and cause-effect pair information from
different publications and integrated them into a physical network with
3,658 proteins, 4,000 ppis, 4,095 pdis, along with 53,809 knockout pairs
among the molecular components of the network. We carried out a num-
ber of experiments to measure the accuracy of the orientations produced
by our method for different input scenarios. In particular, we studied how
the portion of undirected interactions and the number of cause-effect pairs
affect the orientations. We further compared our performance to that of
two layman approaches that are based on orienting undirected networks,
ignoring the edge directionality information. We demonstrate that our
method retains more information to guide the search, achieving higher
numbers of correctly oriented edges.

The paper is organized as follows: In the next section we provide pre-
liminaries and define the orientation problem. In Section 3 we present an
ilp-based algorithm to solve the orientation problem on mixed graphs.
In Section 4 we discuss our implementation of this algorithm and in Sec-
tion 5 we report on its application to orient physical networks in yeast.
For lack of space, some proofs are shortened or omitted.

2 Preliminaries

We focus on simple graphs with no loops or parallel edges. A mixed graph
is a triple G = (V,EU, ED) that consists of a set of vertices V , a set of
undirected edges EU ⊆ {e ⊆ V | |e| = 2}, and a set of directed edges
ED ⊆ V ×V . We assume that every pair of vertices is either connected by
a single edge of a specific type (directed or undirected) or not connected.
For convenience, we also use the notations V (G), EU(G), and ED(G) to
refer to the sets V , EU, and ED, respectively.

Let G1 and G2 be two mixed graphs. The graph G1 is a subgraph
of G2 iff the relations V (G1) ⊆ V (G2), EU(G1) ⊆ EU(G2), and ED(G1) ⊆
ED(G2) hold; in this case we also write G1 ⊆ G2. Similarly, an induced
subgraph G[V ′] is a subset V ′ ⊆ V of the graph’s vertices and all their
pairwise relations (directed and undirected edges).

A path in a mixed graph G of length m is a sequence p = v1, v2, . . . , vm,
vm+1 of distinct vertices vi ∈ V (G) such that for every i ∈ {1, . . . ,m}, we
have {vi, vi+1} ∈ EU (G) or (vi, vi+1) ∈ ED(G). It is a cycle iff v1 = vm+1.
Given s ∈ V (G) and t ∈ V (G), we say that t is reachable from s iff there
exists a path in G that goes from s to t. In this case we also say that G
satisfies the pair (s, t). The transitive closure C(G) of a mixed graph G
is the set of all its satisfied vertex pairs. A mixed graph with no cycles is
called a mixed acyclic graph (mag).

Let G be a mixed graph. An orientation of G is a directed graph G′ =
(V (G), ∅, ED(G′)) over the same vertex set whose edge set contains all
the directed edges of G and a single directed instance of every undirected
edge, but nothing more. We are now ready to state the main optimization
problem that we tackle:

Problem 2.1 (maximum-mixed-graph-orientation).

Input: A mixed graph G, and a set of vertex pairs P ⊆ V (G)× V (G).

Output: An orientation G′ of G that satisfies a maximum number of
pairs from P .

3 An ILP Algorithm for Orienting Mixed Graphs

In this section we present an integer linear program (ilp) for optimally
orienting a mixed graph. The inherent difficulty in developing such a pro-
gram is that a direct approach, which represents every possible path in
the graph with a single variable (indicating whether, in a given orienta-
tion, this path exists or not), leads to an exponential program. Below we
will work toward a polynomial size program.

Many algorithms for problems on directed graphs first solve the prob-
lem for the graph’s strongly connected components independently and,
then, work along the directed acyclic graph (dag) of strongly connected
components to produce a solution for the whole instance. Our ilp-based
approach for orienting mixed graphs has the same high level structure: In
Section 3.1 we define a generalization of strongly connected components
to mixed graphs, called strongly orientable components, and show how
the computation of a solution for the orientation problem can be reduced
to the mixed acyclic graph of strongly orientable components. For mags,
in turn, we present (in Section 3.2) a polynomial-size ilp that optimally
solves the orientation problem.

