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ABSTRACT

We present a general method for assessing threading score significance. The threading score
of a protein sequence, thread onto a given structure, should be compared with the threading
score distribution of a random amino-acid sequence, of the same length, thread on the same
structure; small p-values point significantly high scores. We claim that, due to general
protein contact map properties, this reference distribution is a Weibull extreme value dis-
tribution whose parameters depend on the threading method, the structure, the length of the
query and the random sequence simulation model used. These parameters can be estimated
off-line with simulated sequence samples, for different sequence lengths. They can further be
interpolated at the exact length of a query, enabling the quick computation of the p-value.

Key words: computational molecular biology, Markov chains, sequence analysis, statistics,

stochastic process.

1. INTRODUCTION

The three-dimensional (3D) structure of a protein is the obligate mediator between its se-

quence and its function. For the time being, experimental methods remain the only way to obtain an

accurate description of the 3D structure of a protein. Unfortunately these methods—x-ray crystallography

and nuclear magnetic resonance spectroscopy,—unlike the latest sequencinq technologies, are far from being

high-throughput, and the gap between experimentally known 3D structures and known sequences is widening

extremely fast. There is, therefore, a great interest for in silico prediction methods.

Ab initio methods, which purport to solve the problem from physical and chemical first principles, are

hardly tractable (Duan and Kollman, 1998). More recently, de novo methods that rely on the assembly of

known 3D structure fragments provided interesting results (Bradley et al., 2005). Significant achievements

in this direction would be of great interest, since these methods could, in contrast with the ones based on

comparative modeling, provide information about still undiscovered protein 3D structures.

In silico prediction based on comparative modeling can be used to assess the 3D structure of a newly

discovered sequence, provided a similar 3D structure has already been experimentally determined. It can

also be used as a mean of selecting proteins whose 3D structures are novel and, hence, represent excellent

targets for an experimental determination.
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Comparative prediction. Comparative methods rest on the concept of homology. Two proteins that

share a common ancestor are homologous. The ancestor protein had a particular sequence, 3D structure and

function. Its modern descendants, in spite of multiple substitutions, insertions and deletions in their se-

quences, may still have recognizably similar sequences, have close 3D structures and may have kept an

analogous function. Actually, the 3D structure is a much more robust criterion than the sequence for

judging of the homology of two proteins. Sequences can have independently diverged a great deal from

their common ancestor. On the other hand, 3D structures, because they are critical to maintain the function,

are largely preserved, at least in their general features : their fold. The fold refers to the general organi-

zation of the principal secondary structures in space. For instance, some globin proteins, that are beyond

question homologous, exhibit about 15% sequence identity only but have close 3D structures, about 2.5 Å

root-mean-square deviation (RMSD).

Sequence comparison. Therefore, the easiest 3D structure prediction method consists in the com-

parison of the query sequence with all protein sequences whose 3D structures are experimentally known.

Provided such a sequence exists, with sufficiently high similarity, one can predict with good confidence,

that both proteins are homologs with conserved 3D structure and, to some extent, function.

BLAST and FASTA are the most popular pairwise sequence comparison methods, but they often fail in

remote homolog cases (i.e., homologs with low sequence similarity). To improve the performance of

similarity detection, several methods that make use of multiple alignments were proposed, for instance,

PSI-BLAST and SAM, the latter being based on hidden Markov models. In all cases, homology signifi-

cance is determined by reference to the score distribution under some suitable random sequence model.

Folds and threading. Threading (fold recognition) is an essential mean to recognize a remote rela-

tionship between a query protein and a protein of known 3D structure. It is used when sequence comparison

methods fail to detect homology between sequences.

The rationale behind threading techniques is twofold. First of all, as already mentioned above, 3D

structures are better conserved than sequences amongst homologous proteins. Also, it has long been

recognized that the number of known structures, is far much less than the number of protein sequences

whose structures were experimentally determined. Although difficult to estimate, for intrinsic reasons

complicated by sampling biases in the databases, the number of structures existing in nature, according to

different publications, is estimated to lie between 1000 and 8000 (Chothia, 1992; Orengo et al., 1994;

Wang, 1996; Godzik, 1997; Wang, 1998; Govindarajan et al., 1999). In other words, the very large set of

protein sequences maps into a much smaller set of 3D structures, by at least three orders of magnitude

according to the data we have currently. There are two conceivable complementary reasons that might

explain this observation: (i) the number of existing folds is somehow limited by protein physical-chemical

properties, and (ii) many modern proteins are indeed homologous, because they decend from a relatively

small set of proteins that existed before LUCA (Last Universal Common Ancestor). Notice that these

considerations do not appear to be true for viruses, particularly phages.

Threading methodology consists in trying to align the query sequence onto structural elements of a set of

templates representative of all known structures, and to decide whether or not the query fits one of these

structures.

Most threading methods have four major components:

1. A data base of protein templates.

2. A score function that measures the fitness of a particular alignment of a sequence with a template.

3. An alignment algorithm which provides, for any query sequence and any template, the highest score

(hereafter called the threading score) and the corresponding alignment.

4. A reference score distribution, which enables the user to calculate the p-value of any threading score

and thus to compare different alignments.

Aim. We address, here, the last-mentioned point. The issue is to decide whether or not the threading

score we obtained, when aligning a given query sequence onto a fold, can be considered as an evidence that

the query structure belongs to that fold. For this purpose, we need to determine what is the score probability

distribution when the query sequence has no relationship with the fold it is forced to align with.

The statistical significance of threading scores is still an unsolved question and, we are aware of only a

few studies tackling this problem (Bryant and Altschul, 1995; Minry et al., 2000; Panchenko et al., 1999

2000). Here, we aim at deriving a statistical significance of threading scores, based on extreme-value

distributions.
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2. THEORETICAL FRAMEWORK

2.1. Problem formalization

Sequence-fold alignment. Homologous proteins conserve, during evolutionary times, a ‘‘core’’ sub-

structure consisting of important structural parts such as a-helices, b-strands, turns, or functional regions

such as active sites, dispersed throughout the sequence (Chothia and Lesk, 1986). Such conserved blocks

and their mutual arrangement constitute the basis of any classification of structures as folds.

