
Narratives in the Network: Interactive Methods

for Mining Cell Signaling Networks

M. SHAHRIAR HOSSAIN,1 MONIKA AKBAR,1 and NICHOLAS F. POLYS 2

ABSTRACT

In this article, we describe our work on graph mining as applied to the cellular signaling
pathways in the Signal Transduction Knowledge Environment (STKE). We present new
algorithms and a graphical tool that can help biologists discover relationships between
pathways by looking at structural overlaps within the database. We address the problem of
determining pathway relationships by using two data mining approaches: clustering and
storytelling. In the first approach, our tool brings similar pathways to the same cluster, and
in the second, our tool determines intermediate overlapping pathways that can lead bi-
ologists to new hypotheses and experiments regarding relationships between the pathways.
We formulate the problem of discovering pathway relationships as a subgraph discovery
problem and propose a new technique called Subgraph-Extension Generation (SEG), which
outperforms the traditional Frequent Subgraph Discovery (FSG) approach by magnitudes.
Our tool provides an interface to compare these two approaches with a variety of similarity
measures and clustering techniques as well as in terms of computational performance
measures such as runtime and memory consumption.

Key words: cellular signaling pathway, clustering, Frequent Subgraph Discovery, storytelling,

Subgraph-Extension Generation.

1. INTRODUCTION

S ignal transduction pathways are important representations for explaining and understanding various

biochemical activities. Assisting biologists in discovering the latent relationships in the pathways is

crucial because numerous combinations can be used to connect these pathways. In this article, we examine

the effectiveness and computational costs of both established and novel algorithms for discovering rela-

tionships between a set of cell signaling pathways. Understanding these costs and benefits is a critical step to

building visual analytic applications that perform interactively and in real-time. In order to illustrate our

techniques, we apply and evaluate them using cellular signaling pathways organized as connection maps

from the Signal Transduction Knowledge Environment (STKE) dataset (Database of Cell Signaling, 2011).

These pathways are essentially directed relationships between biomolecular components such as proteins that

transform cellular ‘‘signals’’ to appropriate biological responses. Our observation is that a relation between
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two components of a signal can appear in more than one pathway, and this knowledge may aid the biologists

in identifying new relationships.

A cellular signaling pathway consists of a set of molecules interacting with each other through signals

that convey information, generally from the outside of the cell to the inside (Breslin et al., 2005). The

STKE dataset describes signal transduction in biology, allowing a study of intra- and extracellular inter-

actions through these chemical signals. Scientists all over the world have documented different cell sig-

naling pathways. Still, there may be some undiscovered relationships among pathway components due to

the lack of tools capable of mining and analyzing the existing relationships in the database.

The ultimate goal of our project is to build a tool that can discover relationships among pathways

using graph mining approaches. The resultant pathway relationships could then help biologists analyze

the biochemistry and discover new influences and patterns. In this work, we examine different algo-

rithms for mining the frequent or common subgraphs among the signaling pathways. These frequent

subgraphs are then used to calculate the similarities between every pair of pathways. We use the

discovered subgraphs to cluster pathways and discover a ‘‘story,’’ or connection, between a pair of

pathways. Clustering brings similar pathways together in one group, and a story connects two seemingly

disjointed pathways. By ‘‘storytelling,’’ we are referring to the problem of connecting the dots between

two pathways.

Figure 1 depicts a story that connects Ga13 pathway (CMP_88091) with Gai pathway (CMP_74302). To

connect these two pathways, our storytelling algorithm discovered subgraph overlap between Ga13 and

Gaq pathway first, and then between Gaq pathway and Gai pathway, therefore connecting Ga13 with Gai

via Gaq pathway (CMP_66803). We have developed an interactive tool by which users can control the

parameters for different phases of the mining pipeline. Additionally, we provide a runtime analysis for each

of the algorithms implemented. Figure 2 shows a screenshot of the storytelling interface.

