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Abstract

In a recent article, Behrens and Vingron (JCB 17, 12, 2010) compute waiting

times for k-mers to appear during DNA evolution under the assumption that the

considered k-mers do not occur in the initial DNA sequence, an issue arising when

studying the evolution of regulatory DNA sequences with regard to transcription

factor (TF) binding site emergence. The mathematical analysis underlying their

computation assumes that occurrences of words under interest do not overlap.

We relax here this assumption by use of an automata approach. In an alphabet

of size 4 like the DNA alphabet, most words have no or a low autocorrelation;

therefore, globally, our results confirm those of Behrens and Vingron. The out-

come is quite different when considering highly autocorrelated k-mers; in this

case, the autocorrelation pushes down the probability of occurrence of these k-

mers at generation 1 and, consequently, increases the waiting time for apparition

of these k-mers up to 40%. An analysis of existing TF binding sites unveils a

significant proportion of k-mers exhibiting autocorrelation. Thus, our computa-

tions based on automata greatly improve the accuracy of predicting waiting times

for the emergence of TF binding sites to appear during DNA evolution. We do

the computation in the Bernoulli or M0 model; computations in the M1 model,

a Markov model of order 1, are more costly in terms of time and memory but

should produce similar results. While Behrens and Vingron considered specifi-

cally promoters of length 1000, we extend the results to promoters of any size;

we exhibit the property that the probability that a k-mer occurs at generation

time 1 while being absent at time 0 behaves linearly with respect to the length of

the promoter, which induces a hyperbolic behaviour of the waiting time of any

k-mer with respect to the length of the promoter.
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1 Introduction

The expression of genes is subject to strong regulation. The key concept of transcrip-

tional gene regulation is the binding of proteins, so called transcription factors (TFs),

to TF binding sites. These TF binding sites are typically short stretches of DNA, many

of which are only around 5–8bp long (Wray et al. (2003)). Usually, these TF binding

sites are located in a region around 1000bp upstream of the gene they regulate, the so

called promoter. Thus, the occurrence of particular k-mers in these promoter regions

has a high impact on modulating transcription. There have been several experimen-

tal studies employing ChIP-chip or ChIP-seq technology showing that promoters are

rapidly evolving regions that change over short evolutionary time scales (Odom et al.

(2007), Schmidt et al. (2010), Kunarso et al. (2010)). In a recent review, Dowell (2010)

summarizes all these experimental findings and concludes that most TF binding events

are species-specific and that gene regulation is a highly dynamic evolutionary process.

Many of these changes in TF binding, if not necessarily all, can be explained by gains

and losses of TF binding sites.

Several theoretical studies have tried to give a probabilistic explanation for the speed

of changes in transcriptional gene regulation (e.g. Stone and Wray (2001), Durrett and

Schmidt (2007)). Behrens and Vingron (2010) infer how long one has to wait until a

given TF binding site emerges at random in a promoter sequence. Using two different

probabilistic models (a Bernoulli model denoted by M0 and a neighbor dependent

model M1) and estimating evolutionary substitution rates based on multiple species

promoter alignments for the three species Homo sapiens, Pan troglodytes and Macaca

mulatta, they compute the expected waiting time for every k-mer, k ranging from 5 to

10, until it appears in a human promoter. They conclude that the waiting time for a
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TF binding site is highly determined by its composition and that indeed TF binding

sites can appear rapidly, i.e. in a time span below the speciation time of human and

chimp.

However, in their approach, Behrens and Vingron (2010) rely on the assumption

that if a k-mer of interest appears more than once in a promoter sequence, it does not

overlap with itself. This particularly affects the waiting times for highly autocorrelated

words like e.g. AAAAA or CTCTCTCTCT. Using automata, we can relax this assumption

and, thus, more accurately compute the expected waiting times until appearance for

every k-mer, k ranging from 5 to 10, in a promoter of length 1000bp. This automa-

ton approach can be applied both for models M0 and M1. However, for the ease of

exposition, in this article we will focus on the Bernoulli model M0.