A fold is therefore a class of protein structures, or domain structures, which share a similar architecture.

For the purpose of threading methods, it is described in a way which makes it generic and representative of

all the class, as a mandatory series of blocks connected by loops whose lengths and compositions are

expected to vary. A major ingredient of this description is the contact map, a graph whose vertices are the

amino-acids of the blocks and where edges join amino-acids in close contact in the fold (Fig. 1).

The alignment of a sequence onto a fold consists of the alignment of successive sequence segments with

the blocks of the fold, in the same order. Details, without consequences for our purpose, depend on the

threading method. Some methods allow blocks to be skipped. As distances between blocks are not fixed,

there is usually a huge number of different alignments of a given sequence onto a given fold.

Let A¼A1‚ A2‚ . . . ‚ An be a sequence on the finite alphabet of amino-acids A, and C be a given fold

containing m blocks, C1‚ C2‚ . . . ‚ Cm, each of length lj‚ j¼ 1‚ . . . ‚ m. An alignment I of the sequence A

onto the fold C is defined by the terms of A which start each block. Let i1‚ i2‚ . . . im be the corresponding

indices. Each choice of m indices such that i1 > 0, i2 ‡ i1 + l1, i3qi2þ l2‚ . . . ‚ imqim� 1þ lm� 1 and

im + lm £ n, defines a specific alignment, and all alignments can be characterized in this way.

Score. The score associated with a given alignment of the query onto a fold, is a sum of terms which

depend on the amino-acid pairs brought in contact by the alignment (Fig. 1). The exact definition of these

terms depends on the precise threading method under consideration, without much importance for our

purpose; usually, these terms also depend on the local environment (e.g., surface exposed or buried

positions in the 3D structure). Threading methods can take into account the substitution cost of a residue

pair in contact in the native structure by a new one, or the energetic cost of placing two amino acids at

particular sites in the structure, with a characteristic structural environment, or both (Bryant and Altschul,

1995).

Let If(j‚ k)~(j0‚ k0)g be 1 if sites (j, k) and (j0, k0) are joined by an edge in the contact map, and 0 otherwise

(the site (j, k) is the position k + 1 in block j). The score of an alignment I is typically defined as

S(I)¼ 1

2

Xm

j¼ 1

Xlj � 1

k¼ 0

Xm

j0 ¼ 1

Xlj0 � 1

k0 ¼ 0

If(j‚ k)~(j0‚ k0)gf (Aij þ k‚ Aij0 þ k0 j(j‚ k)‚ (j0‚ k0))

a sum of terms each representing the cost of placing amino-acids Aij þ k and Aij0 þ k0 in contact, in the context

defined by the sites (j, k) and (j0, k0).
Different alignments have correlated scores, especially if they share common subalignments of blocks.

The threading score M is the maximum of all these scores

M¼ max
I

S(I): (1)

FIG. 1. Contact map: the fold is

represented by ordered blocks.

Edges join amino acid pairs

brought in contact by the fold. The

query sequence (red line) passes

through the blocks (blue boxes)

without indels, but distances be-

tween blocks are not fixed. A sub-

stitution function gives the cost of

replacing amino acid pairs in con-

tact: e.g., (H E) by (A M).
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Finding out, in a reasonnable time, the optimal alignment, and thus the threading score, is a hard problem

which will not be developed here. Very satisfactory algorithms were developed (Andonov et al., 2008).

Global and semi-global alignments. A fold is the substructure common to several similar structures.

These structures correspond to proteins or domains of similar lengths ; they are represented by the same

template.

When the query sequence has a length (n) similar to that of the fold, the latter may represent its 3D

structure. The whole sequence is aligned with the fold: all possible alignments are admissible. This is called

a global alignment problem.

On the other hand, when the query sequence is much longer than the fold, this one may only be a

structural domain. The alignment makes sense only if it extends in a region whose length is of the order of

that of the fold. Therefore, admissible alignments, those to be taken into account, must not extend beyond a

maximum length, say lmax. This is called a semi-global alignment problem. Only alignments such that

im + lm - i1 £ lmax are admissible.

This constraint is active only in the semi-global regime (n > lmax), and the global alignment problem can

be formally considered as a semi-global alignment problem with n £ lmax.

Threading score as an extreme value. The threading score of a query sequence with respect to a

given fold is the largest score among all admissible alignments of that sequence onto that fold:

� If the fold under consideration corresponds to the structure of the query sequence (hypothesis H1),

hopefully, a large threading score is expected.
� On the contrary, if the query sequence native structure is unrelated to the fold under consideration

(hypothesis H0) we can consider the threading score, as the maximun of a set of dependent random

values. This leads us to consider, under hypothesis H0, threading scores as extreme values.

2.2. Extreme value distribution

Extreme value of a sample. Extreme value theory has been first developed for sets of independent

identically distributed (i.i.d.) random variables.

Let X1‚ X2‚ . . . ‚ Xn be a sequence of i.i.d real random variables with cumulative distribution function

(CDF) F and Mn¼ maxfX1‚ X2‚ . . . ‚ Xng. The cumulative distribution of Mn is simply derived as

P(Mnpx)¼ (F(x))n: (2)

However, if F ( $ ) is unknown, this is not helpful in practice. The limit of P(Mnpx), as n tends to

infinity, is either 0, if F(x) < 1, or 1 if F(x) = 1. This limit is somewhat trivial and too crude. Extreme Value

Theory has been developed to understand how P(Mnpx) tends to 0, cx : F(x) < 1. Obviously, some

normalization is needed.