We also propose a graph-based storytelling approach that is similar to the text-based storytelling de-

scribed by Kumar et al. (2008). Graph-based storytelling is more robust than text-based storytelling because

texts are sometimes misleading and can generate meaningless stories. We insure that subsequent pathways

in a generated story have overlapping signals between them—something that text-based storytelling al-

gorithms do not guarantee. As a result, the chances that our algorithm generates misleading or meaningless

stories are lower than with the text-based storytelling approach.

The rest of this article is organized as follows. Section 2 describes some of the related works and Section 3

the overall design. Illustrative experimental results are discussed in Section 4, and we conclude the article

in Section 5.

2. LITERATURE REVIEW

Tools that help biologists visualize and analyze signaling pathways already exist. PathCase (Ratpra-

sartporn et al., 2006), for example, provides a way to visualize signaling pathways as nested graphs and

employs four abstraction levels to counter the visual complexity of signaling pathways. Xian and Yanbin

(2007) design a model for the WNT signaling pathway, a gene regulation route of living cells of various

organisms. Schreiber (2003) presents a different approach using a constraint graph drawing algorithm for

visually comparing metabolic pathways of different species. In this system, similar parts of the similar

pathways of different species are placed side by side, thereby making it easier to identify similarities and

dissimilarities between the pathways. However, none of these tools provide any automatic mechanism to

discover frequent subgraphs in the pathways through graph-similarity–based discovery of pathway rela-

tions. We show how the discovery of relations among pathways using clustering and storytelling algorithms

can be assessed, attenuated, and even automated.

Scientists have done research related to clustering pathways in the past. For example, ASK-GraphView

(Abello et al., 2006) is a large scale graph visualization tool that is used for navigating large graphs. It

provides a way to cluster the graphs using structural clustering for visualizing the graphs in a more compact

1http://stke.sciencemag.org/cgi/cm/stkecm;CMP_8809
2http://stke.sciencemag.org/cgi/cm/stkecm;CMP_7430
3http://stke.sciencemag.org/cgi/cm/stkecm;CMP_6680
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form. In contrast, we aim to find clusters automatically using the discovered knowledge of patterns of

frequent structures in the pathways. Miyake et al. (2003) present a comparison technique based on clus-

tering between pathways. They introduce a scoring system to measure the similarity between pathways.

The method extracts correlation between metabolic pathways and gene locations where the similarity

between a pair of pathways is defined by the overlap of linear sequences of non-branching pathways. In

contrast, our method depends on structural resemblance among pathways without limiting its scope to only

linear sequences.

The task of creating a link between two objects has been studied in various guises: disjoint but com-

plementary (CBD) architecture (Swanson, 1991), stepping stone (Das-Neves et al., 2005), redescription

mining (Zaki and Ramakrishnan, 2005), storytelling (Kumar et al., 2008), connecting the dots (Hossain

et al., 2012; Shahaf and Guestrin, 2010), and others. All of these works are used to connect unstructured

text documents, and none of them focus on connecting graph-based objects like pathways. However, there

are some works in the domain of graph theory that explicitly concentrate on finding a suitable path between

two nodes within the same network. For example, Brassard and Gecsei (1980) made the attempt to solve a

‘‘connecting the dots’’ problem for cellular partitioning networks. They proposed a method of path building

to efficiently find couplings in electrical networks. Given start and end terminals, the proposed algorithm

finds a path in the network that has the least probability of path failure.

Faloutsos et al. (2004) capture the relationship between two nodes of a large graph based on the

electricity flow from the given start and end vertices. Although the works of Brassard and Gecsei (1980)

and Faloutsos et al. (2004) use aspects of graph theory to find connections between nodes in the same

network, to the best of our knowledge this is the first time such an algorithmic framework is used to find

connections between multiple graph objects. Additionally, we have made the first attempt to find con-

nections between pairs of cell signaling pathways in the STKE dataset based on their graph structure.

