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ABSTRACT

For the computational analysis of biological problems—analyzing data, inferring networks
and complex models, and estimating model parameters—it is common to use a range of
methods based on probabilistic logic constructions, sometimes collectively called machine
learning methods. Probabilistic modeling methods such as Bayesian Networks (BN) fall into
this class, as do Hierarchical Bayesian Networks (HBN), Probabilistic Boolean Networks
(PBN), Hidden Markov Models (HMM), and Markov Logic Networks (MLN). In this re-
view, we describe the most general of these (MLN), and show how the above-mentioned
methods are related to MLN and one another by the imposition of constraints and re-
strictions. This approach allows us to illustrate a broad landscape of constructions and
methods, and describe some of the attendant strengths, weaknesses, and constraints of many
of these methods. We then provide some examples of their applications to problems in
biology and medicine, with an emphasis on genetics. The key concepts needed to picture this
landscape of methods are the ideas of probabilistic graphical models, the structures of the
graphs, and the scope of the logical language repertoire used (from First-Order Logic [FOL]
to Boolean logic.) These concepts are interlinked and together define the nature of each of
the probabilistic logic methods. Finally, we discuss the initial applications of MLN to ge-
netics, show the relationship to less general methods like BN, and then mention several
examples where such methods could be effective in new applications to specific biological
and medical problems.

Key words: Bayesian networks, first-order logic, hierarchical Bayesian networks, machine

learning, Markov logic networks, probabilistic Boolean networks, probabilistic graphical models,

propositional logic.

1. INTRODUCTION

Logic and probabilistic graphical models are natural tools of computing and have been studied

and used in computer science for many years. Some of these methods have emerged in recent years as

promising approaches to a range of problems in artificial intelligence. In biology and medicine, where many

of the computational problems involve data analysis and the inference of underlying complex models, simple

forms of these methods, such as Hidden Markov Models (HMM), and simple forms of Bayesian Networks
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(BN), have become more commonly used in recent years (Baldi and Brunak, 2001). There is now a wide

range of these methods that have been usefully applied to biological and medical problems, but it is often

difficult to see in the reports of successful applications in the literature how they are related to one

another. In this review, we attempt to address this difficulty and elucidate some of the key relationships,

not specifically for the experts in the field, but more for the computational biologists that are grappling

with the realities and complexities of current problems in systems biology, genetics and their applica-

tions to modern medicine. This review is not a comprehensive survey of methods, nor of the specific

techniques and implementations in the literature, but rather is focused on providing a map of some of the

key concepts that we hope will allow computational biologists to see the relationships, contrasts, and

overlaps among widely used methods. Even more importantly, in our view, we hope to point out where

new applications of probabilistic logic methods may provide powerful new approaches to the sometimes

dauntingly complex problems of understanding biological systems. Our plan for this review is to begin

with the most general combination of logic and probability, and illustrate how simplifying restrictions

and constraints lead to more familiar methods, in order to elucidate the key relationships, and to indicate

where some power is lost and where efficiency is gained. There are several relevant logical systems and

several different forms, and representations, of probability distributions. These are briefly summarized

below.

First-Order Logic (FOL) is a very general formal logic, and represents a more powerful tool for ex-

pression of logical relationship than propositional logic (Ershov and Palyutin, 1986). Using propositional

logic, we are not able to express assertions about classes of objects or events. FOL is considerably richer

than propositional logic and allows just these expressions. FOL allows the propositional symbols to have

arguments that range over elements of sets, which allows us to make assertions about the sets or classes.

FOL can also deal with recursive statements, while propositional logic cannot.

Probability distributions can involve a wide range of simple and complex dependencies and are often

represented in graphical form in statistics, where the independencies of the variables represented as nodes

are encoded in the edges. In this review, we illustrate the key relationships by beginning with the most

general and proceeding to more restrictive, and constrained representations. While there are some sig-

nificant differences in the graphical representations used in various methods the logical components of the

probabilistic logic are where most of the restrictions occur.

Markov Logic Networks (MLN) represent a new and general approach to modeling based on full FOL

and Markov Random Fields (MRF) (Richardson and Domingos, 2006). In addition to high representational

power of FOL, MRFs provide a very compact way of representing probability distributions and are very

useful for modeling and reasoning in noisy, uncertain environments. For physicists, MRFs are probably

most familiar as the mathematical representation of Ising models, which are simplified, statistical models of

the interaction of arrays of magnetic spins (Kindermann and Snell, 1980). MLNs thus combine (and

generalize) FOL and MRFs to gain most of the advantages of both the logic and probabilistic modeling

worlds. Among the advantages of MLN are the ability to handle arbitrary classes of variables, recursive

statements, and the ability to construct multiple templates for MRFs.

Using MLN can allow us to perform sophisticated probabilistic modeling while directly incorporating

biological knowledge, particularly including partial knowledge, into the models, which is one of our major

motivations for developing this general approach. We think that this capability is fundamentally important

for the development of system level analysis and modeling of biological systems, including metabolic,

regulatory, and genetic aspects of these systems.

It is useful here to presage, or summarize, the conclusions of the later sections here by giving a compact

overview of the key relationships that put the MLN and other methods into some context. We use the

examples elaborated later in this article to illustrate this overview. Since the most widely used probabilistic

graphical models in computational biology are various versions of BN, it is specifically useful to note the

key differences between these and MLN. The major differences are these three:

1. The probability distributions that can be represented in MLN are those of MRF, which are more

general than those of BN.

2. Relationships and probabilities can be assigned to classes of elements and/or events in MLN, whereas

in BN probabilities are assigned to individual elements or events.

3. The representation of the logical relationships in MLN is much more compact than in BN (for those

that can be expressed in BN), particularly for more complex models.
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These differences will be illustrated and discussed in later sections. A fourth difference is that

MLNs are much more computationally intensive to implement, which can be an important practical

limitation.

Now we turn to a specific example of model selection in genetic analysis. We have applied MLN by

using a search method that allows us to solve various model selection problems with different biological

knowledge constraints naturally embedded in them. In a previous article, we used MLN to select models for

the influence of the genotype (specific sets of markers, indicating gene variants) on the phenotype (e.g.,

properties of the organism as expressed in measurements: size, color, shape, gene expression levels). We

first used a single-marker model iteratively that focused on relationships between genetic markers and a

given phenotype (Sakhanenko and Galas, 2010). Every marker associated with a gene selected in the model

had a specific influence on the phenotype, even when considered alone. The model is asked to predict the

phenotype given the genotype of a single organism, and the markers were iteratively selected to improve

the prediction. Later, in this review, we discuss a natural extension of this application that uses a pair-wise

gene model that explicitly represents relationships between a phenotype and pair-wise interacting genes.

The models discussed here to illustrate the approach, while complex in implementation, are still rather

simple genetic models, and the full power of MLNs will come with the natural extension to much more

complex models. This is one of the major points we would like to emphasize—that much more powerful

applications are to come, but probabilistic logic represents a ‘‘language’’ for expression and calculation

with such complex models.

To illustrate the method in a simple form, a single-marker model encodes an influence of a set of genetic

markers on a phenotype as an aggregation of influences of individual markers. When conditioned on the

alleles of the markers (predicting the phenotype values given the genotype data), modeling using a single-

marker model can be seen (as we specifically show in a later section) as performing a logistic regression of

the marker alleles on the phenotype values. Note however that the single-marker model does not make the

assumption that the data is identically, independently distributed (iid) as opposed to the case of a true

logistic regression. At the first iteration of the search method (see Algorithm 1 of Section 4), when each

model is based on only one marker, the corresponding logistic regression has two predictors (assuming a

genetic marker can have two possible alleles). For the following iterations, as we add more markers to the

predictive markers set, the corresponding logistic regression is expanded to include more predictors (four,

six, and so on). It is important to note however that the MLN description of the models at different levels of

iteration does not change; what changes is a set of possible values of the MLN variables that correspond to

the predictors of the logistic regression. The method is then a systematic application of a template specified

by MLN to different subsets of the data. This template is essentially a model. We can use this template then

for adding biological domain knowledge into the probabilistic search—information about how the various

parts of a biological system interact or influence one another. For example, by using pair-wise models, we

expand the template to specifically allow for pair-wise gene interactions.