This article is structured as follows. In Section 2, we describe model M0, state

results from Behrens and Vingron (2010) that we rely on and recall how Behrens and

Vingron (2010) have estimated model M0 parameters based on human, chimp and

macaque promoter alignments. In Section 3, we present our new approach of comput-

ing waiting times using automata theory; we provide in this section a web-pointer to

the program used to perform these computations. Section 4 compares the results of

computing waiting times for k-mers to appear in a promoter of length 1 kb according to

Behrens and Vingron (2010) and to our new automaton approach. For both computa-

tions, we employ the same model parameters estimations that have been already used

in Behrens and Vingron (2010); we also explain in this section the biological impact

of our findings and show that autocorrelation matters in the context of TF binding

site emergence. Section 5 exhibits the first order linear behaviour of the probability

of evolution to a k-mer from generation time 0 to time 1 for specific examples; the

observed phenomena is however general, as proved in Nicodème (2011). We provide
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in this section a web-pointer to a database containing the waiting times of all k-mers

for k from 5 to 10 and for promoter lengths n = 1000 and n = 2000. Section 6 will

conclude the article with some summarizing remarks.
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2 Model M0 and expected waiting times

Throughout the article, we assume that promoter sequences evolve according to model

M0 which has been described by Behrens and Vingron (2010).

Model M0. Given an alphabetA = {A,C,G,T}, let S(0) = (S1(0), . . . , Sn(0)) denote

the initial promoter sequence of length n taking values in this alphabet. We assume that

the letters in S(0) are independent and identically distributed with ν(x) := Pr(S1(0) =

x). Let the time evolution (S(t))t≥0 of the promoter sequence be governed by the 4×4

infinitesimal rate matrix Q = (rα,β)α,β∈A. According to the general reverse complement

symmetric substitution model, we assume that the nucleotides evolve independently

from each other and that rA,T = rT,A, rC,G = rG,C, rA,C = rT,G, rC,A = rG,T , rA,G = rT,C

and rG,A = rC,T (see also Duret and Arndt (2008)). Thus, there are 6 free parameters.

The matrix P(t) = (pα,β(t))α,β∈A containing the transitions probabilities of α evolving

into β in finite time t ≥ 0, (α, β ∈ A), can be computed by P(t) = etQ; see Karlin and

Taylor (1975), p. 150-152.

The expected waiting time. Given a binding site

b = (b1, . . . , bk) where b1, . . . , bk ∈ A, (1)

the aim is to determine the expected waiting time until b emerges in a promoter se-

quence of length n provided that it does not appear in the initial promoter sequence

S(0). More precisely, let

Tn = inf{t ∈ N : ∃i ∈ {1, . . . , n−k+1} such that (Si(t), . . . , Si+k−1(t)) = (b1, . . . , bk)}.

(2)
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Then, given that Pr(b occurs in S(0)) = 0, Tn has approximately a geometric distribu-

tion with parameter

pn = Pr(b occurs in generation 1 | b does not occur in generation 0) (3)

= Pr(b ∈ S(1) | b 6∈ S(0))

as shown by Behrens and Vingron (2010). In particular, one has

E(Tn) ≈
1

pn
. (4)

Estimating the parameters of model M0. For our analyses, we used the same

parameter estimations as Behrens and Vingron (2010). The estimations for ν(α),

α ∈ A, have been obtained by determining the relative frequencies of A, C, G and T

in human promoter regions downloaded from UCSC. The substitution rates rα,β have

been estimated using multiple alignments from UCSC of chimp and macaque DNA

sequences to human promoters and by employing the Maximum likelihood based tool

developed by Arndt and Hwa (2005). Afterwards, the transition probabilities pα,β(t)

for e.g. t = 1 generation can be easily computed by the matrix exponential P(t) = etQ.

Assuming a speciation time between human and chimp of 4 Million of years and a

generation time of y = 20 years, Behrens and Vingron (2010) obtain estimations for

pα,β(1) = pα,β(1 generation) for all α, β ∈ A. Their results are summarized in Table 1. Table 1
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3 Automaton approach

The aim of this section is to provide a new procedure to compute the expected waiting

time E(Tn) until a TF binding site b of length k emerges in a promoter sequence of

length n by using Equation (4), i.e. E(Tn) ≈
1
pn
. Behrens and Vingron (2010) approxi-

mated pn = Pr(b occurs in generation 1|b does not occur in generation 0) by applying

the inclusion-exclusion principle. However, in order to make the computations feasible,

they had to assume that b cannot appear self-overlapping which especially adulterates

the actual waiting times for autocorrelated words. Automata theory provides a natural

and compact framework to handle autocorrelations easily; in this section we present

how to use basic automata algorithms in order to compute the probability pn without

resorting to the assumption that b occurs non-overlapping.