Fréchet (1927), Fisher and Tippett (1928), and Gnedenko (1943) proved that under general asumptions

on F, there exist two series an and bn and a constant g such that:

P
Mn� an

bn

px

� �
! Hc(x) as n!1‚ (3)

with the cumulative distribution function

Hc(x)¼ exp [� (1þ cx)
� 1=c
þ ] c 6=0

exp [� exp (� x)] c = 0

�
(4)

where y + = max(0, y). So we have for n large enough

Gn(x)¼P(Mnpx)^Hc
x� an

bn

� �
: (5)

According to the value of g (positive, zero, negative), there are three families of extreme value distribu-

tions, referred to as Fréchet, Gumbel, and Weibull, respectively. Fréchet is the extreme value distribution

for heavy tailed distributions, Gumbel for light tailed distributions, and Weibull for distributions with

bounded tail. There is no other limit distribution than those of equation (4), but not all distributions lead to

such extreme value distributions (de Haan and Ferreira, 2006). In particular, discrete distributions do not fit

these distributions, their limits are degenerate.

16 MOVAGHAR ET AL.



For reasons explained later on, we will be here mostly concerned with the third family, i.e., Weibull.

Hence, since g < 0, equation (5) can be rewritten as follows:

Gn(x)¼P(Mnpx)^ exp � n
nn� x

hn

� �j� �
j‚ hn > 0 and xpnn‚ (6)

where k = - 1/g, yn = - n - gbn/g and xn = an - bn/g.

Limits for large samples. Consider a sample of size nm. Applying (6) we have:

Gnm(x)¼P(Mnmpx)^ exp � nm
nnm� x

hnm

� �j� �

With equation (2), we also have the following approximation:

Gnm(x)¼ (Gn(x))m^ exp � nm
nn� x

hn

� �j� �

Indeed, for probability distributions with bounded tail, provided there exists a convergence toward a

Weibull type extreme value distribution, parameters yn and xn in equation (6) converge as n / N toward

finite limits yN > 0 and xN (the latter is the upper bound of the support of F; it is often written as F - 1(1))

(de Haan and Ferreira, 2006).

Extreme value of a process. Extreme-value theory has been extended to dependent variables, par-

ticularly stationary processes. A theorem is of great value for our problem (Coles, 2003).

Consider a stationary process X1‚ X2‚ . . . Xn, and a sample of independent variables X�1‚ X�2‚ . . . X�n with

the same marginal distribution (X�i has the same distribution as Xi).

DefineMn¼ maxfX1‚ X2‚ . . . ‚ Xng, andM�
n¼ maxfX�1‚ X�2‚ . . . ‚ X�ng. Provided there are two sequences

{bn > 0} and {an} such that, as in (3)

P
M�

n� an

bn

px

� �
! H�c (x) as n!1‚

then, under general mixing hypotheses on process X (distant events become nearly independent),

P
Mn� an

bn

px

� �
! Hc(x) as n!1:

where

Hc(x)¼ (H�c (x))g (7)

for some constant 0 £ g £ 1. Parameters {an}, {bn} and g are the same. Using (6), we get

P(Mnpx)^ exp � ng
nn� x

hn

� �j� �
j‚ hn > 0 and xpnn‚ (8)

ng is the effective size of the process. By reparameterizing (8), we have

P(Mnpx)^ exp � �n(nn� x)jf g j‚ �n > 0 and xpnn‚ (9)

with �n¼ ng=hj
n , the scaled effective size of the process.

Parameter estimation. Much of the litterature devoted to parameter estimation in extreme value

theory deals with chronological series. Estimation consists in exploiting, in such series, the distribution of

very large values, or the distribution of excesses above a given threshold, to build estimates. We face a

much simpler problem since, as will be seen later, we can simulate samples of extreme values.

We selected two methods for the estimation of the three parameters k, xn and mn in equation (9) from a

sample of size m of extreme values M(1)
n ‚M(2)

n ‚ . . .M(m)
n :

� Maximum likelihood estimation (MLE)
� Probability-weighted moment estimation (PWM)

The latter will be briefly exposed now (Hosking et al., 1985). The rth probability-weighted moment ofMn

is defined as
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lr ¼E[Mn · (Gn(Mn))r]: (10)

A straightforward calculation with equation (6) leads to:

lr ¼
1

rþ 1
nn� bn(rþ 1)� 1=jG

jþ 1

j

� �� �
: (11)

with bn¼ hn · n�
1
j and G() the Gamma function. The following relations hold:

l0¼ nn� bnG( jþ 1
j )

2l1� l0¼ bn(1� 2� 1=j)G jþ 1
j

� �
3l2 �l0

2l1 �l0
¼ 1� 3� 1=j

1� 2� 1=j

8><
>: (12)

Parameters are estimated by solving equations (12) where moments are replaced by their estimations, say

l̂r for lr. Estimator l̂r is itself obtained by replacing, in the definition (10), the expectation by the sample

mean and G by the empirical cumulative distribution function of the sample Ĝ.

l̂r ¼
1

m

Xm

i¼ 1

M(i)
n (Ĝ(M(i)

n ))r ¼ 1

m

Xm

i¼ 1

M[i]
n

i� 1

m

� �r

:

where M[i]
n stands for the ith observation in the ordered sample.

2.3. Threading scores of random sequences

As explained before, threading scores under the null hypothesis will be compared to the distribution of the

threading score of a random sequence. These random sequences have to be simulated under some suitable

stationary mixing model, for instance a Markov model or even a sequence of independent amino acids.

Global threading score. Due to a rich combinatorics, the number of alignments of a query onto a fold

increases more than exponentially fast with the length of the query. Let A¼A1‚ A2‚ . . . ‚ An be a simulated

protein sequence and C a fold. As the sequence A is a stochastic process (of amino-acids), the scores of all

admissible alignments constitute a set of dependent random variables. As scores are upper bounded, we can

expect that the global threading score, Mn, approximately follows a Weibull type extreme value distri-

bution as given by equation (9).