A pair-wise model encodes an aggregation of joint influences of pairs of markers together with their

interactions on a phenotype. This model is an MLN template that explicitly takes into account possible

gene interactions. As with the single-marker model, when predicting phenotype values from genotype

values, the pair-wise model can also be seen as a logistic regression. The difference between the single-

marker and the pair-wise models becomes apparent when we look closely at their corresponding forms of

regression. A logistic regression derived from the pair-wise model contains all the terms of the regression

of the single-marker model given the same set of markers, plus the terms that correspond to possible

interactions in each pair of the markers. If the markers have no gene interactions, then a corresponding pair-

wise model reduces to a single-marker model. On the other hand, if the markers do interact, then the pair-

wise model can encompass that effect when predicting the phenotype, even if the markers individually have

little influence on the phenotype and cannot therefore be detected as contributing in the single gene model.

This is why the pair-wise models have been successful at capturing synthetic gene interactions that confer a

phenotype only when both specific alleles of a pair of genes are present. However, if two genes have an

effect on phenotype individually, but also have a significant interaction, the interaction may be detected by

the single gene template as a non-additive effect of the two genes on prediction accuracy (because of the

induced correlation or dependence). The pair-wise model, on the other hand can detect significant inter-

action effects even if the single gene effects are in the noise and not detectable. The pair-wise model, while

more complex than the single gene model, is clearly just the tip of the iceberg of the kinds of complex

models that likely underlie real complex genetic traits.
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MLNs are powerful tools for systems genetics since they allow us to incorporate explicit biological

knowledge into genome-wide studies. For example, when using the pair-wise model, we can control the

interaction terms of the corresponding logistic regression through specific constraints in the logical rela-

tionships based on our biological knowledge. We could also define specific constraints concerning the gene

interactions in the model. Moreover, the logic component of MLNs makes it possible to represent large

probabilistic models (a logistic regression with many interaction terms, for example) in a highly compact

way. Using MLNs as model templates in genetic studies is a huge step beyond Genome-Wide Association

Studies (GWAS) and moves us substantially toward true systems genetics.

It is important to compare MLNs to other established and related modeling methods in computational

biology. Since MLNs are based on MRFs and FOL, it is natural that MLNs represent a generalization of

both of these (Richardson and Domingos, 2006). In the most extreme case, we can reduce MLNs simply to

FOL by setting all the weights in an MLN to an arbitrarily large number. Conversely, we can also reduce

MLNs to MRFs by assigning an MLN formula for each clique of an MRF and then using the cliques

potential as the weight of that formula. As with MRFs, we can also express any probability distribution

represented by a BN using MLNs. Consequently, other kinds of BNs, such as Hierarchical BNs (HBN) and

Dynamical BNs (DBN), can also be represented in the MLN framework. We note, for example, that an

HMM is actually a particularly simple form of a DBN.

To briefly summarize the relationships between these methods, we present a simplified table of prop-

erties here (Table 1). These elements will be described and discussed in the body of the review, and though

some of the entries in this table may be less than clear at this point, the table represents a rough map of the

methods review and of our intent. We revisit the summary of relationships more explicitly in a later section

(Fig. 3).

To further explore and analyze the relationship between MLNs and other methods, we will now consider

in more detail the probabilistic, logic, and structural components of each method and indicate where the

methods differ in how constrained their components are. The MLNs have the least constrained logic

component, and so we will use them as the general, master method. Next, in Section 2, we set out the

notation carefully, and we briefly introduce FOL, MRFs, and MLNs with a little more rigor. In Section 3,

we show explicitly the relationship between MLNs and BNs, and then discuss how MLNs fit into a broader

picture of probabilistic logic methods. To make it explicitly clear, we illustrate a specific MLN repre-

sentation of a BN in an example in Section 3. In Section 4, we illustrate the use of MLN-based methods

applied thus far to genetics. These examples show two types of models, single-marker and pair-wise

models, which are analyzed in Sections 5 and 6, respectively. Finally, we conclude by describing some

future, possible applications of MLNs to other biological problems in Section 7.

Table 1. Brief Summary of Some of the Key Elements of Probabilistic Logic Methods

Name Probabilistic component Logic component Graphical representation

Markov Logic

Networks

Markov Random Fields First-order logic General undirected graphs

Markov Random

Fields

Conditional independence

via graph separation

Propositional logic General undirected graphs

Bayesian Networks Conditional probability

chain rule

Propositional logic with

mutually exclusive constraints

and acyclicity requirements

Directed acyclic graphs

(DAGs)

Hierarchical Bayesian

Networks

Conditional probability

chain rule

Propositional logic with

mutually exclusive constraints

and structural requirements

Directed trees with links

inside each layer

Dynamic Bayesian

Networks

Conditional probability

chain rule, Markov

chain

Propositional logic with

mutually exclusive constraints

and structural sequential

requirements

Sequence of snapshots

(DAGs) connected in

order

Probabilistic Boolean

Networks

Markov chain Boolean logic Sequence of snapshots

connected in order
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2. PRELIMINARIES

We describe here all the necessary preliminary information, definitions, and notation for logic, MRFs,

and networks.

2.1. Logic

Among various systems of logic, the most general one we will use here is FOL. On the other hand,

propositional logic has the simplest semantics, but many concepts of propositional logic generalize to FOL

(Ershov and Palyutin, 1986).

In propositional logic, there are atomic (simple) assertions, consisting of propositional letters, and

compound assertions, composed from the atomic assertions and the logical connectives, and (^), or (n),

not (:), implication (0), and equivalence (5). An interpretation in propositional logic is a mapping that

assigns a truth value (True or False) to every propositional letter. Once the atomic assertions in a pro-

position have received an interpretation, we can compute the truth value of the proposition. We can do this

since all propositional formulas are inductively constructed from the atomic assertions, and the logical

connectives are interpreted with the truth table given in Table 2.

In propositional logic, propositions that are equivalent irrespective of their interpretations form an

equivalence class. A structure based on these equivalence classes is called Boolean algebra.

Using propositional logic, we are not able to express assertions about elements of structures. FOL is

considerably richer than propositional logic and allows these expressions. FOL allows the propositional

symbols to have arguments that range over elements of different structures, which allows us to make

assertions about the sets of elements of structures.

In FOL, there are atomic formulas, consisting of predicates applied to logical terms. A term is an entity

inductively constructed from variables and functions and has many levels of complexity. Note that the

simplest term is a value of a variable, called a constant, that can be seen as a function that takes no

arguments, or has the same value irrespective of its arguments. Note also that a simplest atomic formula is a

predicate that takes no arguments, which is similar to a propositional letter in propositional logic. In FOL,

there are formulas, composed inductively from the atomic formulas, the logical connectives, ^, n, :, 0,

5 (as in propositional logic), and the quantifiers, universal (c, the usual mathematical symbol for ‘‘each

and every’’) and existential (d, the usual mathematical symbol for ‘‘there exists’’). In order to assign

meaning to the symbols in FOL, we first must define a domain (a universe), which is the domain of the

logical variables. An instantiation of a first-order formula is, then, a replacement of variables of the formula

with logical terms. Note that the most common instantiation replaces the variables with the values (con-

stants) from their domain. An interpretation in FOL is a mapping that assigns a truth value to every atomic

formula for every instantiation of variables. An interpretation is then recursively defined on complex

formulas. Note that, given an instantiation, formulas composed from atomic formulas and logical con-

nectives, are interpreted just as in propositional logic. The interpretation of quantified formulas is as

follows:

(8x A(x)) is true iff A(d) is true for any d 2 Domain

(9x A(x)) is true iff A(d) is true for some d 2 Domain

A possible world (a Herbrand interpretation) in FOL is an assignment of truth-values to all possible

predicates whose variables are replaced with every possible combination of values. For example, one

Table 2. Truth Table Defining the Interpretation of Logical

Connectives of Propositional Logic

P Q :P P^Q P n Q P 0 Q P 5 Q

True True False True True True True

True False False False True False False

False True True False True True False

False False True False False True True
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possible world for the program (13) can be given in Table 3. Note that various model restrictions can be

applied by reducing the set of all possible predicates and a set of possible values for the variables.