Definitions. In this section, only definitions that will be used in the sequel are

recalled; more information about automata and regular languages can be found in

Hopcroft et al. (2001). Given a finite alphabet A, a deterministic and complete au-

tomaton on A is a tuple (Q, δ, q0, F ), where Q is a finite set of states, δ is a mapping

from Q×A to Q, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states. Let ε de-

note the empty word. The mapping δ can be extended inductively to Q×A∗ by setting

δ(q, ε) = q for all q ∈ Q and, for all q ∈ Q, u ∈ A∗ and α ∈ A, δ(q, uα) = δ(δ(q, u), α).

A word u ∈ A∗ is recognized by the automaton when δ(q0, u) ∈ F . The language

recognized by the automaton is the set of words that are recognized.

Since all automata considered in the sequel are deterministic and complete, we will

call them “automata” for short. Automata are well represented as labelled directed

graphs, where the states are the vertices, and where there is an edge between p and q

labelled by a letter α ∈ A if and only if δ(p, α) = q; such an edge is called a transition.
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The initial state has an incoming arrow, and final states are denoted by a double circle.

See Figure 1 for an example of such a graphical representation. A word u is recognized

when starting at the initial state and reading u from left to right, letter by letter, and

following the corresponding transition, one ends in a final state.

Rewording the problem. Consider the alphabet B = A×A. Letters of B are pairs

(α, β) of letters of A, which are represented vertically by
(
α
β

)
. A word u of length n

on B is also seen as a pair of words of length n over A, and represented vertically: if

u = (α1, β1)(α2, β2) . . . (αn, βn), we shall write u =
(
α1...αn

β1...βn

)
. For any word u =

(
v
w

)
of

B∗, the projections π0 and π1 are defined by π0(u) = v and π1(u) = w.

For the problems considered in this article, we have A = {A,C,G,T}, and a word

u =
(
v
w

)
of length n over B represents the sequence that was initially equal to v and

that has evolved into w at time 1; that is, S(0) = π0(u) and S(1) = π1(u). The

main problem can be reworded using rational expressions: for a given b = b1 · · · bk,

the fact that b appear in S(1) but not in S(0) is exactly the condition π1(u) ∈ A∗bA∗

and π0(u) /∈ A∗bA∗. We denote by Lb the set of such words and remark that Lb is a

rational language.

Construction of the automaton. The smallest automaton Mb that recognizes

the language A∗bA∗ can be built using the classical Knuth-Morris-Pratt construction

(see Crochemore and Rytter (1994), chapter 7). This requires for any k-mer O(k) time

and space, and the produced automaton Mb = ({0, . . . , k}, δb, 0, {k}) has exactly k+1

states.

The language A∗ \ A∗bA∗ is the complement of the previous one, and is therefore

recognized by the automaton Mb = ({0, . . . , k}, δb, 0, {0, . . . , k − 1}), which has the

same underlying graph as Mb and whose set of final states is the complement of Mb’s
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one. For the examples given in this section, we use a smaller alphabet A = {A,C}

and the k-mer is always b = ACC, (hence k = 3). The two automata are depicted in

Figure 1. To fully describe the language Lb, we use the classical product automaton Figure 1

construction, tuned to fit our needs. Define the automatonNb = (Q, δ, q0, F ) as follows:

• The set of states is Q = {0, . . . , k} × {0, . . . , k}. The states of Nb are therefore

pairs (p, q), where intuitively p lies in Mb and q lies in Mb.

• The initial state is q0 = (0, 0).

• The transition mapping δ is defined for every (p, q) ∈ Q and every (α, β) ∈ B by

δ((p, q), (α, β)) = (δb(p, α), δb(q, β)). The idea is to read π0(u) in Mb on the first

coordinate, and π1(u) in Mb on the second coordinate.

• A state (p, q) is final if and only if both p and q are final in their respective

automata, that is, F = {0, . . . , k − 1} × {k}.

The proof of the following lemma follows directly from the construction of Nb:

Lemma 3.1 The automaton Nb recognizes the language Lb.

Looking closer at the automaton one can make the following observations: while reading

a word u of B∗ in Nb, if one reaches a state of the form (p, k) at some point, for some

p ∈ {0, . . . , k}, then all the remaining states on the path labelled by u are also of the

form (q, k), for some q ∈ {0, . . . , k}. This is because δb(k, α) = k for every α ∈ A.