Semi-global threading score for large sequences. Alignments of A onto C can be classified ac-

cording to their last position: class Bi contains all the alignments ending at position i (Fig. 2). Classes

Bi‚ iqlmax, which exist in a semi-global alignment problem (n > lmax) have all the same number of ele-

ments, since for two such classes Bi and Bj, translation by i - j is a bijection. Beyond lmax, the number of

admissible alignments increases linearly with n. Classes Bi‚ iplmax are incomplete, since their elements are

limited in their extension to the left.

At each class Bi, we can associate Xi, the highest score of all alignments of Bi. The threading scoreMn

of A with respect to C obviously verifies: Mn¼ maxi Xi.

Since A is stationnary and mixing, Xi‚ i¼ lmax‚ . . . n, is also stationnary and mixing. Suppose Xi, i ‡ lmax,

follows approximately a Weibull type extreme value distribution as in equation (9) with n = lmax. As the

process {Xi, i ‡ lmax} verifies the conditions of the theorem on extreme value distribution of a stationnary

process, we can apply equation (7). It follows that, for large n, M�
n¼ maxfiqlmaxg Xi has approximately a

Weibull type extreme value distribution:

P(M�
npx)^ expf� (n� lmaxþ 1)�lmax

g(nlmax
� x)jg �lmax

‚ hlmax
‚ j > 0 and xpnlmax

‚

for some 0 £ g £ 1. Since g‚ �lmax
‚ nlmax

and k are unknown and must be estimated, this equation must be

rewritten:

Xlmax

X

Xlmax+1

lmax−1
X Xni

1 2 nn−lmax+1

Max Xlmin

Query
Position

FIG. 2. Classification of the

alignments by their end. Admissible

alignments of class Bi cannot ex-

tend out of the double arrow ending

at i, of length £ lmax. The largest

score Xi‚ i¼ lmin‚ lminþ 1‚ . . . ‚ n, is

associated to each class.
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P(M�
npx)^ expf� (n� lmaxþ 1)k1(nlmax

� x)jg where k1¼ �lmax
g (13)

for some parameters l1 > 0, k > 0, and with xmax > x

Now the threading score can be written as Mn¼ max (M�
n‚ maxfi< lmaxg Xi).

Term maxfi< lmaxg Xi, contributes to Mn only if it is larger than M�
n, hence in the very tail of its

distribution, where it can be approximated by a distribution of type (6) for some ficticious size N0. Using

the convergence exposed before, we can approximate the parameter nN0
by nlmax

. It finally turns out, if all

this story holds, that the contribution of this last term consists in increasing by a constant, the scaled

effective size.

We finally can predict, for very large sequence sizes (n > > lmax), the following distribution of the

threading score Mn:

Gn(x)¼P(Mnpx)^ expf� ((n� lmaxþ 1)k1þ k0)(nlmax
� x)jg: (14)

The dependence of the threading score cumulative distribution function, Gn(x), on sequence length, is

asymptotically localized in the parameter mn, with an affine form.

Otherwise, for all sequence sizes, the threading score Mn should have a distribution of the form (9).

3. RESULTS AND DISCUSSION

Simulations were carried out to test these predictions, to demonstrate the existence of a suitable dis-

tribution for the threading score of a random sequence, and to validate a parameter estimation procedure.

Of course, these parameter values depend on the precise threading method used and on the random

sequence simulation model. They must be reestimated each time these choices are changed.

3.1. Numerical experiment

3.1.1. Experimental design
Folds. Two folds were chosen, 1bjaA and 1gtvA. Native sequences have 95 and 214 residues. Fold 1bjaA

(respectively, 1gtvA) has lmin = 87 (respectively, lmin = 181), and we set lmax = 110 (respectively, lmax = 226).

Sequence simulation. Sequences were simulated as independent series of amino acids, using a pub-

lished probability distribution (Robinson and Robinson, 1991) (Table 1). This simple model can be criticized

as an unrealistic protein sequence representation, but we use it here only as a way to generate random

threading scores, and, as will be discussed later, it seems to have little consequences on the final distribution.

For each fold, 11 sequence lengths were chosen:

� 1bjaA: 90, 97, 105, 115, 124, 143, 170, 190, 200, 350 and 500.
� 1gtvA: 184, 193, 220, 250, 279, 321, 350, 400, 430, 500 and 610.

These samples covered the global and semi-global regimes, depending on whether the sequence length is

shorter or longer than lmax.

For each pair {fold · length}, a sample set of 6,000 sequences was generated.

FROST (Fold Recognition-Oriented Search Tool). FROST is the threading method we used here to

calculate the threading scores of each of these simulated sequences, thus providing samples of independent

threading scores. FROST has been shown more efficient than methods like PSI-BLAST and 3D-PSSM for

the detection of remote homologs (Marin et al., 2002).

FROST uses a 3D substitution function which corresponds to the cost of replacing a given pair of

residues, in contact in the structure, by one belonging to the query. This cost takes into account envi-

ronmental factors such as the localization in the 3 structure (buried or exposed sites, type of secondary

Table 1. Probabilities Used for Amino Acid Random Sequence Simulation

p(A) = 0.0781 p(C) = 0.0192 p(D) = 0.0537 p(E) = 0.0629 p(F) = 0.0385

p(G) = 0.0738 p(H) = 0.0220 p(I) = 0.0514 p(K) = 0.0574 p(L) = 0.0903

p(M) = 0.0224 p(N) = 0.0449 p(P) = 0.0520 p(Q) = 0.0426 p(R) = 0.0513

p(S) = 0.0712 p(T) = 0.0584 p(V) = 0.0644 p(W) = 0.0133 p(Y) = 0.0322
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structure) (Marin et al., 2002). In the 3D function, no gap penalty is used. The score depends on structure

and query sequence. Given a structure and query length, the highest it is, the most reliable is the fold

prediction.