2.2. Probabilistic graphical models

A BN is a probabilistic graphical model that represents random variables and their probabilistic de-

pendencies with a directed, acyclic graph (Pearl, 1988; Koller and Friedman, 2009). A BN is represented by

a directed, acyclic graph where each vertex represents a random variable and each edge represents a

conditional dependence between two vertices. Since the graph is directed, for every edge we distinguish a

parent, a vertex from which the edge originates, and a child, a vertex to which the edge goes. Consequently,

every vertex is assigned a conditional probability, in a table defining the probability of a variable given

every possible set of values of the parents of the vertex (corresponding to all edges going in the vertex). We

could say ‘‘conditioned on’’ those values. One powerful feature of BNs is their ability to graphically encode

conditional dependence between random variables: a variable is conditionally independent from any of

non-descendent variables, given the values of its parents. This feature allows BNs to specify probability

distributions in a compact and efficient way, but only those distributions that fit these constraints.

Consider a set of random variables V¼fV1‚ . . . ‚ VNg and consider a directed, acyclic graph G = (V, E)

based on the set V (thus, every Vi will be referred to as either a variable or a vertex). Given a parameter set

Y¼fY1‚ . . . ‚YNg, where each Yi is a conditional probability distribution of Vi given its parents,

Yi = Pr(Vijparents(Vi)), then CV, G, YD is a BN if a joint probability distribution on V can be factorized as

Pr (V)¼
YN
i¼ 1

Yi¼
YN
i¼ 1

Pr (Vijparents(Vi)): (1)

Note that in many applications of BNs researchers give causal meaning to the edges of a network. In

general, however, the directionality of edges does not imply causality. Note the significance of the fac-

torization is related to the chain rule for conditional probabilities. The interpretation of this rule is the

source of these incorrect causality arguments.

Consider here an example from a textbook (Luger, 2008). Suppose there is one event that can cause

orange barrels to appear on the road, B = true: a road construction, C = true. There is also one event that

can cause flashing lights to appear on the road, L = true: an accident, A = true. Suppose then that there are

two events that can cause bad traffic, T = true: either an accident or a road construction. This example can

be modeled by a BN shown in Figure 1, whose parameters are given in the tables below. Note that all the

variables are binary in this case.

The probabilistic independencies encoded by the BN in Figure 1 allows us to express a joint probability

distribution in a compact way with a small number of parameters. Here, the rule is the probabilities of

nodes not directly connected by edges are independent and can be multiplied:

Pr (C‚ A‚ B‚ T‚ L)¼ Pr (C) · Pr (A) · Pr (BjC) · Pr (TjC‚ A) · Pr (LjA):

MRFs are another kind of probabilistic graphical model, which is similar to BNs in how dependencies

are represented (Kindermann and Snell, 1980; Pearl, 1988; Koller and Friedman, 2009). As opposed to BNs

though, MRFs are defined on undirected graphs. Removing edge directionality eliminates the asymmetry

between a parent vertex and a child vertex, which allows MRFs to represent cyclic dependencies that

Table 3. Possible World (in FOL) for the Program (13)

Phenotype(s1, t1) True

Phenotype(s1, t2) False

� � � � � �
Phenotype(sN4

‚ tN3
) True

Allele(s1, m1, v1) False

� � � � � �
Allele(sN4

‚ mN1
‚ vN2

) False

Here predicates Phenotype(si, tj) and Allele(si, mk, vl) encode two facts (two data

points) that tj is a phenotype value of strain si and that vl is an allele of marker mk for

strain si.
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cannot be represented by BNs. Note however that there are dependencies, such as induced dependencies,

that can be represented by BNs, but not by MRFs. Thus, MRFs offer an alternative graphical semantics for

probability distributions where graph separation of two vertices by a separating set implies conditional

independence of the two vertices given the separating set, and we are able to make different conditional

independence statements in MRFs than in BNs.

More formally, given three disjoint sets of vertices, A, B, C, in an undirected graph, the set B separates A

from C in the graph if every path from A to C contains at least one vertex from B. We now use the definition

of graph separation to define an MRF. Consider a set of random variables V¼fV1‚ . . . ‚ VNg and consider

an undirected graph G = (V, E) based on the set V. An MRF defined on V is a probability distribution such

that there exists a G with a condition that, for disjoint sets of vertices A, B, C, if A and C are separated by B,

then vertices from A are conditionally independent from vertices from C given B. The conditional inde-

pendence property of MRFs implies that if we have two vertices Vi and Vj that are not directly connected,

then they are conditionally independent given all other vertices, i.e.,

Pr (Vi¼ vi‚ Vj¼ vjjV n fVi‚ Vjg¼ v n fvi‚ vjg)¼
¼ Pr (Vi¼ vijV n fVi‚ Vjg¼ v n fvi‚ vjg) Pr (Vj¼ vjjV n fVi‚ Vjg¼ v n fvi‚ vjg):

Here, Vi = vi stands for an event that a variable Vi takes on a value vi, V = v is shorthand for

V1¼ v1‚ . . . ‚ VN ¼ vN , and V y {Vi, Vj} is a set V without vertices Vi and Vj. Note also that two directly

connected vertices are not conditionally independent given all other vertices. This can be used to factorize

an MRF.

A clique c of a graph G is a subgraph such that all vertices of c are fully connected. A Gibbs distribution

defined on G is

Pr (V¼ v)¼ 1

Z

Y
c2Cl

exp (�/c(vc)): (2)

The so-called partition function Z ¼
P

v

Q
c2Cl exp (�/c(vc)) normalizes the probability to ensure thatP

v Pr (V¼ v)¼ 1. Here Cl is the set of all cliques of G, vc is a restriction of a configuration of v to a clique c,

and /c is a real-valued potential function assigned to a clique c. Given a Gibbs distribution on G,

Pr (V1¼ v1jV n fV1g¼ v n fv1g)¼
Pr (V¼ v)

Pr (V n fV1g¼ v n fv1g)

¼

Q
c2Cl

exp (�/c(v1‚ v2‚ . . . ‚ vN ))P
x

Q
c2Cl

exp (�/c(x‚ v2‚ . . . ‚ vN ))
¼

Q
fc2CljV12cg

exp (�/c(v1‚ v2‚ . . . ‚ vN))

P
x

Q
fc2CljV12cg

exp (�/c(x‚ v2‚ . . . ‚ vN))
:

Note that although for convenience we write /c(V1‚ . . . ‚ VN), this potential function depends only on the

vertices from the clique c, hence the right side of the derivation above depends only on the variables from

the cliques containing V1. Thus, the variable V1 is conditionally dependent on only the variables form the

same cliques it belongs to, which means that any Gibbs distribution is an MRF. On the other hand, the

FIG. 1. Structure of a road traffic

Bayesian network. Here B stands

for orange barrels on the street, C—

for a road construction, T—for

traffic, A—for an accident, and L—

for flashing lights.
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Hammersley-Clifford theorem proves the converse, that every positive MRF corresponds to some Gibbs

distribution.