Our approach depends on graphs for modeling the STKE dataset and takes advantage of graph-based

data mining techniques. There are some well-known subgraph discovery techniques like Frequent Subgraph

Discovery (FSG) (Michihiro and George, 2004), graph-based Substructure pattern mining (gSpan) (Yan

and Han, 2002), Diagonally Subgraph Pattern Mining (DSPM) (Cohen and Gudes, 2004), and Subdue

(Ketkar et al., 2005). Most of these systems have been tested on real and artificial datasets of chemical

compounds. In our work, we discuss a system that can perform frequent subgraph discovery on large

pathway-graphs. We propose a novel Subgraph-Extension Generation (SEG) mechanism that significantly

outperforms the original FSG approach.

To the best of our knowledge, we introduce the first automated graph-based technique to find rela-

tionships between pathways. We also propose the use of Master Pathway Graph (MPG), which helps our

Subgraph-Extension Generation (SEG) mechanism to discover subgraphs in an efficient manner. We offer a

fully automated system that uses enhanced subgraph discovery techniques and provides interactive feed-

back as to their effectiveness and performance.

3. DESIGN

In this section, we provide an overview of our proposed system. Figure 3 shows the design pipeline. It

contains five major modules: (1) Preprocessor, (2) Frequent Subgraph Discovery Module, (3) Clustering

Module, (4) Nearest Neighbors (NN) Module, and (5) Storytelling Module.

FIG. 3. Design pipeline. This figure outlines the

network mining framework we use in the developed

tools. NN,
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(1) Preprocessor: This module takes input directly from the STKE dataset and converts each pathway to a

graph object. The aim of this module is to provide an efficient data structure to store the pathways

effectively for the subgraph discovery process. Additionally, it generates the Master Pathway Graph

(Definition 1), which assists the Subgraph-Extension Generator (SEG) used by the frequent subgraph

discovery module.

Definition 1. A Master Pathway Graph (MPG) is a graph that contains all the relations (edges) of all

the pathways but contains them only once. For example, let P1, P2, P3, and P4 be the pathways in the

dataset. If their corresponding edge-sets are defined by P1(e1, e2, e5, e6, e7), P2(e3, e4, e5, e8), P3(e4, e5, e6,

e7), and P4(e3, e4, e5, e6, e8), then the edge-set of their MPG would be MPG(e1, e2, e3, e4, e5, e6, e7, e8).

(2) Frequent Subgraph Discovery Module: This module uses our SEG approach to discover frequent

subgraphs from the pathways. The developed tool also provides the traditional FSG approach for com-

parison. The details of the FSG and the SEG approaches are described in Section 3.1.1.

(3) Clustering Module: The clustering module generates clusters of pathways and provides comparisons

between two popular clustering techniques: Hierarchical Agglomerative Clustering (HAC) (Zhang et al.,

1996) and k-means (Macqueen, 1967). It also provides an evaluation of the generated clusters with a

graphical interface using Average Silhouette Coefficient (ASC) (Lin and Hsueh, 2006) at different numbers

of clusters.

(4) NN Module: Given an input pathway P and an integer n (where n < N and N = total number of

pathways), the NN module provides n number of most similar pathways in their descending order of

similarity values calculated with respect to pathway P. We use cover tree (Beygelzimer et al., 2006), an

indexing mechanism for efficient nearest neighbor search.

(5) Storytelling Module: Given two pathways, the storytelling module finds a story (Definition 2)

between these two pathways. Users can visually investigate the graph-structures of the intermediate

pathways of a story using our tool. We generate stories between all possible pairs of pathways, some of

which might reveal insights for biologists into developing a new pathway. Consider the scenario in which a

biologist wants to uncover the relationship between a gene and a phenotype. The pathways related to this

gene and the phenotypes are not enough to establish a logical relationship. Given two pathways (and the

database of all known pathways), our tool can provide a set of possible relationships in the form of a story,

with visual representations that would help the biologist analyze and discover new relationships.

Definition 2. A story from pathway P1 to pathway Pz is a sequence of some intermediate pathways

P2, P3, . , Pz-1 such that similarity sim(Pi, Pj) > 0, 1 £ I < z, and j = I + 1. In this work, we denote the

length of a story by z, i.e., the number of pathways involved in the story. A story of length 2 does not have

any intermediaries.