3.1.2. Choosing an extreme-value distribution model. Both folds were treated separately. Four

different models will be compared, named A, B, C, D. For each sequence length, n, each model associates a

Weibull type extreme-value distribution. They differ by constraints set on parameters, according to the

following equations:

Model A: no constraint on parameters,

P(Mnpx)^ expf� �n(nn� x)jng (15)

Model B: common k, see equation (9),

P(Mnpx)^ expf� �n(nn� x)jg (16)

Model C: common k and x, see ‘‘limits for large samples,’’

P(Mnpx)^ expf� �n(n� x)jg (17)

Model D: common k and x, mn affine function of n, see equation (14),

P(Mnpx)^ expf� (k0þ (n� lmaxþ 1) · k1)(n� x)jg (18)

They verify the following inclusion relations: A�B�C�D.

To test a submodel, a usual procedure relies on maximum likelihood ratio. We did not follow this

procedure since our estimation procedure did not always rely on likelihood maximization. We based our

model choice procedure on Kolmogorov-Smirnov test statistics. Under the null hypothesis, p-values are

uniformly distributed on [0, 1]: small p-values indicate a poor fit. Being non-parametric, this test is very

robust but it is also very powerful.

Model A: testing the extreme-value distribution. An extreme-value distribution defined by equation

(15) is fitted separately to each sample. This model is a generalization of equation (9), since k depends on n.
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FIG. 3. Model A. Probability-

weighed moments (left) and functions

of them (right) used in parameter

estimation (equations (12)) for both

folds 1bjaA (upper figures) and 1gtvA
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Parameters were estimated by probability weighted moment, PWM (Fig. 3) and by maximum likelihood,

MLE, with very similar results (Fig. 4). PWM has the advantage to be direct, when MLE is iterative.

Estimations and goodness-of-fit tests are displayed in Table 2 for PWM. Parameter g of equation (5) was

found in all samples highly significantly negative (remember j¼ � 1
c) and Kolmogorov-Smirnov test

indicated an excellent adjustment. This confirms that threading score distribution of random sequences can

be very well approximated by a Weibull type extreme-value distribution. Therefore, cumulative distribution

functions will hereafter always be presented in the form of equation (9).

Increasing the sequence length causes almost monotonous changes in all parameters. kn increases (but

not significantly as will soon be seen), while bn¼ �� 1=j
n decreases, and xn increases very much. This is not

surprising for bn. Concerning xn, we would expect a convergence toward an upper value xN. The output on

kn is more unexpected. But the large correlation between estimators (not shown here) hinders a detailed

interpretation and certainly explains the observed apparent irregularities in the parameter evolution with

sequence length.

Model B: testing a common form parameter j. We then fitted these distributions under model B,

equation (16), where k is common, which corresponds exactly to equation (9). Figure 5 displays the
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FIG. 4. Model A. Empirical and

adjusted threading score CDF

according to different sequence

lengths (as indicated on the curves)

for both folds 1bjaA (left) and

1gtvA (right). Extreme-value dis-

tribution parameters of model A are

estimated for each sample by PWM

(upper) and MLE (lower).

Table 2. Model A: For Each Fold and Length Separately, Parameters Are Estimated

by PWM; Kolmogorov-Smirnov Test p-Values Are Also Shown

1bjaA 1gtvA

Length n kn xn bn K-S p-value Length n kn xn bn K-S p-value

90 3.91 - 3.98 25.77 0.37 184 4.17 - 28.34 39.43 0.37

97 3.96 5.06 24.26 0.61 193 4.41 - 6.14 37.82 0.82

105 4.21 11.23 24.20 0.46 220 4.71 21.96 38.89 0.86

115 4.61 17.02 24.89 0.69 250 4.70 32.94 35.42 0.41

124 4.75 19.76 24.16 0.25 279 4.80 42.91 36.40 0.67

143 4.52 22.47 22.12 0.26 321 4.50 48.63 32.79 0.46

170 4.66 26.61 21.92 0.56 350 4.81 56.51 35.82 0.88

190 4.93 29.96 22.78 0.78 400 4.82 59.72 32.59 0.82

200 4.39 28.03 19.76 0.56 430 4.43 60.60 30.24 0.60

350 5.21 33.02 18.95 0.39 500 5.17 65.85 31.58 0.58

500 5.35 33.85 17.88 0.74 610 5.35 68.81 31.54 0.92

STATISTICAL SIGNIFICANCE OF THREADING SCORES 21



empirical and fitted CDF, parameters estimated by PWM. When using PWM estimation procedure, we first

estimated k by solving a derivation of the third equation in (12) where L is the set of sampled sequence

lengths, and l̂(n)
r the estimated rth weighted moment for sequence length n:

P
n2L

(3l̂(n)
2
� l̂(n)

0
)P

n2L
(2l̂(n)

1
� l̂(n)

0
)
¼ 1� 3� 1=j

1� 2� 1=j

Table 3 displays parameter estimations and Kolmogorov-Smirnov test p-values. It turns out that model B

provides a very satisfactory approximation of the threading score distribution of a random sequence, in

agreement with the prevision made.

In model B, n̂n increases with n, while b̂n decreases, in a much more regular way as in model A: owing to

the constraint on k, estimator correlations are much smaller, and estimation more stable. Figure 6 displays,

for all values of the sequence length n, mn and xn, as estimated in model B. For large values of n, yn and xn

almost converged, while mn varies linearly, which corresponds to the expected convergence for large

sequences, and leads to model D.

Models C and D: testing an asymptotic distribution for large sequences. We then fitted these

distributions under model C (equation (17)), where k and x are common. Results show without doubt that

this model is unacceptable on the whole range of sequence lengths (Fig. 7).