Without loss of generality, we can represent an MRF conveniently as a log-linear model:

Pr (V¼ v)¼ 1

Z
exp

�X
i

wi fi(v)
�

‚ (3)

where the fi are real-valued functions defining features of the MRF and wi are the real-valued weights of the

MRF, that are the parameters of the model (Pietra et al., 1997). Features, that can be as simple as indicator

functions representing the presence of some attributes, and can overlap in arbitrary ways providing rep-

resentational flexibility.

2.3. Markov logic networks

Because of their flexibility and the potential for representing complex relationships we have proposed

using probabilistic logic methods for analyzing genetic data. From a set of related logic-based probabilistic

methods, we chose the most general of these, MLNs, and have used the method to identify genetic loci that

predict quantitative phenotypes (Sakhanenko and Galas, 2010).

MLNs merge MRFs with first-order logic (see Sections 2.1 and 2.2). Any strictly formal completely logic

system (not including probabilities) is not suitable for applications where the data contain any uncertainty

or noise. This is because a set of first-order formulas specifying a logical model is seen as a set of

uncompromising requirements so that the model is either true or false by comparison with the data. In other

words, models in FOL can only have probability values 1 or 0, and since noise and uncertainty exist in all

real data, no model is satisfied exactly and all must therefore be false. Since the data we wish to analyze are

actually rich in information while not being exactly satisfied, this is not a useful point of view. MLNs relax

this constraint by allowing a model with unsatisfied formulas with a lesser probability than 1. The model

with the smallest measure of unsatisfied formulas is the most probable, and will therefore represent the

most successful extraction of knowledge of reality from the data.

An MLN is a set of first-order formulas, Fi, with assigned weights wi. An MLN, together with the set of

possible values of its variables, is then converted to an MRF as follows. For every predicate of the MLN

whose variables are instantiated with every possible combination of values, we create one random variable

in the MRF. The value of the random variable is either 1 or 0 corresponding to whether the instantiated

predicate is true or false. Furthermore, for every possible instantiation of every formula, Fi, we construct

one feature of the log-linear MRF (see Section 2.2) whose value is either 1 or 0, depending on the truth

value of the instantiated formula. The weight of the MRF feature is the weight wi assigned to the formula Fi

in the MLN. Taking the original definition (3) and replacing all the features corresponding to false formulas

with 0, we obtain the probability distribution represented by an instantiated MLN

Pr (c)¼ 1

Z
exp

�X
i

wini(c)
�

‚ (4)

where ni(c) is a number of times the formula Fi is instantiated to a true proposition in the state c (which

corresponds to our data). Note that this probability distribution depends on the set of possible values of

MLN variables. Therefore, MLNs can be seen as templates specifying classes of MRFs, similar to FOL

specifying propositional formulas (see Section 2.1).

3. MARKOV LOGIC NETWORKS VERSUS BAYESIAN NETWORKS

3.1. Representing Baysian networks with conjunctive normal forms

Darwiche (2002) showed that a BN can be encoded in a Conjunctive Normal Form (CNF). A CNF C is a

conjunction of logical clauses Di : C¼D1 ^ . . . ^ DN , where a logical clause Di is a disjunction of either

propositional variables or their negations (although a variable and its negation cannot be in the same

clause): thus, Vi1 _ :Vi2 _ . . . _ ViK .

Following Darwiche’s notation, we first establish the alphabet of propositional logic corresponding to the

objects of a BN. We use two types of propositional symbols here, kv and hvju. A propositional symbol kv for
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each value v of a random variable V is interpreted as being true iff V = v. Note that V can have more than

two values. A propositional symbol hvju, for each value v of V and for each combination of values u of a set

U of parent vertices of V, is interpreted as being true iff there is an entry in a conditional probability table

whose value is Pr(V = vjU = u). These elements can be used to define precisely the logical structure

inherent in BNs.

Consider then a BN CV, G, YD and construct a CNF encoding this BN. First, for each network variable V,

whose possible values are v1‚ . . . ‚ vK , we must include the following clauses (disjunctions): kv1
_ . . . _ kvK

and :kvi
_ :kvj

‚ i 6¼ j. These clauses ensure that we use exactly one value for each random variable when

evaluating our BN. In addition, for each entry of every conditional probability table of the BN, we must

include in the CNF encoding the following clauses: kv ^ ku1
^ . . . ^ kuM

5hvju1‚ ...‚ uM
. These clauses ensure

that, while evaluating the BN, the evidence v‚ u1‚ . . . ‚ uM is necessary and sufficient for the BN to include a

conditional probability table that contains Pr (vju1‚ . . . ‚ uM).
Let us now construct a CNF encoding the road traffic BN from Figure 1. Our CNF is a conjunction of the

disjunctions (clauses) shown in Table 4. The CNF models (possible truth assignments to the propositional

variables) are in one-to-one correspondence with the instantiations of the network variables. Following

Darwiche (2002), we can now apply weighted model counting to the CNF by assigning weights to all the

letters and their negations: the weight of kv, :kv, and :hvju is 1, and the weight of hvju is a value

Pr(V = vjU = u) from a corresponding CPT of the BN. Consequently, the probability of an event e can be

computed by weighted model counting of the CNF in conjunction with e.

For example, one of the 32 (2jVj = 25) possible CNF models correspond to the following instantiation of

the random variables of the BN:

C)c2‚ A)a1‚ B)b1‚ T)t1‚ L)l2:

In this model, the following propositional letters are true:

kc2
‚ ka1

‚ kb1
‚ kt1 ‚ kl2 ‚ hc2

‚ ha1
‚ hb1jc2

‚ ht1jc2‚ a1
‚ hl2ja1

:

Consequently, the weight of this model is a product of weights of these propositional letters,

0.6 · 0.5 · 0.2 · 0.8 · 0.01 & 0.0005.

Thus, it is possible to represent and elucidate the logical structure of BNs using the CNF formulation. We

can use this in turn to make the connection directly to MLNs.

3.2. Representing Bayesian networks with Markov logic networks

The relationship between these two kinds of networks can best be elucidated by explicitly formulating

one in terms of the other. Let us then encode a BN using MLNs by a construction similar to the CNF

Table 4. Set of Propositional Clauses Representing Each Element of Every

Conditional Probability Table (CPT) of the BN Given in Figure 1

BN component CNF clauses

Variable C kc1
_ kc2

:kc1
_ :kc2

Variable A ka1
_ ka2

:ka1
_ :ka2

Variable B kb1
_ kb2

:kb1
_ :kb2

Variable T kt1
_ kt2 :kt1 _ :kt2

Variable L kl1
_ kl2 :kl1 _ :kl2

CPT for C kc1
5hc1

kc2
5hc2

CPT for A ka1
5ha1

ka2
5ha2

CPT for B kb1
^ kc1

5hb1 jc1
kb1
^ kc2

5hb1jc2

kb2
^ kc1

5hb2 jc1
kb2
^ kc2

5hb2jc2

CPT for T kt1
^ kc1

^ ka1
5ht1 jc1‚ a1

kt1 ^ kc1
^ ka2

5ht1jc1‚ a2

kt1
^ kc2

^ ka1
5ht1 jc2‚ a1

kt1 ^ kc2
^ ka2

5ht1jc2‚ a2

kt2
^ kc1

^ ka1
5ht2 jc1‚ a1

kt2 ^ kc1
^ ka2

5ht2jc1‚ a2

kt2
^ kc2

^ ka1
5ht2 jc2‚ a1

kt2 ^ kc2
^ ka2

5ht2jc2‚ a2

CPT for L kl1
^ ka1

5hl1ja1
kl1 ^ ka2

5hl1 ja2

kl2
^ ka1

5hl2ja1
kl2 ^ ka2

5hl2 ja2
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encoding in the previous section. Consider a set of random variables V¼fV1‚ . . . ‚ VNg of a BN, where

Vi 2 fv1
i ‚ . . . ‚ vK

i g. For each value v
j
i of every variable Vi we define a predicate IVi(x) such that

IVi(v
j
i)¼ True5Vi¼ v

j
i. In BNs, each random variable can take on one and only one value, therefore we

have to add the following formulas to the corresponding encoding MLN to specify this restriction:

9vk
i IVi(v

k
i ): (5)

(vk
i 6¼ vl

i) ^ IVi(v
k
i )0:IV(vl

i): (6)

Note that formulas (5,6) are ‘‘pure’’ FOL formulas (they are either true or false, meaning that their

probabilistic weight is large without bound.)