3.1. Implementation details

In the following subsections, we describe all the algorithms we have used to develop the tool.

3.1.1. Apriori paradigm. One of the baseline approaches to mining subgraphs from the pathways

database is the Apriori paradigm (Agrawal and Srikant, 1994), which was originally developed to solve the

association rule mining problem of market basket datasets (Agrawal et al., 1996). The aim of the original

Apriori algorithm is to find frequent itemsets from a list of transactions. The algorithm concentrates on the

corresponding supports of the items and itemsets. In our work, we replace transactions with pathways,

items with edges, and itemsets with subgraphs (i.e., sets of connected edges). The association rule mining

problem of market basket data analysis has an analog in our research area as the problem of frequent

subgraph discovery. In this subsection, we illustrate the internal mechanism of our Apriori paradigm and

propose an enhancement to generate candidate subgraphs efficiently.

Table 1 portrays the modified high-level algorithm for frequent subgraph discovery using the Apriori

paradigm. The apriori_gen procedure in the algorithm joins and prunes the subgraphs. In the join

operation, a k-edge candidate subgraph is generated by combining two (k -1)-edge subgraphs of Lk-1. This

k-edge subgraph becomes a member of Lk only if it passes the min_sup threshold. We use the FSG

(Michihiro and George, 2004) approach to join two subgraphs to obtain a higher order subgraph. We also

1048 HOSSAIN ET AL.



propose a novel mechanism called Subgraph-Extension Generation (SEG) in this section, which is more

efficient than the FSG approach.

The importance factor sfipf (subgraph frequency · inverse pathway frequency) of a subgraph si of

pathway j is defined as follows:

sfj = 1
nj

‚ ipfi = kDk
kfpj:si2pjgk where nj is the total number of subgraphs in pathway j and kfpj : si 2 pjgk

indicates the number of pathways where subgraph si appears. jDj is the total number of pathways in the

dataset. We say, sfipfi,j = sfj · ipfi. We use an sfipf threshold min_sfipf in the find_frequent_1-edge_

subgraphs procedure to pick up only the important edges for subgraph discovery.

An edge of a pathway of the STKE dataset is directed (upstream/downstream) and contains one of the

four signaling activities: stimulatory ( + ), inhibitory ( - ), undefined effect (?), or neutral (0). The directions

and edge attributes are strictly considered during the comparison between two subgraphs in our im-

plementation. For example, consider that there is a stimulatory relation between two vertices v1 and v2 in a

subgraph X. Consider we have another subgraph Y that looks the same as X, but the edge between v1 and v2

of Y is inhibitory. Our implementation considers that these two subgraphs are not the same, differing in one

edge. Therefore, the implementation takes the edge attributes into consideration as well as the direction of

the edges.

FSG:
In the FSG approach, we generate a (k + 1)-edge candidate subgraph by combining two k-edge sub-

graphs where the two k-edge subgraphs have a common core subgraph (Michihiro and George, 2004) of

(k - 1)-edges. This approach requires time-consuming comparisons between core subgraphs while generating

the larger subgraphs. Although this approach is very fast for small graphs, it becomes inefficient for large graphs

due to large numbers of blind attempts to combine k-edge subgraphs to generate (k + 1)-edge subgraphs.

Consider an Apriori’s iteration in which we have a total of 21 5-edge subgraphs in the candidate list L5.

We try to generate 6-edge subgraphs from this list. Consider the situation of generating candidates using

one 5-edge subgraph (e.g., the subgraph lmnop of Fig. 4) of L5. The original FSG approach tries to combine

the remaining 20 other subgraphs with lmnop but succeeds, let us assume, only in three cases. Figure 4

illustrates that lmnop is successfully combined with only mnopq, mnopr, and mnops. The other 17 attempts

to generate a 6-edge subgraph with lmnop fail because the 4-edge core-subgraphs analyzed in this case do

not match. Figure 4 shows the attempts to generate good candidates for just one subgraph (lmnop). For all

the subgraphs in L5, there would be a total of 21 · 20 blind attempts to generate 6-edge subgraphs. Some of

these attempts would succeed, but most would fail to generate acceptable 6-edge candidates. This algorithm

cannot avoid comparing a large number of core subgraphs to generate all candidates. We have reduced the

number of comparisons by a significant degree with our Subgraph-Extension Generation approach. The

technique is described in the following subsection.