3.1 A Reduction to a Mixed Acyclic Graph

Let G be a mixed graph. The graph G is strongly orientable iff it has a
strongly connected orientation. The strongly orientable components of G
are its maximal strongly orientable subgraphs. It is straightforward to
prove that a graph can be partitioned into its strongly orientable compo-
nents (by noting that if the vertex sets of two strongly orientable graphs
intersect, then their union is also strongly orientable). The strongly ori-
entable component graph, or component graph, Gsoc of G is a mixed graph
that is defined as follows: Its vertices are the strongly orientable compo-
nents C1,. . . ,Cn of G. Its edges are constructed as follows: There is a
directed edge (Ci, Cj) in Gsoc iff (v, w) ∈ ED(G) for some v ∈ V (Ci) and
w ∈ V (Cj). There is an undirected edge {Ci, Cj} in Gsoc iff {v, w} ∈
EU(G) for some v ∈ V (Ci) and w ∈ V (Cj). Note that Gsoc must be
acyclic. The strongly orientable components of a mixed graph G and,
hence, the graph Gsoc, can be computed in polynomial time as follows: Re-
peatedly identify cycles in the graph and orient their undirected edges in a
consistent direction. After orienting all cycles the strongly connected com-
ponents that are made up by the directed edges are exactly the strongly
orientable components of the initial graph.

To complete the reduction we need to specify the new set of source-
target pairs. This also involves a slightly more general definition of the
orientation problem where the collection of input pairs is allowed to be
a multi-set. Let P be the input multi-set for the original graph G. The
multi-set Psoc for the reduced graph is constructed as follows: for every
pair (s, t) ∈ P we insert a pair (C,C ′) into Psoc, where C and C ′ are
the strongly orientable components that contain s and t, respectively.
The following lemma establishes the correctness for the reduction from
instances (G,P) to (Gsoc, Psoc).

Lemma 3.1. Let G be a mixed graph and P a set of vertex pairs from G.
For every k ∈ N there exists an orientation G′ of G that satisfies k pairs
from P iff there exists an orientation G′soc of Gsoc that satisfies k pairs
from Psoc.

A mixed acyclic graph Gsoc = (V,EU, ED) is, in general, neither a for-
est nor a directed acyclic graph. Its structure inherits from both of these
concepts: The undirected graph (V,EU, ∅) is a forest whose trees are con-
nected by the directed edges ED without producing cycles. This observa-
tion gives rise to the following definition of topological sortings for mixed
graphs: A mixed graph G admits a topological sorting if (1) the connected

components of (V,EU, ∅) are trees and (2) they can be arranged in a lin-
ear order T1, . . . , Tn, such that directed edges from ED can only go from
a vertex in Ti to a vertex in Tj if i < j. The linear order T1, . . . , Tn of the
trees is called a topological sorting of G. Note that the definition of topo-
logical sortings for mags also works for dags – with every tree being a
single vertex. Moreover, similar to dags, every mag admits a topological
sorting.

3.2 An ILP Formulation for Mixed Acyclic Graphs

Given an instance of a mag G and a multiset of vertex pairs P , our ilp
consists of a set of binary orientation variables, describing the edge ori-
entations, and binary closure variables, describing reachability relations
in the oriented graph. The objective of satisfying a maximum number of
vertex pairs can then be phrased as summing over closure variables for
all pairs from P .

The ilp relies on a topological sorting T1, . . . , Tn of the input mag,
which allows formulating constraints that force a consistent assignment
of values to the orientation and closure variables. The formulation is built
iteratively on growing parts of the graph following the topological sorting.
Specifically, for every i ∈ {1, . . . , n}, we define Gi = G[V (T1)∪· · ·∪V (Ti)]
and Pi = P∩(V (Gi)×V (Gi)), and for every i ∈ {2, . . . , n}, we define Ei =
ED(G) ∩ (V (Gi−1) × V (Ti)). We will first define the variables of the ilp
and discuss their intuitive meaning. Then we will define the constraints
and the objective function of the ilp, followed by a discussion about
the correctness. The ilp I for G and P is made up by the variable set
variables(I) that is the union of the binary variables:{

o(v,w) | {v, w} ∈ EU(G)
}

(1){
c(v,w) | (v, w) ∈ V (G)× V (G)