We then tried to find out if the longest sequences (n > n0 for some n0) could be fitted to model D, defined

by equation (18). We first estimated n0 by testing the maximum number of longest sequences for which

model C would be acceptable. We then computed the linear regression of mn on n for n > n0.
Table 4 displays, for each fold, estimations and goodness-of-fit statistics for the highest sets of long

sequences for which model C is acceptable. Relative to each fold, n0 is approximately twice lmax (n0 = 190

for fold 1bjaA, and n0 = 430 for fold 1gtvA). Coefficients of the linear regression of mn on n (equation 14)

are at the bottom of Table 4. Parameter k0¼ k�0þ (lmax� 1)k1 is positive in both cases, in agreement with

the prediction made previously, where l0 had been interpreted as a ficticious sample size, thus should be

positive. However, this interpretation must be considered carefully, since it relies on the assumption, x
constant over the whole range of sequence lengths, which is not verified here; x converges as n increases,

but is significantly less for short sequences; that is why model C is rejected for short sequences.
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FIG. 5. Model B. Empirical and

adjusted threading score CDF

according to different sequence

lengths (as in Fig. 4) for both folds

1bjaA (left) and 1gtvA (right).

Extreme-value distribution param-

eters of model B are estimated for

each fold by PWM.

Table 3. Model B: For Each Fold, Parameters k
co

(Common) x
n

and b
n

Are Estimated by PWM;

Kolmogrov-Smirnov Test p-Values Are Also Shown

1bjaA 1gtvA

Length n kco xn bn K-S p-value Length n kco xn bn K-S p-value

90 4.58 - 0.43 29.61 0.26 184 4.91 - 22.49 45.56 0.38

97 7.73 27.26 0.72 193 - 2.02 41.98 0.77

105 12.25 25.26 0.20 220 22.12 38.94 0.87

115 16.89 24.88 0.50 250 34.98 37.37 0.36

124 18.97 23.50 0.26 279 43.31 36.80 0.87

143 22.82 22.54 0.29 321 51.21 35.74 0.46

170 26.30 21.46 0.59 350 56.27 35.60 0.94

190 28.26 21.03 0.77 400 60.84 33.81 0.82

200 29.03 20.75 0.59 430 63.47 33.36 0.57

350 31.44 17.40 0.41 500 65.50 31.23 0.41

500 31.95 15.96 0.09 610 66.35 28.88 0.36
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3.1.3. Parameter interpolation/smoothing. According to previous sections, we propose to compute

a p-value on the basis of model B if n £ n0 (global and non-asymptotic semi-global regimes) and model D if

n > n0 (asymptotic semi-global regime). In practical situations, these distributions must be used with

parameter values corresponding to the exact query length.

In the asymptotic regime (n > n0), model D provides an explicit value for all parameters.

In the non-asymptotic regime (n £ n0), parameters of model B can be precalculated at sampled lengths

and further estimated at the exact length n of the query by interpolation or smoothing.

We present some adjustments obtained with parameters calculated for the exact length after interpolation

of the estimated weighted moments. Results are satisfactory. This point will not be further developed here.

Global and non-asymptotic semi-global regimes. We generated random sequence samples of 10

(fold 1bjaA) and nine (fold 1gtvA) different lengths, covering all the range of global and semi-global

regimes. Threading score distributions were computed with model B whose parameters, nn and bn, were

estimated after interpolation of the weighted moments (Fig. 8).

Asymptotic semi-global regime. Model D solves the problem of p-value calculations for very long

sequences in the semi-global regime, with explicit parameter values. To check the prediction quality, two

samples of 6,000 sequences of different lengths (600 and 1000 for 1bjaA, 750 and 1000 for 1gtvA) were

generated and the predicted distribution of their threading scores computed with the parameters shown in

Table 4, and compared to the empirical distribution. Kolmogorov-Smirnov test p-values are 0.16 and 0.05

for lengths 600 and 1000 with 1bjaA, and 0.06 and 0.07 for lengths 750 and 1000 with 1gtvA (Fig. 9).

3.2. Threading scores of real protein sequences

So far we found a suitable representation of the threading score distribution of random sequences. The

problem addressed here, consists in studying the score distribution of real protein sequences, whether their

structures are alien, or on the contrary do belong, to the fold under consideration.

The problem is in fact complex, since homolog proteins are more or less related: hypothesis H1 is

composite. The way in which structural similarity is handled and its consequences on the threading score,

strongly depends on the precise threading method considered, as will be discussed later. Thus, a precise

discussion of these distributions is far beyond the scope of this article. In order to illustrate this point, we

will just examine results obtained with a reduced set of sequences.

SCOP database. The SCOP database (Murzin et al., 1995), is a widely used protein classification in

which most proteins of known structures are sorted in a hierarchical way. It constitutes a tool to build sets

of more or less structurally related sequences.
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xn ‘‘numerically converges,’’ as n
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SCOP clusters homologous proteins into families. Most families group proteins sharing at least 30%

residue identity.

SCOP clusters families into superfamilies if their proteins are structurally and functionally similar.

3.2.1. Threading different sequences onto a fold
Data. Four sets of real protein sequences were constituted representing different similarity classes with

respect to the structure of 1gtvA.

The first set (‘‘psi-blast homologs’’) consists of proteins collected via psi-blast, thus sharing a significant

sequence similarity with 1gtvA. Their structure is unknown, but almost certainly similar to that of 1gtvA,

owing to the clear sequence similarity.

The next three sets are disjoint and their structures are experimentally known.

The second set (‘‘SCOP family’’) contains all proteins belonging to the same SCOP family as 1gtvA.

These proteins share a structural and functional similarity with 1gtvA, and are certainly homologous.

The third set (‘‘SCOP superfamily’’) contains all proteins belonging to the same SCOP superfamily than

1gtvA, but to a different family. These proteins present only a moderate sequence similarity with 1gtvA,

less than 20% sequence identity, although they are structurally related.