Table 1. Apriori Algorithm

Input

D: a database of pathway-graphs

min_sup: the minimum support threshold

Output

L: frequent subgraphs in D

Method

(1) L1 = find_frequent_1-edge_subgraphs(D);

(2) for (k = 2; Lk-1 sF; k + + ){

(3) Ck = apriori_gen(Lk-1);

(4) for each pathway-graph g ˛ D{

(5) Cg = CkXg;

(6) for each candidate subgraph s˛Cg

(7) s.count ++ ;

(8) }

(9) Lk = { s˛Ck j s.count ‡ min_sup}

(10) }

(11) return L = WkLk

NARRATIVES IN THE NETWORK 1049



Subgraph-Extension Generation (SEG):
Rather than trying a brute-force strategy of comparing all possible combinations (e.g., FSG), we use the

master pathway graph (MPG) as the source of background knowledge to entirely eliminate the unsuccessful

attempts at generating (k + 1)-edge candidate subgraphs from k-edge subgraphs. We maintain a neigh-

boring-edges list for each k-edge subgraph and generate candidates for frequent higher order subgraphs by

taking edges only from this list.

Figure 5 shows the Subgraph-Extension Generation mechanism for subgraph lmnop, which can be

compared with the FSG approach of Figure 4. The gray edges of Figure 5 are the edges of the 5-edge

subgraph, which we want to extend to generate 6-edge candidates. The black lines indicate the neighboring

edges, which extend the 5-edge gray subgraph maintained in our MPG. The same instance is used for both

Figure 4 and Figure 5 for easy comparison. The neighboring-edges list of lmnop contains edges {q, r, s}.

Unlike Figure 4, the example presented in Figure 5 uses the Subgraph-Extension Generation technique and

does not try to blindly generate higher order subgraphs 20 times. Rather, it proceeds only three times, using

the constraints coming from knowledge about the neighboring edges of lmnop in the MPG. It results in only

three attempts to generate higher-order candidate subgraphs. None of these attempts fail at step 3 of the

Apriori algorithm (Table 1) because the mechanism depends on the physical evidence of possible exten-

sion. Therefore, SEG offers a novel knowledge-based mechanism that eliminates unnecessary attempts to

combine subgraphs. All the generated subgraphs that pass the min_sup threshold are stored in a subgraph-

pathway matrix, which is used in the clustering or storytelling phase later.

FIG. 4. Frequent Subgraph Dis-

covery (FSG) approach. Attempts

to combine lmnop with other

5-edge subgraphs of (L5).
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3.1.2. Pathway clustering and cluster’s evaluation. We use commonly recognized methods to

group pathways: HAC and k-means clustering. The tool provides evaluation in a broad range of generated

clusters. Our tool also provides a selection of different types of similarity measures for the resulting

clusters: Cosine, sfipf weighted Cosine, Jaccard, Dice, Overlap, and Matching coefficients.

To evaluate the clustering results, we used an unsupervised measure of cluster validity called Average

Silhouette Coefficient (ASC) (Lin and Hsueh, 2006). An overall measure of ‘‘goodness’’ of a clustering can

be obtained by computing the average silhouette coefficient of all data points (Tan et al., 2006).

3.1.3. Storytelling and story evaluation. We used bidirectional search to find a story between two

pathways P1 and Pz. In a bidirectional search algorithm, two simultaneous searches proceed in two di-

rections: one forward from the start pathway (P1) and one backward from the goal (Pz). The search stops

when the two searches meet in the middle. A path from P1 to Pz forms a story. Figure 6 portrays a sketch of

the bidirectional search used in our tool. The search proceeds from one pathway Pi to its n most nearest

pathways. The length of a story and the search time depend on the branching factor n. We use bidirectional

search for every pair of pathways to generate all possible stories.