}
(2)

{p(v,v′,w′,w) | ∃ 2 ≤ i ≤ n : (v, w) ∈ V (Gi−1)× V (Ti)∧
(v′, w′) ∈ Ei} (3)

The orientation variables (1) are used to encode orientations of the
edges: an assignment of 1 to o(v,w) means that the undirected edge {v, w}
is oriented from v to w. The closure variables (2) are used to represent
which vertex pairs of the graph are satisfied: an assignment of 1 to c(v,w)

will imply that there exists a directed path from v to w in the con-
structed orientation. During the construction we will set closure variables

c(v,w) with (v, w) ∈ ED(G) to 1, and closure variables c(v,w) where w is
not reachable from v in G to 0. Path variables are used to describe the
satisfaction of a vertex pair (v, w) by using an intermediate directed edge
(v′, w′): an assignment of 1 to p(v,v′,w′,w) will imply that there exists a
directed path from v to w that goes through the directed edge (v′, w′).

The ilp contains the constraints

o(v,w) + o(w,v) = 1 for all {v, w} ∈ EU(G) (4)

c(v,w) ≤ o(x,y) for all v, w ∈ V (Ti), and all x, y ∈ V (Ti)

where y comes directly after x on the
unique path from v to w in Ti, 1 ≤ i ≤ n (5)

c(v,w) ≤
∑

(v′,w′)∈Ei

p(v,v′,w′,w)

for all (v, w) ∈ V (Gi−1)× V (Ti), 2 ≤ i ≤ n (6)

p(v,v′,w′,w) ≤ c(v,v′), c(w′,w)

for all (v, w) ∈ V (Gi−1)× V (Ti), (v
′, w′) ∈ Ei, 2 ≤ i ≤ n (7)

and the objective

maximize
∑

(s,t)∈P

c(s,t) (8)

Constraints (4) force that each undirected edge is oriented in exactly
one direction. The remaining constraints (5) to (7) are used to connect
closure variables to the underlying orientation variables. They force that
every closure variable c(v,w) can only be set to 1 if the orientation variables
describe a graph that has a directed path from v to w. Whenever v and
w are in the same undirected component (which is a tree since the whole
graph is a mag), they can only be connected via an orientation of the
unique undirected path between them. For vertex pairs of these kind
constraint (5) ensures the above property. Next we consider the case where
v and w are in different components Ti and Tj with i < j. We need to
associate c(v,w) with all possible paths from v to w; this is done by using
the path variables: If there is a path from v to w then it must visit a
directed edge (v′, w′) that starts in some component that precedes Tj and
ends at Tj (Constraint (6)). Path variables are, in turn, constrained by
(7). The objective function maximizes the number of closure variables
with assignment 1 that correspond to pairs from P . The above discussion
contains the basic ideas to prove the following lemma, which formally
implies the correctness of the ilp.

Lemma 3.2. The following properties hold:

Completeness: For every orientation G′ of G there exists an assignment
a : variables(I) → {0, 1} with {(v, w) ∈ V (G) × V (G) | a(c(v,w)) =
1} = C(G′) that satisfies the constraints (4) to (7).

Soundness: For every assignment a : variables(I)→ {0, 1} that satisfies
the constraints (4) to (7) there exists an orientation G′ of G with
{(v, w) ∈ V (G)× V (G) | a(c(v,w)) = 1} ⊆ C(G′).

The ilp has polynomial size and can be constructed in polynomial
time: The construction starts by sorting the mag topologically. Constant
length constraints (4) are constructed for all undirected edges. For every
ordered pair (v, w) of vertices v and w that are inside the same undi-
rected component Ti, we construct at most |EU| constraints of type (5)
using reachability queries to Ti. The sum constraints (6) are constructed
for all ordered vertex pairs (v, w) where the undirected component of v
comes before the undirected component of w in the topological sorting
of the mag. Each sum iterates over the directed edges that lead into the
component of w. Thus, each sum’s length is bounded by O(|ED|) and it
can be written down in polynomial time. The constraints (7) of constant
length are constructed by iterating over the same vertex pairs and di-
rected edges. In total, the size of the ilp is asymptotically bounded by
O(|V (G)|2(|ED|+ |EU|)).