The fourth set (‘‘other SCOP folds’’) collects proteins belonging to other folds, thus presenting no

structural similarity with 1gtvA, and less than 20% sequence identity with 1gtvA. These are in fact 44

‘‘alpha-beta’’ protein sequences of length lying between 187 and 226, thus belonging to the ‘‘global regime.’’

VAST. For the last three sets, for which structures are known, structural similarity of each protein with

1gtvA was quantified, using VAST (Madej et al., 1995), a structure alignment program. This program

Table 4. Model D: For Each Fold a Common n
co

and j
co

Are Computed (Model C)

for ‘‘Long’’ Sequences Only

1bjaA 1gtvA

Leng. kco xco bn K-S p-val. Leng. kco xco bn K-S p-val.

190 6.07 35.86 28.69 0.25 430 5.64 69.47 39.25 0.36

200 — — 27.72 0.16 500 — — 35.24 0.55

350 — — 21.88 0.25 610 — — 32.19 0.66

500 — — 19.97 0.54

k�0¼ � 1:57 10� 9 l1 = 3.18 10 - 11 p = 1.7 10 - 5 k�0¼ � 1:34 10� 9 l1 = 1.20 10 - 11 p = 0.01

Kolmogorov-Smirnov goodness-of-fit test is carried out. Bottom, k̂�0 and k̂1 are the parameters of the linear regression of �n ¼b�jco

n

on sequence length n; see equation (14). p-Value of the linear regression model is presented.
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optimally superimposes the residues of a protein onto the residues of the other one. The number of residue

pairs successfully superimposed by VAST is expressed as a proportion of the number of residues of the

smallest protein.

Results. Threading scores obtained with these sets of sequences are displayed in Figure 10. These

results will be discussed later.

Psi-blast homologs are close homologs, and very small p-values are expected. Most p-values are small,

but a non negligible proportion is higher than expected (upper left graph).

Sequences of the SCOP family of 1gtvA, display, as expected, more dispersed p-values than psi-blast

homologs (lower left). Only a small proportion of these p-values is small enough to point a structural

similarity.

Sequences belonging to other families of the SCOP superfamily of 1gtvA, display, as expected, even

more dispersed, but still not uniformly distributed, p-values (lower right).
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(fold 1gtvA).

FIG. 10. Histograms of p-values

under null hypothesis. Upper left:

1gtvA psi-blast 600 nearest homo-

logs. Lower left: SCOP family of

1gtvA. Lower right: SCOP super-

family of 1gtvA, but other families.

Upper right: other SCOP folds than

that of 1gtvA. p-values were com-

puted using model B.
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Sequences belonging to other SCOP superfamilies than 1gtvA, display a p-value histogram compatible

with the expected uniform distribution (upper right).

3.2.2. Threading a sequence onto different folds. A sequence of 260 residues, the native sequence

of 1k77A, was aligned on four different folds 1i60A, 1qtwA, 1qpoA, and 1m40A of length 212, 189, 243,

and 200, respectively. These folds had been previously sorted from structurally close to structurally very far

from 1k77A (Taly et al., 2008; Grelaud et al., 2009). Sequence and structure similarity indicators are

displayed in Table 5.

Threading score distributions of random sequences had to be estimated for each fold. 20,000 sequences

of length 260 were independently generated and estimation carried out by PWM method, using model A.

As indicated by the Kolmogorov-Smirnov p-values, the fitted extreme value distributions on simulated data

are acceptable (Table 5).

Table 5 also displays threading score p-values, computed with the fitted distributions, of the native

sequence of 1k77A, when folded on each of these four different folds. These p-values are in total agreement

with structural similarities between the native fold of the query and each of the four different folds. It is

worth noticing that only the first p-value, obtained when folding 1k77A onto 1i60A, is small enough to

detect a structural similarity at a significance level of 10%. Other structures do not display p-values small

enough to be detected as significant at any reasonnable level.

4. DISCUSSION

Previous sections show that a Weibull type extreme value distribution can be adjusted to threading scores

of random sequences, on the whole range of sequence lengths that are encountered in realistic situations,

with an excellent fit. This is substantially more than just expected according to extreme value theory.

First, extreme value theory provides asymptotic results, corresponding to long sequences. Our numerical

experiment shows that the results hold even for very short sequences, down to the shortest it is possible to

thread on a given fold.

Second, results also hold for very long sequences, which is somewhat surprising for another reason.

Threading scores are essentially discrete variables and therefore their real extreme value distributions are

degenerate. One might have feared, that very long random sequences would produce degenerate extreme

values. This is not the case. Score values are so numerous and well spread that the score distribution, in its

central part, can be reasonably approximated by a continuous distribution. Threading scores of very long

random sequences go far in the tail of the score distribution, but, due to the very strong limitation of the

number of admissible alignments introduced by the semi-global regime, not far enough to reach its very tail

where this continuous approximation no longer holds. Things go as if scores of random sequences, even

very long ones, were continuous variables. This observation refers to random sequences, it does not hold for

close homologs of the native structure, as will be discussed later.

Indeed, the set of all possible configurations of a contact map with q vertices, is of size 20q. Contact maps

are heterogeneous graphs, and the score terms attached to the edges depend on the local environment, so

that there are almost as much different possible score values building the score set. On the other hand, the

Table 5. Comparison of 1k77A to Four Different Proteins

Adjusted EVD Param.