Since this state is not final, this means that whenever the second coordinate is k at

some point, the word is not recognized because π0(u) contains b. We can therefore

simplify the automaton Nb by merging all the states of the form (p, k) into a single

state, which we name sink. Let N ′
b = (Q′, δ′, q′0, F

′) denote this new automaton, which

has k2 + k + 1 states. Lemma 3.2 below states that all the information we need is

contained in N ′
b. See an example of this automaton in Figure 2. Figure 2
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Lemma 3.2 Let u be a word in B∗, and let qu be the state reached after reading u in

N ′
b from its initial state. The words u can be classified as follows:

• if qu ∈ F ′ then π0(u) does not contains b but π1(u) does (this is a success in our

settings);

• if qu is the sink state then π0(u) contains b (this is contradictory in our settings);

• if qu /∈ F ′ and qu is not the sink state, then neither π0(u) nor π1(u) contains b

(this is a failure in our settings).

From automata to probabilities. The automaton N ′
b is readily transformed into

a Markov chain, by changing the label of any transition q
a
−→ q′, where a =

(
α
β

)
∈ B,

into the probability ν(α) × pα,β(1). If there are several transitions from q to q′, the

edge is labelled by the sum of the associated probabilities. Let Cb denote this Markov

chain. The random variable Qn associated to the state reached after reading a random

word of size n under the M0 model is formally defined by:

∀q ∈ Q′, Pr (Qn = q) =
∑

u=(v

w
)∈Bn

δ′(q′
0
,u)=q

ν(v)× pv→w(1). (5)

Then, if Pb is the transition matrix of Cb and if Vq is the probability vector with 1 on

position q ∈ Q′ and 0 elsewhere, the random state Qn reached from the initial state

after n steps verifies

∀q ∈ Q′, Pr (Qn = q) = V t
q′
0

× Pn
b × Vq. (6)

11



From this and by Lemma 3.2 we can compute all the needed probabilities :

Pr
(

S(1) ∈ A∗bA∗ | S(0) /∈ A∗bA∗
)

=
Pr(S(1) ∈ A∗bA∗ and S(0) /∈ A∗bA∗)

Pr(S(0) /∈ A∗bA∗)
(7)

=
Pr(Qn ∈ F ′)

Pr(Qn = sink)
(8)

=

∑

q∈F ′ V t
q′
0

× Pn
b × Vq

V t
q′
0

× Pn
b × Vsink

(9)

We therefore get our main result.

Theorem 3.3 Let b ∈ Ak and N ′
b = (Q′, δ′, q′0, F

′) be its automaton, with associated

matrix Pb. The probability pn that a sequence of length n contains b at time 1 given

that it does not contains b at time 0 is exactly

pn = Pr
(

S(1) ∈ A∗bA∗ | S(0) /∈ A∗bA∗
)

=
V t
q′
0

× Pn
b ×

(
∑

q∈F ′ Vq

)

V t
q′
0

× Pn
b × Vsink

.

Applying Theorem 3.3 and Equation (4), we obtain that the expected waiting time

E(Tn) ≈
1
pn

until a binding site b of length k appears in a promoter of length n can be

approximated by

E(Tn) ≈
1

pn
=

1

Pr
(

S(1) ∈ A∗bA∗ | S(0) /∈ A∗bA∗

) =
V t
q′
0

× Pn
b × Vsink

V t
q′
0

× Pn
b ×

(
∑

q∈F ′ Vq

) . (10)

Complexity. The automaton N ′
b, and the associated Markov chain Cb can be built

in time and space O(|A|2k2). Once done, the whole calculation reduces to the com-

putation of the row vector V t
q′
0

× Pn
b , which can be done iteratively using the simple

relation

V t
q′
0

× Pi+1
b =

(

V t
q′
0

× Pi
b

)

︸ ︷︷ ︸

row vector

×Pb.
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Hence this consists of n products of a vector by a matrix. Moreover, this matrix is a

square matrix of dimension k2+k+1, which is sparse since it has exactly (k2+k+1)|A|2

non-zero values. Therefore, the probability of Theorem 3.3 can be computed in time

O(n× k2 × |A|2), using O(|A|2k2) space.

Web access to the code. URL http://www.lix.polytechnique.fr/Labo/Pierre.Nicodeme/BNN/kmer.c

provides the C code used in this section.
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4 Biological results

Applying Equation (10) for obtaining the automaton results and using Theorem 1 from

Behrens and Vingron (2010), we computed the expected waiting time E(T1000) of all

k-mers in the M0 model for k from 5 to 10 to appear in a promoter sequence of length

1000 bp. The parameters of model M0 have been estimated as described in Section 2

and are depicted in Table 1.