One may ask if it is possible to apply the ilp construction to general
mixed graphs instead of mags. The mag-based construction explores the
graph iteratively by using a topological sorting. It relies on the fact that
connecting paths in mags are either unique (inside the undirected com-
ponents) or can only go from a component Ti to a component Tj if i < j.
In a mixed graph G = (V,EU, ED) that contains cycles, connecting paths
in (V,EU) are, in general, not unique and there may be directed edges
going back and forth between components of (V,EU). This prevents the
iterative construction and implies a construction that needs to revise al-
ready constructed parts of the formulation instead of just appending new
constraints at each step. We are not aware of any method that directly
produces polynomial size ilp formulations for general graphs.

4 Implementation Details

Our implementation is written in c++ using boost c++ libraries (ver-
sion number 1.43.0) and the commercial ibm ilog cplex optimizer (ver-
sion number 12) to solve ilps. The input of our program consists a mixed

graph G = (V,EU, ED) and a collection P of vertex pairs from G. The
program predicts an orientation G′ for G that satisfies a maximum num-
ber of pairs from P .

The program starts by computing strongly connected orientations for
all strongly orientable components of the input graph. This can be done
in polynomial time, as described in Section 3.2. Our program implements
a linear time approach for this step that is based on combined ideas
from [15] and [5]. Next, the program computes the acyclic component
graph Gsoc of G and transforms the collection of pairs P into the collec-
tion of pairs Psoc. Finally, the program computes an optimal orientation
for the resulting instance (Gsoc, Psoc) via the ilp approach from Sec-
tion 3.2. This results in an orientation for all undirected edges that are
not inside strongly orientable components and the number of satisfied
pairs, which is optimal. Altogether, the program outputs an optimal ori-
entation for the input instance and, if desired, the satisfied pairs and their
number.

Due to the combinatorial nature of our approach, there is possibly
more than one orientation that results in an optimal number of satisfied
pairs. To determine if an undirected edge e = {v, w} has the same orienta-
tion in all maximum solutions, one can utilize our computational pipeline
as follows: First compute the number of satisfied pairs in an optimal so-
lution sopt. Let (v, w) be the orientation of e in this solution. Then run
the experiment again, but this time with {v, w} replaced by (w, v) in the
input network. After that set a confidence value ce = sopt − se, where se
is the maximum number of satisfied pairs for the modified instance. The
edge e is said to be oriented with confidence iff ce ≥ 1; in this case its
direction is the same in all optimal orientations of the input.

5 Experimental Results

5.1 Data acquisition and integration

We gathered physical interactions (ppis, pdis, and kpis) and cause-effect
pair information for Saccharomyces cerevisiae from different sources. We
used the ppi data set “Y2H-union” from Yu et al. [17], which contains
2,930 highly-reliable undirected interactions between 2,018 proteins. The
pdi data were taken from MacIsaac et al. [11], an update of which can be
found at http://fraenkel.mit.edu/improved map/. We used the collection
of pdis with p < 0.001 conserved over at least two other yeast species,
which consists of 4,113 unique pdis spanning 2,079 proteins. The kpis

were collected from Breitkreutz et al. [4] by taking the directed kinase-
substrate interactions out of their data set. This results in 1361 kpis
among 802 proteins. A set of 110,487 knockout pairs among 6,228 proteins
where taken from Reimand et al. [14].

We integrated the data to obtain a physical network of undirected and
directed interactions. We removed self loops and parallel interactions; for
the latter, whenever both a directed and an undirected edge were present
between the same pair of vertices, we maintained the former only. Pairs of
edges that are directed in opposite directions were maintained, and will be
contracted into single vertices in later phases of the preprocessing. The
resulting physical network, which we call the integrated network spans
3,658 proteins, 2,639 ppis, 4,095 pdis and 1,361 kpis. For some of the
following experiments we want to control the amount of directed edges
better, to investigate their contribution in a purified manner. To this end
we will also use the subnetwork of 2,579 proteins of the integrated network
that is obtained by taking only the directed pdis and pkis, leaving the
ppis out; we call it the refined network. To orient the physical networks,
we use the set of 110,487 knockout pairs and consider the subset of pairs
with endpoints being in the physical network. The integrated network
contains 53,809 of the pairs; the refined network contains 34,372 of the
pairs.