Consider a set of parameters Y¼fY1‚ . . . ‚YNg of the BN we are trying to encode, where each Yi is a

conditional probability table assigned to a variable Vi. Assuming variable Vi has K parents in the BN,

Vi1 ‚ . . . ‚ ViK , then

Yi � fPr (Vi¼ vijVi1 ¼ vi1 ‚ . . . ‚ ViK ¼ viK )‚ 8vi‚ vi1 ‚ . . . ‚ viKg: (7)

For every BN parameter Yi, the corresponding encoding MLN contains the following set of formulas

. . .

wi IVi(vi) ^ IVi1 (vi1 ) ^ . . . ^ IViK (viK ) (8)

. . .

where the weight wi¼ ln ( Pr (Vi¼ vijVi1 ¼ vi1 ‚ . . . ‚ ViK ¼ viK )). Note that the set (8) contains

Ni · Ni1 · . . . · NiK formulas, one formula per each element of the conditional probability table Yi. Here Ni

and Nij are the number of values variables Vi and Vij can take. If Pr (Vi¼ vijVi1 ¼ vi1 ‚ . . . ‚ ViK ¼ viK )¼ 0,

then we use a ‘‘hard’’ encoding formula (whose weight is large without bound):

:IVi(vi) ^ :IVi1 (vi1 ) ^ . . . ^ :IViK (viK ): (9)

As indicated in equation (4), an MLN represents the following distribution:

Pr (V1¼ v1‚ . . . ‚ VN ¼ vN )¼ 1

Z
exp

 X
fFig

wifi(v1‚ . . . ‚ vN )

!
‚ (10)

where the sum is taken over all formulas of the MLN. For each formula Fi, wi is its weight and fi is its

characteristic function:

fi(v1‚ . . . ‚ vN)¼
1‚ Fi(V1)v1‚ . . . ‚ VN)vN )¼ True‚

0‚ otherwise:

(

Because of the way we constructed this MLN to encode a BN, equation (10) is a product of elements of the

BN conditional probability tables corresponding to the BN instantiation v1‚ . . . ‚ vN . Note also that the

partition function Z defined as Z¼
P

v1‚ ...‚ vN
exp (

P
fFig wifi(v1‚ . . . ‚ vN )) is 1 in this case, since values of

random variables are mutually exclusive and all the formulas exhaust all the possibilities, thus we are

essentially adding up the joint probabilities for all possible instantiations of the set of random variables.

Let us now illustrate with an example how a BN can be encoded by an MLN. Consider a toy BN in

Figure 2.

FIG. 2. Structure of a toy Bayesian network. Here A

and B stand for two events.
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Let us define predicates IA(A) and IB(B):

IA(ai)¼ True5A¼ ai (11)

IB(bi)¼ True5B¼ bi (12)

The MLN encoding the toy BN in figure 2 consist of the following formulas

9x IA(x):

(x 6¼ y) ^ IA(x)0:IA(y):

9x IB(x):

(x 6¼ y) ^ IB(x)0:IB(y):

ln (0:6) IA(a1)

ln (0:4) IA(a2)

ln (0:9) IA(a1) ^ IB(b1)

ln (0:1) IA(a1) ^ IB(b2)

ln (0:2) IA(a2) ^ IB(b1)

ln (0:8) IA(a2) ^ IB(b2)

The top four first-order formulas of this MLN ensure that the arguments of IA and IB are mutually exclusive

and exhaustive, whereas the remaining formulas represent every element of the corresponding probability

tables of the BN. Note that the representational complexity of this MLN and the original BN is the same,

since we are essentially mapping every element of the BN to a formula in MLN. Note that the description

of the MLN is a bit lengthy, since we want to express exactly the same probability distribution represented

by the BN. As a result, most of the formulas of this MLN are propositional (since they were manually

instantiated) with explicitly specified weights. The representational power of MLN becomes clearer in this

example if we decide to learn the weights from data, in which case the propositional part of the MLN can

be replaced with a more concise

IA(þ x)

IA(þ x) ^ IB(þ y)

Moreover, this structure does not change, if we change the domains of the logical variables x and y. This

demonstrates both that BNs can be represented as MLNs and that part of this representation consists of

restrictions not necessary if we do not impose the BN constraints.

3.3. MLN in the landscape of probabilistic logic methods

Markov logic networks are based on a combination of MRFs with FOL. An MLN can be seen as a

template (Richardson and Domingos, 2006) for constructing MRFs according to specific logical patterns.

MLNs are more general than MRFs, since we can represent any MRF by an MLN (in the worst case we can

simply list all the cliques of the MRF using statements in propositional logic). On the other hand, an MLN

can be seen as a relaxation of otherwise strict logical rules specified in FOL, allowing us to define the likelihood

of logical models (Richardson and Domingos, 2006). MLNs can thus be seen also as a generalization of FOL:

when the weights are equal and infinitely large, MLNs become FOL. Richardson and Domingos showed that,

when all weights are equal and tend to infinity, an MLN represents a uniform distribution over all possible

worlds satisfying the set of first-order formulas (Richardson and Domingos, 2006). Moreover, using the MLN

with infinitely large weights, we can check whether or not a formula can be logically inferred from the set of

MLN formulas by computing the probability that the formula is true and checking whether it is true or not.

Figure 3 schematically depicts the relationship between MLNs and other well-known probabilistic

methods. Each method is classified here according to three major components: a probabilistic component, a

logic component, and a graphical representation. Note that these components are not completely separate

from each other, for example the graphical representation is intrinsically connected with the probabilistic

dependency specified in the probabilistic component. On the other hand, using these three components

allows us to illustrate the overall relationships between MLNs and other probabilistic methods. In par-

ticular, we can see how methods derive from others by imposing more constraints.
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In Figure 3, we position MRFs and BNs on the same level, right under MLNs, since both are the most

expressive methods among those based on propositional logic. MLNs generalize MRFs and BNs by using

FOL. Note that BNs typically imply some (temporal) ordering: a true value of a variable may ‘‘cause’’

another variable to be true. Although MRFs imply no such ordering, MLNs use FOL to make such an

implication (see previous section). Two well-known methods, HBNs and DBNs, are the specialized ver-

sions of BNs; therefore, we place them right under BNs in Figure 3. HBNs and DBNs are essentially BNs

with additional structural constraints: an HBN is a directed hierarchical tree where some ‘‘sibling’’ vertices

may be linked, and a DBN is a sequence of BNs, representing a systems snapshot, such as a systems state at

a moment of time, interlinked in one direction, representing a series of events, such as a progression of

time. MLNs, which can express BNs, are also able to represent HBNs and DBNs, whose structural

constraints can be easily expressed in FOL. Another well-known class of probabilistic models, probabilistic

boolean networks (PBN), deals with systems dynamics, similarly to DBNs. Moreover, a very close rela-

tionship between PBNs and DBNs was shown in Lahdesmaki et al. (2006). Thus, we place PBNs on the

same level with DBNs and directly under MLNs, since Boolean logic, which PBNs are based on, is directly

generalized by FOL.