Figure 3 provides an overall comparison of the waiting time computed by automata

with respect to the previous computations of Behrens and Vingron (2010) for k = 5

and k = 10. As can be observed in this scatterplot, the computed waiting times Figure 3

based on the automaton approach globally confirm the results of Behrens and Vingron

(2010). However, there are some outliers exhibiting longer waiting times than pre-

dicted by Behrens and Vingron (2010). The four most extreme outliers that deviate

from the bisecting line correspond to AAAAA, TTTTT, CCCCC, GGGGG and to AAAAAAAAAA,

CCCCCCCCCC, GGGGGGGGGG, TTTTTTTTTT respectively. Other outliers are k-mers like

e.g. CGCGC, TCTCT and CGCGCGCGCG, TCTCTCTCTC. Tables 2, 3 and 4 show all 5-, 7- and

10-mers for which EBNN(T1000)
EBV(T1000)

> 1.05 where EBV(T1000) denotes the expected waiting

time according to Behrens and Vingron (2010) and EBNN(T1000) according to our au-

tomaton approach, i.e. k-mers with significantly longer waiting times than predicted

by Behrens and Vingron (2010). Table 2

Table 3

Table 4

We use in the following the million of generations (in short Mgen) as unit of time,

where a generation is 20 years. The discrepancy between the two procedures can attain

up to around 40%, e.g. CCCCC has a discrepancy of 44% with EBNN(T1000) = 9.105 Mgen

and EBV(T1000) = 6.304 Mgen, CCCCCCC a discrepancy of 43% with EBNN(T1000) =

93.457 Mgen and EBV(T1000) = 65.518 Mgen, and CCCCCCCCCC has a discrepancy of

14



41% with EBNN(T1000) = 3577.003 Mgen and EBV(T1000) = 2545.561 Mgen. Strikingly,

most of the k-mers with significant discrepancy feature a high autocorrelation, i.e.

they can appear overlapping in so called clumps. For example, the 5-mer CCCCC could

appear twice in the clump CCCCCC (at positions 1 and 2), CGCGC could appear three

times in the clump CGCGCGCGC (at positions 1, 3 and 5). In order to distinguish between

different levels of autocorrelation of k-mers, let

P(b) := {p ∈ {1, . . . , k − 1} : bi = bi+p for all i = 1, . . . , k − p}

denote the set of periods of a k-mer b = (b1, . . . , bk). A k-mer b is called non-periodic or

non-autocorrelated if and only if P(b) = ∅. Furthermore, for a periodic k-mer b let p0(b)

denote its minimal period. For example, p0(CCCCC) = 1, p0(CGCGC) = 2, p0(CGACG) = 3

and p0(CGATC) = 4. We then call a word p-periodic if and only if its minimal period is

p. As can be observed in Tables 2, 3 and 4, half of the 5-mers, two-thirds of the 7-mers

and all of the 10-mers with EBNN(T1000)
EBV(T1000)

> 1.05 are either 1- or 2-periodic, i.e. show a

high degree of autocorrelation.

Behrens and Vingron (2010) already investigated the speed of TF binding site

emergence and its biological implications for the evolution of transcriptional regulation

in detail and we do not want to elaborate on this again. However, in line with Behrens

and Vingron (2010), we want to emphasize that the speed of TF binding site emergence

is primarily influenced by its nucleotide composition. The goal in the following will

be to investigate the impact of autocorrelation regarding TF binding sites. More

precisely, we want to answer the question: Do existing TF binding sites show significant

autocorrelation or can this aspect be neglected when studying the speed of TF binding

site emergence?

To investigate this, starting from the JASPAR CORE database for vertebrates
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Version 4 (Portales-Casamar et al. (2010)), we extracted all the human TF binding

sites of length k, 5 ≤ k ≤ 10, ending up with a set of 37 position count matrices

(PCMs) for the 37 different TFs in analogy to Behrens and Vingron (2010). In order

to make these PCMS accessible for our framework based on k-mers, we converted a

PCM into a set of k-mers by setting a threshold of 0.95 of the maximal PCM score

and extracted all k-mers with a score above this threshold. For example, the PCM

A

C

G

T












0 0 0 4 2 0 1 0 6 3

32 30 35 27 5 28 31 24 25 26

1 1 0 0 15 1 0 3 0 3

2 4 0 4 13 6 3 8 4 3












of the TF SP1 is then translated into the following set of 10-mers: {CCCCACCCCC,

CCCCCCCCCC, CCCCGCCCCC, CCCCTCCCCC}. Applying this procedure, in total we obtain

372 different JASPAR k-mers, 5 ≤ k ≤ 10, for the 37 different human TFs. We then

screened all JASPAR k-mers for 1-periodicity, 2-periodicity,..., (k − 1)-periodicity. To