5.2 Application and performance evaluation

To study the behavior and properties of our algorithm, we apply it to
the physical networks and monitor properties of the instance from the
intermediate steps and the resulting orientations. For the former, we ex-
amine the contraction step, monitoring the size of the component graph
obtained (number of vertices, directed edges and undirected edges), and
the number of cause-effect pairs after the contraction. For the latter, we
run the algorithm in a cross-validation setting, hiding the directions of
some of the edges and testing our success in orienting them.

The component graph for the integrated network contains 763 undi-
rected edges and 2,910 directed edges among 2,569 vertices. We filter from
the corresponding set of pairs Psoc those pairs that have the same source
and target vertices; these pairs lie inside strongly orientable components
and are already satisfied. About 85% (44,825) of the initial pairs from
the large knockout pair data remain in the contracted graph and can be
used to guide the orientation produced by our ilp algorithm. Considering
the whole integrated network with the large set of knockout pairs, the
component orientation and component contraction steps take 3 seconds

and the solution of the ilp takes 70 seconds. Considering only the refined
network, the preprocessing as elaborated takes 5 seconds, as there are
eventually more components in the contracted graph, and 57 seconds for
the solution of the ilp, as there are less choices to be made. Comput-
ing confidence scores for undirected edges requires rerunning the steps of
the computational pipeline for each of these edges, resulting in about 3.4
hours for the integrated network and 5 hours for the refined network (in
which more test edges remain after the cycle contraction).

Next, we wished to evaluate the orientations suggested by our algo-
rithm. To this end, we defined a subset of the directed edges in the input
graph (kpis or pdis) as undirected test edges. Guided by the set of knock-
out pairs, our program computes orientations for all undirected edges,
including the test edges. In the evaluation of the orientation we focus
on test edges that survive the contraction and remain in the component
graph, as the orientation of the other test edges depends only on the cy-
cles they lie in and not on the input cause-effect pairs. We further focus
on confident orientations, as other orientations are arbitrary. We define
the coverage of an orientation as the percent of remaining test edges that
are oriented with confidence. The accuracy of an orientation is the percent
of confidently oriented test edges whose orientation is correct.

When using the integrated network and all 1,361 kpis as test edges,
166 (12%) of them remain after cycle contraction. The algorithm covers
158 (95%) of the remaining test edges, orienting correctly 137 (86%) of
the covered ones. In the refined network 290 (21%) of the kpis remain, 264
(91%) of them are covered, and 228 (86%) of those are oriented correctly.
When using the integrated network and the 4,095 pdis as test edges 712
(17%) of the test edges remain, 634 (89%) of them are covered, and 614
(96%) of those are oriented correctly. In the refined network 996 (24%) of
the pdis remain, 895 (90%) of them are covered, and 868 (97%) of those
are oriented correctly. Expectedly, more test edges remain in the refined
network; coverage and accuracy are high in all these experiments.

Effects of the portion of undirected edges. The previous results hint that
to obtain a higher percentage of remaining edges, it is helpful to consider
networks with a smaller number of undirected edges and larger number
of directed edges. To test the effect of the portion of undirected edges
more systematically, we focused on the refined network and used differ-
ent portions (chosen at random) of kpis as test sets. All kpis that are
not test edges are deleted from the network. The results are depicted in
Figure 1(a), demonstrating that the percentage of remaining test edges

increases when we consider small fractions of them. This stems from the
fact that a smaller number of test edges gives rise to fewer component
contractions in the input graph. Interestingly, the coverage and accuracy
go up when considering larger amounts of test edges. The reason is that
while many parts of the graph are contracted, the initial large number
of input test edges leads to a large number of test edges after the con-
tractions. As a result, there is more information to guide the orientation
compared to the smaller test sets.