4. THE APPLICATION OF MLNS TO GENETICS

We have used MLNs to study the interactions of genetic loci in predicting phenotypes (Sakhanenko and

Galas, 2010) and to capture the influence of these interconnected loci on phenotypes. We use a regression-

type MLN: given N predictor variables Xi (that could represent alleles of genetic markers), predict a value

of an outcome variable Y (that could represent a phenotype, for example). Algorithm 1 summarizes the

method that handles a model selection problem of finding a model that captures best the probability

distribution over the training data:

Algorithm 1: MLN-based predictor selection

foreach predictor variable Xi do

repeat

shuffle data;

train and test MLN(Xi, Known, Y);

obtain a cross-validation score e(Xi);

until the average score e(Xi) does not change;

if e(X̂i) is a max outlier then

Known¼Known
S
fX̂ig;

go to line 1;

The inner repeat-until loop trains and evaluates the same model on a reordered, or shuffled, data set:

since MLN modeling is path-dependent, this loop reduces the effect of path-dependency on a prediction

FIG. 3. The relationships bet-

ween MLN and different probabi-

listic representations.
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score. The outer foreach loop traverses the set of all predictor variables (genetic markers) and computes

how well each marker, together with a small set of known markers, predicts an outcome variable (a

phenotype). Once all the markers in the given set are traversed and assigned a score, the most significantly

predictive marker is selected and added to the set of known markers, prompting another iteration of the

search procedure. The search stops when there are no markers left with significant predictive power. This

heuristic search keeps the structure of MLN and the outcome variable Y the same, but considers different

subsets of predictor variables Xi in order to find a model that best ‘‘explains’’ the variation of Y (Sakha-

nenko and Galas, 2010). In the next sections, we present and compare two types of MLNs using Algorithm 1,

single-marker models and pair-wise models. We also explain what it means for two markers to predict a

phenotype together when using each of these models.

5. SINGLE-MARKER MODELS

We have used MLNs as an underlying model representation in the method that detects genetic loci

determining quantitative phenotypes (Sakhanenko and Galas, 2010). This method is an iterative procedure

that scans the set of all possible genetic markers during every iteration and selects a marker that, in

combination with other known predictors, has a significant predictive power of the phenotype. The selected

marker is then added to the set of known predictors and the method continues to the next iteration.

The first iteration of the method is similar to GWAS in the following way. The method scans all the

markers and finds those markers whose individual predictive power is high. However, our method is

different from the traditional statistical tools of GWAS: during the next iterations, our method searches for

subsets of markers whose compound effect on the phenotype is high. Consequently, our method is a model

selection procedure, where the relationships between markers (gene interactions) and phenotypes are

hypothesized and encoded by a model, and the method then evaluates all possible such models and

identifies the most probable one from the available data. Furthermore, the models are represented using

MLNs allowing us to bring the power of both logic and probabilistic reasoning into genetic analyses, which

will allow direct extension to arbitrarily complex models.

5.1. The connection with logistic regression

Following the MLN syntax used in Alchemy (Kok et al., 2007), a single-marker model is expressed by

the following program:

Phenotype(Strain‚ þ T) (13)

Allele(Strain‚ þMarker‚ þV)0Phenotype(Strain‚ þ T):

Here, Phenotype and Allele are logical predicates, and Strain, Marker, V, and T are variables. Assuming

Marker = m1, V = v1, T = t1, and Strain = s1, predicates Phenotype(s1, t1) and Allele(s1, m1, v1) encode

two facts (two data points) that t1 is a phenotype value of strain s1 and that v1 is an allele of marker m1 for

strain s1. Furthermore, a logical formula, Allele(Strain, m1, v1) 0 Phenotype(Strain, t1), encodes the

following statement:

for all strains‚ an allele value v1 of a marker m1 (14)

implies a phenotype value t1:

If Marker 2 fm1‚ . . . ‚ mN1
g, V 2 fv1‚ . . . ‚ vN2

g, T 2 ft1‚ . . . ‚ tN3
g, and Strain 2 fs1‚ . . . ‚ sN4

g, then

program (13) is actually a set of N3 instances of a first-order formula (15) and N1 · N2 · N3 instances of a

first-order formula (16) with separate weights wi and wjkl correspondingly:

. . .

wi : Phenotype(Strain‚ ti) (15)

. . .

wjkl : Allele(Strain‚ mj‚ vk)0Phenotype(Strain‚ tl) (16)

. . .
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Note that all variables of (15,16) are replaced with various combinations of values, except for the

variable Strain, which represents the specific, representative organism. Consequently, each formula rep-

resents a truth statement for any value of the variable Strain. A weight assigned to a formula indicates the

probability of the truth of the encoded statement: the higher the weight, the greater the difference in log

probability between the world that satisfies the statement and the one that does not. Note that while a

weighted formula (16) models a probability distribution over logic statements (14), a weighted formula (15)

models a binomial probability distribution of the phenotype values across all possible strains.

The model represented by the formulas (15) and (16) is equivalent to

. . .

wi : Phenotype(Strain‚ ti) (17)

. . .

wjkl : Allele(Strain‚ mj‚ vk) ^ Phenotype(Strain‚ tl) (18)

. . .

if conditioned on Allele(Strain, mi, vj) for all i and j. The equivalency between models (15, 16) and (17, 18)

will be discussed later in this section.

Let us introduce characteristic functions aij and pk:

aij¼
1‚ allele of marker mi is vj‚

0‚ otherwise

�
pk¼

1‚ phenotype is tk:
0‚ otherwise

�

Note that aij = 1 and pk = 1 for a strain s iff the corresponding predicates Allele(s, mi, vj) and Phenotype

(s, tk) are true. The MLN represented by the formulas (17, 18) encodes the joint probability distribution (see

equation (4)):

Pr (pk‚ a11‚ . . . ‚ aN1N2
)¼ 1

Z
exp

 
wkpk þ

XN1

i¼ 1

XN2

j¼ 1

wijkaijpk

!
: (19)

This equation yields a logistic regression formula where every characteristic function aij of each allele is a

binary predictor variable of a phenotype function pk (an outcome variable of the logistic regression):

log

 
Pr (pk ¼ 1ja11‚ . . . ‚ aN1N2

)

Pr (pk ¼ 0ja11‚ . . . ‚ aN1N2
)

!
¼wk þ

XN1

i¼ 1

XN2

j¼ 1

wijkaij: (20)

Let us now come back to the equivalency of models (15, 16) and (17, 18). For simplicity we will compare

the following two models:

w1 : B(x)

w2 : A(x) ^ B(x) (21)

w01 : B(x)

w02 : A(x)0B(x) (22)

As in our earlier discussion, we introduce two characteristic functions

a¼ 1‚ A is true‚

0‚ otherwise‚

�
b¼ 1‚ B is true‚

0‚ otherwise:

�

We also introduce two binary feature functions representing a truth-value of a compound formula

f1¼
1‚ A ^ B is true‚

0‚ otherwise‚

�
f2¼

1‚ A 0 B is true‚

0‚ otherwise:

�
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Table 5 provides the truth table for logical concatenation and implication. This table can be rewritten in

terms of the characteristic functions (Table 6) revealing the dependency of f1 and f2 on a and b, which can

be written as:

f1¼ ab and f2¼ 1� a(1� b):

The expression of f2 in terms of a and b is also evident if we recall an equivalent representation of the

logical implication through the concatenation and negation: (A 0 B) h:(A^:B), sometimes termed a

‘‘contrapositive.’’