We evaluate the quality of a generated story in terms of the overlap of biological entities in the text

descriptions of each pathway in the story. This is an investigation to examine the text cohesion of the stories

generated by our graph-based storytelling algorithm. To find useful biological entities, we used the Named

Entity Recognition method—a technique generally used to identify certain types of terms (e.g., name of

person, location, biomedical terms, etc.) in a corpus. We use LingPipe named entity recognizer (Carpenter,

2004) to detect the biological entities (e.g., genes, proteins, chemicals, etc.) appearing in the text de-

scriptions of the pathways. Named entity recognition of LingPipe involves supervised training of a

FIG. 6. Bidirectional

search for storytelling.

FIG. 5. 6-edge Subgraph-

Extension Generation (SEG) for the

5-edge subgraph lmnop. It shows

the SEG mechanism for subgraph

lmnop, which can be compared

with the FSG approach of Figure 4.
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statistical model that learns from a set of labeled (usually hand-coded) data. To identify the named entities

in the descriptions of the pathways of the STKE dataset, we use an existing trained model generated from

GENIA corpus (Kim et al., 2003), which is available with the LingPipe package. The identified, named

entities for each of the pathways help us to evaluate the graph-based stories. We assign a score, called

Cohesion Coefficient, to each of the stories, which gives us an overall understanding of the overlap of

biological entities between the text descriptions of every consecutive pair of pathways throughout the entire

story. We define Cohesion Coefficient h(s) of a story s by the following formula:

h(s) =

Pjsj - 1

i = 1

EntityOver lap(pi‚ pi + 1)

jsj

where jsj = (Number of pathways in story s - 1) and

EntityOver lap(pi‚ pj) =
1‚ if pi and pj have

common entities

0‚ otherwise

(

The range of h(s) is [0, 1.0]. A cohesion coefficient of 1.0 indicates that every consecutive pair of

pathways in the story has overlapping biological entities (complete cohesion). A cohesion coefficient of 0.5

indicates that 50% of the consecutive pathway-pairs contain common biological entities in their text

descriptions. A cohesion coefficient of 0.0 indicates no cohesion at all. This scalar value (metric) lets us

rank and present stories to the user.

4. EXPERIMENTAL RESULTS

To assess the power and performance of these clustering and storytelling algorithms, we conducted an

experiment on the STKE dataset. All the results of this article are generated in a machine with Intel quad

core processor and 8GB memory. The tool was implemented in Java, and the Java virtual machine was

running under Windows Vista 64-bit platform during all the experiments.

4.1. Dataset

The STKE dataset (STKE, 2011) used in this work contained 50 pathways. Figure 7 shows that larger

pathways are scarce in the dataset compared to smaller pathways. The largest pathway has 101 edges, and

the smallest pathway has 2 edges. Since there are a total of 1,376 unique relations in the dataset, our MPG

contains a total of 1,376 edges. Figure 8 provides the number of edges and pathways left as functions of

FIG. 7. Number of pathways as function of size-

range. The plot illustrates the distribution of the size of

the pathways.
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sfipf threshold min_sfipf. It shows that large min_sfipf results in filtration of large amount of edges as well as

pathways.

4.2. Subgraph discovery

The number of generated subgraphs in our subgraph discovery process depends on the min_sfipf and

min_sup thresholds. Figure 9 shows experimental results with varying min_sfipf and min_sup. It shows that

the subgraph discovery module discovers higher amounts of frequent subgraphs with lower min_sfipf and

min_sup thresholds. The clustering and the storytelling parts require large amounts of subgraphs for better

results. This means we can find better relationships and clusters among pathways with lower min_sfipf and

min_sup values. On the other hand, lower min_sfipf and min_sup values result in longer runtime in the

subgraph discovery process.

Additionally, lower thresholds require more memory due to the large number of generated candidate

subgraphs during each iteration of the Apriori paradigm. This dependency on memory introduces a tradeoff

FIG. 8. Effect of filtration using min_sfipf. (a) Number of edges left in the Master Pathway Graph (MPG). (b)

Number of pathways left as functions of min_sfipf.