evaluate the degree of autocorrelation of a given JASPAR TF given by its set of k-

mers, we then computed the proportion of 1-periodic, 2-periodic,..., (k − 1)-periodic

and of non-periodic k-mers in this set. The results are depicted in Figure 4. As Figure 4

can be seen, some TFs like SP1, FOXL1, YY1, GATA3, GATA2 and ETS1 exhibit

a high autocorrelation while 14 of the 37 TFs show no autocorrelation at all (USF1,

SPI1,..., AP1). In order to test whether autocorrelated k-mers are enriched among

JASPAR TF binding sites, as a background we screened all possible k-mers, i.e. all

b = (b1, . . . , bk) ∈ Ak, A = {A,C,G,T}, k ranging from 5 to 10, for autocorrelation

in the same way as JASPAR k-mers. The resulting proportions of periodic and non-

periodic words of this background are also depicted in Figure 4. In total, among the
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JASPAR k-mers, there are 168 autocorrelated words (i.e. words that are p-periodic

for one p ∈ {1, . . . , k − 1}) and 204 non-autocorrelated words. The background set

contains 435,828 autocorrelated and 961,932 non-autocorrelated k-mers. Performing

Fisher’s Exact Test for Count Data with the alternative ”greater”, we obtain a p-value

of 1.119e-08. We can thus conclude that autocorrelated words are significantly enriched

among JASPAR k-mers. Consequently, existing TF binding sites indeed feature a

significant proportion of autocorrelation.
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5 Linear behaviour of Pn

Figure 5
In Section 3 we considered by automata a parallel computation on two sequences, S(0)

and S(1).

It is possible to do a relevant mathematical analysis with the random sequence S(0)

only. The corresponding computations have however a much higher complexity than

the automaton approach. This analysis is defined on counting in a random sequence

S(0) the number of putative-hit positions where, given a k-mer b, a putative-hit position

is any position of S(0) that can lead by mutation to an occurrence of b is S(1), assuming

that a single mutation has occurred.

For any k-mer b Nicodème (2011) provides a combinatorial construction using

clumps (see Bassino et al. (2008)) that (i) considers all the sequences that avoid the

k-mer b, and (ii) counts all the putative-hit position in these sequences.

In the following, let Hn denote the number of putative-hit positions in a sequence

S(0) randomly chosen within the set of sequences of length n that do not contain the

k-mer b, where the letters are drawn with respect to the distribution ν and where

we put a probability mass 1 to the set †. As a consequence of singularity analysis of

rational functions, Nicodème (2011) proves that

E(Hn) = c1×n+ c2 +O(An) (A < 1). (11)

It is clear that, using the asymptotic Landau’s Θ notation, we do not have

pn = Θ(E(Hn)),

†This is done by unconditioning with respect to the fact that b does not occur in S(0), i.e by
dividing the resulting expressions by Pr(S(0) 6∈ A⋆bA⋆); see Equation (7).
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since, for n large enough, this would imply that pn > 1. However, for

max
α6=β∈A

(pα,β(1)) ≪ 1 and n ≪ 1
/
max
α6=β∈A

(pα,β(1)),

the probability that two or more putative-hit positions simultaneously mutate to pro-

vide the k-mer b in sequence S(1) is an event of second order small probability. With

these conditions, we have

pn ≈ ρb,ν,p ×E(Hn) = ρb,ν,p × (c1×n+ c2) +O(An), (12)

where ρb,ν,p is a constant of the order of magnitude of the constants pα,β(1) with α 6=

β, its value depending upon these constants, the distribution ν and the correlation

structure of the k-mer b. See Figure 5 for examples.

Available data. URL http://www.lix.polytechnique.fr/Labo/Pierre.Nicodeme/BNN/Waitforkmers.tar.gz

provides access to the values of the expected waiting time E(Tn) and the probability Pn for n = 1000

and n = 2000 for all k-mers with k from 5 to 10. It is therefore possible to compute pn and E(Tn) for

all these k-mers for all n from these data. It took 10 hours to compute the data.
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6 Conclusion

Using automata theory, we have developed a new procedure to compute the waiting

time until a given TF binding site emerges at random in a human promoter sequence.