In terms similar to (19), we can now express the joint probability distribution encoded by model (21) as

Pr (b‚ a)¼ 1

Z
exp(w1bþw2f1): (23)

Rewriting this as a logistic regression model, we get:

Pr (b¼ 1ja)

Pr (b¼ 0ja)
¼ exp(w1þw2f1jb¼ 1)

exp(w2f1jb¼ 0)
¼

¼ exp(w1þw2a)

exp(0)
¼ exp(w1þw2a): (24)

Model (22) encodes the joint probability distribution expressed as:

Pr (b‚ a)¼ 1

Z
exp(w01bþw02f2): (25)

and can therefore be represented as a logistic regression formula:

Pr (b¼ 1ja)

Pr (b¼ 0ja)
¼ exp(w01þw02f2jb¼ 1)

exp(w02f2jb¼ 0)
¼ (26)

¼ exp(w01þw02)

exp(w02(1� a))
¼ exp(w01þw02a):

We can see then that, conditioned on a, the logistic regression models (24) and (25) are equivalent.

5.2. Single-markers models in Algorithm 1

Working with haploid yeast genetics, every marker can have only 2 allele values, A and B, so N2 = 2.

When applying a single-marker model (13) to one marker only (such as when we perform the first iteration

of the marker search in Algorithm 1), N1 = 1 and the simplified model (20) becomes

Table 6. Relationship Between Characteristic Functions

a, b, Representing Two Propositions, and f1, f2, Representing

a Conjunction and Implication Based on These Propositions

a b f1 f2

1 1 1 1

1 0 0 0

0 1 0 1

0 0 0 1

Table 5. Truth Table for Logical Conjunction and Implication

A B A^B A 0 B

True True True True

True False False False

False True False True

False False False True
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log

 
Pr (pk ¼ 1ja11‚ a12)

Pr (pk ¼ 0ja11‚ a12)

!
¼wkþw11ka11þw12ka12‚ (27)

where

a11¼
1‚ allele of m1 is A‚

0‚ otherwise

�
a12¼

1‚ allele of m1 is B:
0‚ otherwise

�

Figure 4 shows a structure of a MRF imposed by the logical formulas of the single-marker MLN (13)

applied to one marker. Each node of the structure graph corresponds to a predicate (either Allele or

Phenotype) whose variables are substituted with every possible combination of values. There is an edge

between two nodes of the graph if the corresponding predicates appear in the same formula. In our

example, edges show all possible dependencies of Phenotype on Allele: probabilistic dependency of p1 and

p2 on a11 and a12, and thus every edge is assigned a probabilistic weight. Note that the graphical structure is

disjoint, since there are no edges between nodes corresponding to different strains. Note that edges, such as

Allele(s1, m1, A) - Phenotype(s1, 0), Allele(s2, m1, A) - Phenotype(s2, 0), etc, are instances of the same

statistical template, Allele($, m1, A) - Phenotype($, 0), and thus are assigned the same weight, learned

from the entire network.

At the second iteration of Algorithm 1 using a single-marker model, each model is applied to two

markers, one of which is a known marker ~m1 selected after the first iteration. Therefore, N1 = 2 and the

model (20) becomes

log

 
Pr (pk ¼ 1ja11‚ a12‚ a21‚ a22)

Pr (pk ¼ 0ja11‚ a12‚ a21‚ a22)

!
¼wk þw11ka11þw12ka12þw21ka21þw22ka22‚ (28)

FIG. 4. Structure of a logical

model underlying a single-marker

MLN based on one marker. A

single-marker MLN, defined by

(13) and applied to a single marker

m1, encodes a MRF. For the illus-

tration we assumed there are sN

strains, and the phenotype can have

two values. Al() and Ph() stand for

Allele() and Phenotype().

FIG. 5. Structure of a logical

model underlying a single-marker

MLN based on two markers. A

single-marker MLN, defined by

(13) and applied to a pair of

markers m1 and m2, encodes a

MRF. We assume there is a data set

with sN strains, and for each strain

the phenotype can have one of two

possible values. In brown we show

the subnetwork, which is the entire

network in figure 4, illustrating the

increase of complexity of the

model when switching to the sec-

ond iteration of Algorithm 1.
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where

a11¼
1‚ allele of ~m1 is A‚

0‚ otherwise

�
a12¼

1‚ allele of ~m1 is B‚

0‚ otherwise

�

a21¼
1‚ allele of m2 is A‚

0‚ otherwise

�
a22¼

1‚ allele of m2 is B:

0‚ otherwise

�

Figure 5 shows a graphical representation of a model generated for two markers at the second iteration.

Notice that this model is similar to the model generated at the first iteration (Fig. 4). The only difference is

in the number of predictor variables.

6. PAIR-WISE MODEL

Like a single-marker model (13), a pair-wise model is expressed by the following program including

more than one marker and variant:

Phenotype(Strain‚ þ T)

Allele(Strain‚ þM1‚ þV1) ^ Allele(Strain‚ þM2‚ þV2)0 (29)

0Phenotype(Strain‚ þ T):

Assuming M1 = m1, V1 = v1, M2 = m2, V2 = v2, and T = t1, this program encodes a statement: for all

strains, the allele values v1 and v2 of markers m1 and m2 together (as a pair) imply a phenotype value t1.

As in the case of a single-marker model, the pair-wise MLN (29) encodes a joint probability distribution:

Pr (pm‚ a11‚ . . . ‚ aN1N2
)¼ 1

Z
exp

 
wmpmþ

XN1

i¼ 1

XN2

k¼ 1

XN1

j¼ 1

XN2

l¼ 1

wkl
ijmaikajlpm

!
: (30)

Since a genetic marker cannot have two different allele values at the same time, which means that

aimain = 0 if m s n, expression (30) can be rewritten as:

Pr (pm‚ a11‚ . . . ‚ aN1N2
‚ b11

11‚ . . . ‚ bN1N1

N2N2
)¼

¼ 1

Z
exp

 
wmpmþ

XN1

i¼ 1

XN2

j¼ 1

wijmaijpmþ (31)

þ
X

(i‚ j)2N1 · N1
i6¼j

X
(k‚ l)2N2 · N2

wkl
ijmbkl

ij pm

!
‚

where aij are the same characteristic functions as in the single-marker model case, and

bkl
ij ¼

1‚ allele of marker mi is vk and allele of marker mj is vl:
0‚ otherwise

�

Note that bkl
ij ¼ aikajl.

The pair-wise MLN can be seen as a logistic regression model where all characteristic functions aij and

bkl
ij are the predictor variables of an outcome variable pm:

log

 
Pr (pm¼ 1ja11‚ . . . ‚ aN1N2

‚ b11
11‚ . . . ‚ bN1N1

N2N2
)

Pr (pm¼ 0ja11‚ . . . ‚ aN1N2
‚ b11

11‚ . . . ‚ bN1N1

N2N2
)

!
¼wmþ

XN1

i¼ 1

XN2

j¼ 1

wijmaijþ
X

(i‚ j)2N1 · N1
i 6¼j

X
(k‚ l)2N2 · N2

wkl
ijmbkl

ij : (32)

Note that this can also be seen as logistic regression with interaction terms of every pair of predictor

variables aij.
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When applying a pair-wise model (29) to two markers, N1 = 2 and the simplified model (32) becomes

log

 
Pr (pm¼ 1ja11‚ a12‚ a21‚ a22)

Pr (pm¼ 0ja11‚ a12‚ a21‚ a22)

!

¼wmþw11ma11þw12ma12þw21ma21þw22ma22þ
þw11

12mb11
12þw12

12mb12
12þw21

12mb21
12þw22

12mb22
12þ

þw11
21mb11

21þw12
21mb12

21þw21
21mb21

21þw22
21mb22

21: (33)

Recall that pm is a characteristic function equal to 1 when the phenotype has a value tm. Note that this

long expression of logistic regression with many predictor variables is compactly represented by a pair-

wise model (29) emphasizing the representational power of MLN.