Effects of the amount of cause-effect pairs. Next, we wished to study the
effect of the amount of cause-effect pairs on the orientation. We used as
input the integrated network, with the kpis serving as test edges, and
applied the algorithm with increasing portions (chosen at random) of
pairs. Out of the 166 test edges that remain after contraction, different
numbers of covered and accurate edges were attained depending on the
input pairs. As evident from Figure 1(b), the more pairs the higher the
number of covered edges, albeit with similar accuracy (86-90%), support-
ing our use of the cause-effect pairs to guide the orientation. Although
this is not our objective, it is interesting to note that a high percentage
(approximately 85%) of the knockout pairs are satisfied throughout the
experiments. The much smaller fraction of unsatisfied pairs may be due
to noise in the expression data, incomplete interaction data or molecular
events that are not covered by the physical interactions considered here.

test edges

0

50

100

150

200

250

300

% of KPIs
as test edges

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

remaining
covered
accurate

% pairs

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

test edges

80
90

100
110
120
130
140
150
160 covered

accurate

(a) (b)

Fig. 1. (a) Remaining, covered and accurate test edges as a function of the percentage
of input test edges. x-axis: percentage of kpis that are used as test edges. y-axis:
numbers of test edges that remain (squares), are covered (triangles) and accurately
oriented (circles). (b) The number of covered and accurately oriented test edges as a
function of the percentage of cause-effect pairs guiding the orientation.

5.3 Comparison to layman approaches

To the best of our knowledge, there exists no previous method to orient
mixed graphs, but one can try to adapt methods for undirected graphs
to the mixed graph case. The only previous method for orienting large
undirected graphs is the one from Medvedovsky et al. [12]. In our termi-
nology, it first computes the graph’s component graph, which is a tree for
undirected input graphs. It then applies an ilp-formulation, using the fact
that there is at most one path between any two vertices. We consider two
ways of transforming mixed graphs into undirected graphs to which this
method can be applied. Both approaches take their action after the con-
struction of the component graph for the mixed input graph. While our
approach, which we call mixed, uses an ilp at this point, the deletion
approach removes all directed edges from the component graph, yielding
a forest of its undirected components to which an ilp is applied. The
undirected approach considers all directed edges as being undirected
and applies a second component contraction step to produce a forest to
which the ilp is applied. The same forest can be obtained by starting
from the input graph, making all directed edges undirected, and applying
a single contraction step.

The behaviors of the intermediate steps of the three approaches when
applied to the integrated network are shown in Table 1(a). In comparison
to undirected, mixed maintains a higher number of vertices in the com-
ponent graph, as less cycles are contracted. In comparison to deletion,
mixed maintains a much higher amount (6 fold) of pairs that are satisfied
in the component graph and, therefore, potentially affect the orientation
process. This is due to the fact that the edge deletion separates large parts
of the graph. Overall, one can see that mixed retains more information
for the ilp step in the form of vertices in the component graph and causal
information from the knockout pairs.

To compare the orientations produced by the three approaches, we
applied them to the refined network using the kpis as test edges and
different portions of the cause-effect pairs. As the baseline for computing
the coverage of the three approaches should be the same – the number
of test edges after the initial contraction – we report in the following the
absolute numbers of covered (confidently oriented) and correctly oriented
interactions, rather than the relative coverage and accuracy measures.
Table 1(b) present these results, comparing the numbers of remaining,
covered and correctly oriented test edges among the three approaches.
Evidently, mixed yields higher numbers of test edges, covered edges, and
correctly oriented edges.

(a)

deletion undirected mixed

of undirected edges in the input 2639 8089 2639
of directed edges in the input 5450 0 5450

of vertices in the component graph 2569 1483 2569
of undirected edges in the component graph 763 1445 763
of directed edges in the component graph 0 0 2910

of pairs between different vertices in Psoc 44825 24423 44825
of pairs between different vertices in Psoc

that are satisfied in Gsoc
4705 23587 29792

(b)

100% cause-effect pairs 10% cause-effect pairs

deletion undirected mixed deletion undirected mixed

of test edges
that remain 290 226 290 290 226 290
that are covered 240 215 265 102 133 144
that are accurate 212 187 229 87 112 121

Table 1. (a) Properties of the intermediate steps of the three orientation approaches.
(b) A comparison of the three orientation approaches with cross-validation experiments
using different fractions of cause-effect pairs.