In contrast to Behrens and Vingron (2010), we do not have to rely on any assumptions

regarding the overlap structure of the TF binding site of interest. Thus, our computa-

tions are more accurate. Assuming model M0, whose parameters have been estimated

in the same way as in Behrens and Vingron (2010), applying our automaton approach

to all k-mers, k ranging from 5 to 10, and comparing the resulting expected waiting

times to those obtained by Behrens and Vingron (2010), we particularly observe that

highly autocorrelated words like CCCCC or AAAGG actually tend to emerge slower than

predicted by Behrens and Vingron (2010). This slowdown can attain up to 40%, e.g.

according to Behrens and Vingron (2010), CCCCC is predicted to be created in a human

promoter of length 1 kb in around 6.304 Mgen while our more accurate method pre-

dicts it be generated in around 9.105 Mgen. We have shown that existing TF binding

sites (from the database JASPAR; Portales-Casamar et al. (2010)) feature a signifi-

cant proportion of autocorrelation. Therefore the assumption of Behrens and Vingron

(2010) that TF binding sites do not appear self-overlapping when computing waiting

times is problematic. The new automaton approach now incorporates the possibility of

TF binding sites appearing self-overlapping into the model. Hence, the automaton ap-

proach highly improves the accuracy of the estimations for waiting times. We observed

a linear behaviour with respect to the length of the promoters for the probability of

finding a k-mer at generation 1 that is not present at generation 0. This implies a

highly flexible and efficient approach for computing this probability for any promoter

length, and in particular for lengths of highest interest, i.e. between 300 and 3000 bp.
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This also induces a hyperbolic behaviour for the waiting time.
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Figure 3: Overall comparisons of waiting times of Behrens and Vingron
(2010) (BV) versus the automata method (BNN) for 5- and 10-mers.
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A) Estimations for ν(a), a ∈ A:

ν(A) ν(C) ν(G) ν(T )
0.23889 0.26242 0.25865 0.24004

B) Estimations for pα,β(1), α, β ∈ A:

A C G T
A 9.99999996e-01 4.54999995e-09 1.57499996e-08 3.40000002e-09
C 6.14999993e-09 9.99999996e-01 7.14999985e-09 2.17499994e-08
G 2.17499994e-08 7.14999985e-09 9.99999996e-01 6.14999993e-09
T 3.40000002e-09 1.57499996e-08 4.54999995e-09 9.99999998e-01

Table 1: Parameter estimations. Numbers taken from Behrens and Vingron (2010),
Supplementary Material S2.



BNN BV

EBNN(T1000)/10
6 Rank EBV(T1000)/10

6 Rank EBNN(T1000)
EBV(T1000)

CCCCC 9.105 1021 6.304 1 1.44
GGGGG 9.570 1022 6.666 142 1.44
TTTTT 10.401 1023 7.457 993 1.39
AAAAA 10.656 1024 7.654 1024 1.39
CGCGC 7.047 699 6.446 11 1.09
TCCCC 7.076 737 6.477 17 1.09
CCCCT 7.076 738 6.477 21 1.09
GCGCG 7.127 787 6.518 31 1.09
CTCTC 7.263 883 6.679 148 1.09
CACAC 7.337 945 6.750 217 1.09
GGGGA 7.428 971 6.814 318 1.09
AGGGG 7.428 972 6.814 322 1.09
TCTCT 7.508 978 6.910 477 1.09
GTGTG 7.511 981 6.914 486 1.09
GAGAG 7.587 997 6.987 573 1.09
ACACA 7.625 1002 7.019 605 1.09
TGTGT 7.677 1010 7.073 735 1.09
AGAGA 7.796 1016 7.185 833 1.09
TTTTC 7.710 1013 7.169 823 1.08
CTTTT 7.710 1014 7.169 827 1.08
TATAT 8.135 1019 7.535 1003 1.08
ATATA 8.178 1020 7.575 1014 1.08
GAAAA 7.959 1017 7.407 988 1.07
AAAAG 7.959 1018 7.407 992 1.07
TTCCC 7.090 751 6.679 144 1.06
CCCTT 7.090 752 6.679 152 1.06
TTTCC 7.312 924 6.910 473 1.06
CCTTT 7.312 925 6.910 481 1.06
GGGAA 7.411 966 6.987 574 1.06
AAGGG 7.411 967 6.987 582 1.06
GGAAA 7.599 1000 7.185 828 1.06
AAAGG 7.599 1001 7.185 837 1.06

Table 2: Expected waiting times (generations) for 5-mers in model M0 with
EBNN(T1000)
EBV(T1000)

> 1.05. EBV(T1000) denotes the expected waiting time according to Behrens

and Vingron (2010) (BV) and EBNN(T1000) according to our automaton approach
(BNN). Ranks refer to 5-mers sorted by their waiting time of appearance according to
the two different procedures BV and BNN; rank 1 is assigned to the fastest evolving
5-mer, rank 1024 (=45) to the slowest emerging 5-mer.