Fold k x b K-S p-value
Sequence

ident. (%)

Structural

simil. (%) rmsd (Å)
Threading

score p-value

1i60A 4.45 - 24.67 45.68 0.15 18.6 93.1 2.97 0.07

1qtwA 4.62 31.7 33.76 0.14 12.1 91.9 3.35 0.26

1qpoA 4.31 - 47.5 45.72 0.43 7.6 50.8 3.37 0.73

1m40A 4.31 23.46 47.15 0.09 3.6 10.7 3.02 0.79

Four first colomns refer to the calculated extreme value distribution of random sequence threading scores. Proteins were selected to

exhibit different levels of structure and sequence similarities with 1k77A: 1i60A and 1qtwA belong to its SCOP superfamily, 1qpoA to

its fold, and 1m40A to a different, structurally unrelated, class. Threading score p-values were calculated with adjusted extreme-value

distributions.
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optimization set, the set of scores of all the admissible alignments of a given sequence (whose maximum is

its threading score) is a subset of the former, with a number of elements many orders of magnitude smaller.

For the fold 1bjaA (respectively 1gtvA), in the global regime with sequences of length lmax the score set is

(roughly) of size 1071 (respectively 10143) when the optimization set is of size 1011 (respectively 1023).

Even if the exceptionnally high score values of native related sequences are numerous, they build a set of so

tiny probability that it cannot, in practice, be reached by random sequences.

Third and finally, the good agreement with a Weibull type EVD of constant form parameter k (model A

not better than model B) is also informative. The score of a random sequence is a sum of numerous terms,

and naı̈vely, one could have expected that a Gaussian truncated at the highest possible score value would be

a sufficient approximation of its distribution. But in our experiment with samples of size 6000, this highest

possible value was never reached, by far, by random sequence threading scores. Thus, we could not have

distinguished our samples from those obtained supposing a non truncated Gaussian score distribution.

Gaussian distributions belong to the Gumbel attraction bassin, and we would have found a Gumbel EVD

approximation for the threading score distribution. On the contrary, our numerical experiment tells us that

the continuous approximation of the score value distribution of random sequences belongs to the Weibull

attraction bassin, thus has the corresponding type of tail. The tail drops down much faster than does that of

a Gaussian. This is due to the complex correlation structure of all score terms, and is much related to the

properties of the contact map.

To make this point clear, let us consider an artificial example. Consider the catenary graph, where the

pairs of neighbours are the pairs of successive amino-acids in the sequence. The score of a sequence

alignment on this artificial structure, is a sum of elementary terms, each attached to a pair of successive

amino-acids. If the sequence is random, as we simulated ours, the sequence of random elementary terms is

a strongly mixing process (non-adjacent terms are independent). By the central limit theorem, the score of

the alignment could be aproximated by a Gaussian. Thus, in this case, a Gumbel distribution would

certainly provide a fair aproximation of the threading score of a random sequence. But such a graph is, by

no way, the contact map of a real protein. Real contact maps have lots of edges linking amino-acids distant

in the sequence, which are the expression of the forces that make the structure. From a probabilistic point-

of-view, these distant contacts are responsible for complex correlations among the elementary terms which

build up the score, and make its distribution decrease faster than that of a Gaussian.

The good agreement with a Weibull EVD certainly does not depend on the random sequence model.

Provided the latter is a mixing and stationnary process, quite reasonable assumptions in fact, the same

theory can be applied with certainly the same qualitative results, although with different parameters.

We generated our random sequences as series of independent random amino acids. This is very simple

and quite unrealistic, and could explain part of the less appealing results observed with real sequences. Real

sequences always have special features, as secondary structures, which our random sequences lack. A helix,

for instance, will probably better fit another helix than a random sequence will do. Threading a real protein

sequence alien to the fold, will probably often result in an alignment of several helices on helices and

strands on strands, thus leading to a higher threading score than obtained with a random sequence of the

same length. This could partly explain the p-value distribution obtained with the set of sequences belonging

to the same superfamily, but to other families than 1gtv. We expected a distribution closer to the uniform

one. Instead of being uniform, it favours small values and clearly disfavours large p-values. Anyway, this

phenomenon does not seem to have very important effects on clearly unrelated sequences. Nevertheless,

when implementing p-value calculation for a threading method, more realistic random sequence models

would be recommanded. An interesting alternative could be Hidden Markov Models, where hidden states

would represent secondary structures, emitting amino-acids with specific distributions.

Some close homologs and most remote homologs have larger p-values than expected. This is much

related to the threading method used. FROST is designed in such a way that an admissible alignment of a

sequence onto a fold must go through each block. Remote homologs may share strong similar parts, but

some secondary structure elements, seen by FROST as blocks, can be present in a protein and absent in

another one. This can completely disturb the rest of the alignment, making impossible to align the most

similar parts, thus leading to a poor threading score and a large p-value.

Very close homologs of the native sequence of a fold generally have threading scores higher than the

estimated parameter x, the highest theoretically possible value, thus leading to an undefined p-value. We

never encountered, by far, such exceedingly high scores with random sequences. Close homologs have

threading scores belonging to the very few highest possible values; these values reach the real threading
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score extreme value distribution, which, due to the discrete nature of the score, is degenerate. We are out of

the domain where a continuous approximation of the score distribution is still admissible. In practical

terms, this is not a problem since it points a very strong similarity, and the p-value can be conventionally set

to zero.

5. CONCLUSION

We claim that threading score significance can be assessed using the procedure we presented in this

article—that is, by comparison with the threading score distribution of a random sequence of amino acids.

Parameters of this reference distribution of course depend on the length of the query, on the fold under

consideration, on the threading method it is designed for, and also on the protein simulation model used

(and we recommand to use something more realistic than we did).

But Weibull extreme value distributions (model B) should be suitable in any case. This result is related to

properties of the contact map, and does not depend on technical details. This should hold as long as the

threading score is a sum of terms, each attached to a pair of amino acids put in contact by the fold.

In practical terms, a suitable distribution is obtained with model B for short sequences and its submodel

D for long sequences. For each fold, parameters can be estimated, once and off line, on a finite sample of

lengths. Later on, parameters can be interpolated or extrapolated at the exact length of any query, providing

immediately its threading score p-value.
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