6 Conclusions

We presented an ilp algorithm that efficiently computes optimal orienta-
tions for mixed graph inputs. We implemented the method and applied
it to the orientation of physical interaction networks in yeast. Depend-
ing on the input the method yields very high coverage and accuracy in
the orientation. Our experiments further show that the algorithm works
very fast in practice and produces orientations that cover (accurately)
larger portions of the network compared to the ones produced by previ-
ous approaches that ignore the directionality information and operate on
undirected versions of the networks.

While in this paper we concentrated on the computational challenges
in network orientation, the use of the obtained orientations to gain bi-
ological insights on the pertaining networks is of great importance. As
demonstrated by [9], the directionality information facilitates pathway
inference. It may also contribute to module detection; in particular, it is
intriguing in this context to map the correspondence between contracted
edges (under our method) and known protein complexes.

Acknowledgements

M.E. was supported by a research grant from the Dr. Alexander und Rita
Besser-Stiftung. R.S. was supported by a research grant from the Israel
Science Foundation (grant no. 385/06).

References

1. E. M. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete
Applied Mathematics, 116(3):271–278, 2002.

2. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, 2nd edition, 2008.

3. F. Boesch and R. Tindell. Robbins’s theorem for mixed multigraphs. The American
Mathematical Monthly, 87(9):716–719, 1980.

4. A. Breitkreutz et al. A global protein kinase and phosphatase interaction network
in yeast. Science, 328(5981):1043–1046, May 2010.

5. F. R. K. Chung, M. R. Garey, and R. E. Tarjan. Strongly connected orientations
of mixed multigraphs. Networks, 15(4):477–484, 1985.

6. S. Fields and O.-k. Song. A novel genetic system to detect protein-protein inter-
actions. Nature, 340(6230):245–246, July 1989.

7. I. Gamzu, D. Segev, and R. Sharan. Improved orientations of physical networks. In
Proceedings of the 10th International Workshop on Algorithms in Bioinformatics
(WABI 2010), volume 6293 of LNCS, pages 215–225. Springer, 2010.

8. A. Gavin et al. Functional organization of the yeast proteome by systematic anal-
ysis of protein complexes. Nature, 415(6868):141–147, Jan. 2002.

9. A. Gitter, J. Klein-Seetharaman, A. Gupta, and Z. Bar-Joseph. Discovering path-
ways by orienting edges in protein interaction networks. Nucleic Acids Research,
2010. doi: 10.1093/nar/gkq1207.

10. T. I. Lee et al. Transcriptional regulatory networks in saccharomyces cerevisiae.
Science, 298(5594):799–804, Oct. 2002.

11. K. MacIsaac et al. An improved map of conserved regulatory sites for saccha-
romyces cerevisiae. BMC Bioinformatics, 7(1):113, 2006.

12. A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for orienting
graphs based on cause-effect pairs and its applications to orienting protein net-
works. In Proceedings of the 8th International Workshop on Algorithms in Bioin-
formatics (WABI 2008), volume 5251 of LNCS, pages 222–232. Springer, 2008.

13. O. Ourfali, T. Shlomi, T. Ideker, E. Ruppin, and R. Sharan. SPINE: a framework
for signaling-regulatory pathway inference from cause-effect experiments. Bioin-
formatics, 23(13):i359–i366, 2007.

14. J. Reimand, J. M. Vaquerizas, A. E. Todd, J. Vilo, and N. M. Luscombe. Com-
prehensive reanalysis of transcription factor knockout expression data in saccha-
romyces cerevisiae reveals many new targets. Nucleic Acids Research, 38(14):4768–
4777, 2010.

15. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

16. C. Yeang, T. Ideker, and T. Jaakkola. Physical network models. Journal of Com-
putational Biology, 11(2-3):243–262, 2004.

17. H. Yu et al. High-Quality binary protein interaction map of the yeast interactome
network. Science, 322(5898):104–110, Oct. 2008.