BNN BV

EBNN(T1000)/10
6 Rank EBV(T1000)/10

6 Rank EBNN(T1000)
EBV(T1000)

CCCCCCC 93.457 16257 65.518 1 1.43
GGGGGGG 101.108 16380 71.312 576 1.42
TTTTTTT 127.536 16383 92.632 16257 1.38
AAAAAAA 131.923 16384 95.990 16384 1.37
CGCGCGC 74.347 2328 67.939 50 1.09
GCGCGCG 75.250 3170 68.766 86 1.09
CTCTCTC 81.865 10928 75.280 3235 1.09
CACACAC 83.101 12466 76.448 4042 1.09
GTGTGTG 85.914 14531 79.102 7786 1.09
TCTCTCT 85.978 14535 79.117 7829 1.09
GAGAGAG 87.211 15312 80.329 8656 1.09
ACACACA 87.721 15337 80.754 9267 1.09
TGTGTGT 89.145 15620 82.131 11616 1.09
TATATAT 101.469 16381 94.057 16304 1.08
ATATATA 101.988 16382 94.536 16338 1.08
AGAGAGA 90.953 16191 83.829 12794 1.08
TCCCCCC 73.461 1495 68.495 65 1.07
CCCCCCT 73.461 1496 68.495 71 1.07
GGGGGGA 79.292 7867 74.080 2158 1.07
AGGGGGG 79.292 7868 74.080 2153 1.07
TTTTTTC 92.782 16249 87.773 15367 1.06
CTTTTTT 92.782 16250 87.773 15366 1.06
GAAAAAA 96.810 16376 91.645 16255 1.06
AAAAAAG 96.810 16377 91.645 16254 1.06

Table 3: Expected waiting times (generations) for 7-mers in model M0 with
EBNN(T1000)
EBV(T1000)

> 1.05. EBV(T1000) denotes the expected waiting time according to Behrens

and Vingron (2010) (BV) and EBNN(T1000) according to our automaton approach
(BNN). Ranks refer to 7-mers sorted by their waiting time of appearance according to
the two different procedures BV and BNN; rank 1 is assigned to the fastest evolving
7-mer, rank 16384 (=47) to the slowest emerging 7-mer.



BNN BV

EBNN(T1000)/10
6 Rank EBV(T1000)/10

6 Rank EBNN(T1000)
EBV(T1000)

CCCCCCCCCC 3577.003 511668 2545.561 1 1.41
GGGGGGGGGG 4042.505 937454 2893.573 8844 1.40
TTTTTTTTTT 6387.187 1048575 4702.438 1047553 1.36
AAAAAAAAAA 6703.254 1048576 4943.605 1048576 1.36
GCGCGCGCGC 2953.939 16095 2713.901 443 1.09
CGCGCGCGCG 2953.939 16096 2713.901 523 1.09
TCTCTCTCTC 3706.263 658915 3426.738 337146 1.08
CTCTCTCTCT 3706.263 658916 3426.738 337202 1.08
CACACACACA 3799.148 773143 3513.991 421031 1.08
ACACACACAC 3799.148 773144 3513.991 421142 1.08
TGTGTGTGTG 3951.253 876168 3657.531 625393 1.08
GTGTGTGTGT 3951.253 876169 3657.531 625471 1.08
GAGAGAGAGA 4050.273 950059 3750.629 702887 1.08
AGAGAGAGAG 4050.273 950060 3750.629 703066 1.08
TATATATATA 5176.970 1048573 4821.512 1048005 1.07
ATATATATAT 5176.970 1048574 4821.512 1048120 1.07

Table 4: Expected waiting times (generations) for 10-mers in model M0

with EBNN(T1000)
EBV(T1000)

> 1.05. EBV(T1000) denotes the expected waiting time according

to Behrens and Vingron (2010) (BV) and EBNN(T1000) according to our automaton
approach (BNN). Ranks refer to 10-mers sorted by their waiting time of appearance
according to the two different procedures BV and BNN; rank 1 is assigned to the fastest
evolving 10-mer, rank 1048576 (=410) to the slowest emerging 10-mer.