The second line of equation (33) is similar to equation (28) of the single-marker model. That is why all

the informative markers identified by algorithm 1 using a single-marker model can be also identified using

a pair-wise model. The third and fourth lines of equation (33) are the interaction terms between alleles of

different markers. Consider two markers that have a specific combination of alleles that are predictive of a

phenotype, but that have no effect of the phenotype on their own (for example if the markers have

a synthetic interaction). Equation (28) would not work on these markers, since each weight representing a

predictive power of an individual marker will be zero. Similarly, the second line of equation (33) would

disappear as well (the corresponding weights would also be zero). However, some of the weights of the

interaction terms of equation (33) would not be zero allowing us to detect the synergy between two markers

by using the pair-wise model.

Figure 6 illustrates a graphical representation of a pair-wise model generated for two markers. Notice

that this model is somewhat similar to the single-marker model generated at the second iteration (Fig. 5).

However, the major difference is that in a pair-wise model predictor variables are interconnected,

forming cliques with phenotype variables (see blue edges in Fig. 6). Moreover, the probabilistic de-

pendency is modeled between two predictor variables (alleles) and an outcome variable (a phenotype

value); thus, the weights are assigned to every triangle (clique) connecting two marker alleles and a

phenotype value.

Table 7 summarizes the three models described above: a single-marker MLN based on one and two

markers and a pair-wise MLN based on two markers, and their corresponding representation as logistic

regressions. The complexity of the regression formula for the pair-wise case points to the significant

advantage of the first order logic expression, even when as here they can be effectively expressed as logistic

regressions. The compactness of the expression of the model is striking. Many more complex models

cannot, of course, be expressed at all as logistic regressions, even extremely large ones. The power of the

compactness of expression of models in MLNs is illustrated by the rapid expansion of the equivalent

logistic regressions shown above, relative to the modest expansion of the model complexity. Since we are

FIG. 6. Structure of a logical

model underlying a pair-wise MLN

based on two markers. A pair-wise

MLN, defined by (29) and applied

to a pair of markers m1 and m2,

encodes a MRF. As before, we as-

sume a data set with sN strains and

two phenotypes. In brown we show

the sub-network, which is the entire

network in figure 5, illustrating the

increase of complexity when

switching from a single-marker

model to a pair-wise model. All the

new edges, not present in figure 5,

correspond to the pair-wise inter-

actions and are colored in blue.
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only scratching the surface of the underlying complexity of models that will be useful in future, the lesson

here is evident.

7. OTHER APPLICATIONS IN BIOLOGY AND MEDICINE

In its most abstract form, genetic analysis is directed to the detection of causative patterns in heritable

genomes that predict well the phenotypes of interest. In a similar vein, the detection of patterns in data that

predict experimental outcomes is at the heart of almost any modern biological or medical problem. Framed

this way we can quickly conclude that MLNs and other probabilistic logic methods are well suited to the

solution of these kinds of problems. Problems in this class include predicting sub-networks of the func-

tioning complex networks that are central to cellular function (we do not presume to infer the entire

networks of any system quite yet). This includes inferring networks from mRNA expression data like array

data and RNA Seq data. An important characteristic of biological problems of this kind is that we

sometimes know something about the system, or have specific hypotheses about the system, that need to be

incorporated into the models during inference. MLNs are perfectly well suited to this kind of problem.

Classes of data like mRNA expression data—which include microRNA data, alternative splicing data

(exon usage and alternative UTR use), protein expression level data, metabolite level data, transcription

factor binding site occupation levels, histone modification and methylation patterns, and a variety of other

kinds of molecular and non-molecular data—present the same kinds of problems. The challenge is to use

these different data sets together to extract more information about the reality of the complex models that

predict function than can be inferred from the individual sets by themselves. Since we also know something

about how one kind of data is related to the others (e.g., proteins are made from mRNA at a rate determined

by their sequences, translation factors and the levels of modulators like miRNAs) we need to represent this

knowledge as constraints on the models when using the data together. This concept is a central aspect of

true data integration and, as the knowledge of biology and medicine grows, is a major potential application

for the methods we describe here.

8. CONCLUSION

Probabilistic logic methods, particularly those that use graphical model representations as a central part

of the structure, are powerful tools in the analysis of data. They are particularly potent in dealing with

biological data, as the field is currently in a state where the detailed data generation volume is enormous

and the knowledge of the underlying complex systems is substantial, but very partial and often uncertain,

with non-negligible quantitative error levels. Taking all of this into account—huge diverse data sets, partial

knowledge of various types—is all but impossible without the systematic structures provided by methods

and models that combine the rigors of representing and tracking multiple logical relationships with the

Table 7. Summary of Single-Marker MLNs Based on One and Two Markers

as Well as a Pair-Wise MLN Based on Two Markers

First-order logic Logistic regression

1 Allele(S, + M, + V)0 log
�

Pr (pk ¼ 1ja11‚ a12)
Pr (pk ¼ 0ja11‚ a12)

�
¼wk + w11ka11 + w12ka12

Phenotype(S, + T), M = m1

2 Allele(S, + M, + V)0 log
�

Pr (pk ¼ 1ja11‚ a12‚ a21‚ a22)
Pr (pk ¼ 0ja11‚ a12‚ a21‚ a22)

�
¼

Phenotype(S, + T), M 2 fm1‚ m2g wk + w11ka11 + w12ka12 + w21ka21 + w22ka22

3 Allele(S, + M1, + V1)^ log
�

Pr (pm ¼ 1ja11‚ a12‚ a21‚ a22)
Pr (pm ¼ 0ja11‚ a12‚ a21‚ a22)

�
¼

Allele(S, + M2, + V2)0 wm + w11ma11 + w12ma12 + w21ma21 + w22ma22 +
Phenotype(S, + T), M 2 fm1‚ m2g w11

12mb11
12þw12

12mb12
12þw21

12mb21
12þw22

12mb22
12þ

w11
21mb11

21þw12
21mb12

21þw21
21mb21

21þw22
21mb22

21

The left column shows the formulas expressed in FOL defining the structure of the models, and the right column shows their

corresponding representation as logistic regressions.
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scoring of likelihoods reflecting reality in a balanced and integrated fashion. Neither strictly logical nor

completely statistical and probabilistic methods can properly manage the complexity that is presented by

the current state and dynamics of modern biological and medical research. Together they hold a great deal

of promise.

We have summarized a wide range of both simple and complex mathematical and computational

advances by focusing on a very general method, the MLN method, and attempting to put it into the context

of some methods more familiar to most experimental and computational biologists. In the computational

analysis of biological problems, analyzing data, inferring networks and complex models, and estimating

model parameters, it has been common to use a range of methods based on various probabilistic logic

models, sometimes collectively called ‘‘machine learning’’ methods. Inference methods based on the

widely used BNs fall into this class, as do those based on HBNs, PBNs, and MLNs. We have tried to

illustrate this landscape of methods, particularly contrasting MLNs with BNs, and describe some of the

strengths and limitations. The pivotal concepts for the sketching of this landscape and comparisons of

methods has been probabilistic graphical models, the structures of the graphs, and the scope of the logical

language repertoire (from FOL to Boolean logic).

While these methods are powerful, the computational intensity is substantial for the most general, and

therefore most potent of them. This certainly includes the application of MLN, for which the pair-wise

genetic model has proven to be extremely computationally intensive. This limitation is, of course,

temporary for several reasons, but two of them are evident. First, the available computing power to be

brought to these problems is increasing rapidly and the costs are dropping. In addition, the engineering of

software, and specialized hardware, for efficiency and speed in executing these algorithms, particularly

using parallelization methods and hardware embodiment of algorithms, is substantial and growing. It is

clear that the complexity of our understanding of biological problems, and the application of probabilistic

logic methods are both at the very beginnings of their growth curves, and the future is very rich with

possibilities.
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