FIG. 9. Contour map illustrating

the number of generated subgraphs.
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between the lower parameter thresholds and the runtime of our algorithm. The degree of this tradeoff

depends on the specification of the machine in which our tool is running.

A performance comparison between the FSG and our SEG approach is shown in Figure 10. Due to the

significant speed of SEG, the gray line drawn for it appears to be linear and flat in comparison to the black line

of the FSG approach, although, the actual behavior of SEG is not really linear. The curve maintains its hatlike

shape, which is typical of the Apriori approach, but because of the scale necessary to show the FSG results, it is

not clearly visible in Figure 10(a). We changed the scale in Figure 10(b) to show the actual behavior of SEG.

Figure 11 depicts the reason why the SEG approach is more efficient than the FSG approach. The figure

compares numbers of attempts to generate k-edge subgraphs by the FSG and SEG approaches. The SEG

approach outperforms the FSG approach by a high magnitude due to the lower number of attempts used to

generate higher order subgraphs by avoiding blind attempts. Table 2 shows that in every case except for

k = 21, SEG saved a huge percentage of blind attempts generated by the FSG approach.

The SEG approach saved 90.26% of the attempts while generating 16-edge subgraphs from frequent

15-edge subgraphs. Since 15-edge subgraphs are the most frequent (1,117 15-edge subgraphs were dis-

covered), obviously the number of attempts to construct 16-edge subgraphs from 15-edge subgraphs

reaches the maximum for the FSG approach in Figure 11. Also, Figure 10 shows that both the curves reach

FIG. 10. Runtime comparison between FSG and SEG (min_sup = 4.0%; min_sfipf = 0.01).

FIG. 11. Number of attempts to

discover k-edge subgraphs by FSG

and SEG.
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their peaks near 16-edge subgraphs. Overall attempts saved by the SEG approach in this experiment was

89.52%, which saves 99.39% runtime used by the FSG approach.

4.3. Evaluating clustering results

We used HAC and k-means to automatically cluster the pathways. Figure 12 shows unsupervised (ASC)

evaluations at different numbers of clusters both for HAC and k-means, using five different similarity

Table 2. Reduction of Blind Attempts by the SEG.

15-Edge Subgraphs are the Most Frequent (a Total of 1,117

15-Edge Subgraphs are Discovered)

k

No. of discovered

k-edge subgraphs

Time

saved (%)

Attempts

saved (%)

2 186 99.83 98.98

3 246 98.33 86.15

4 305 98.57 86.38

5 323 98.95 86.91

6 313 98.96 85.64

7 279 98.88 83.25

8 263 98.67 78.91

9 292 98.38 74.76

10 364 98.58 74.75

11 470 98.76 78.08

12 608 99.04 81.84

13 785 99.22 85.02

14 980 99.38 87.63

15 1117 99.48 89.48

16 1075 99.53 90.26

17 804 99.51 89.4

18 430 99.34 85.22

19 141 98.76 71.22

20 20 96.15 9.19

21 1 75.74 - 574.47

FIG. 12. Average Silhouette Coefficient (ASC) at different numbers of clusters using (a) Hierarchical Agglomerative

Clustering (HAC) and (b) k-means.
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measures. The plot shows that HAC provides higher ASC than the k-means clustering using any similarity

measure for the STKE dataset.

The clusters’ accuracy also varies depending on the min_sup and min_sfipf thresholds. Figure 13(a,b)

provides two ASC contour maps at 10 clusters for HAC and k-means, respectively. Figure 13(a) shows that

HAC produces best results in the bottom left corner of the plot with ASC = 0.20. Similarly, Figure 13(b)

shows that k-means generates its best clusters in the region with ASC = 0.14 of the plot where min_sup and

min_sfipf thresholds are small. Therefore, both HAC and k-means generate better clusters with lower

min_sup and lower min_sfips thresholds.

Earlier in Figure 9, we showed that lower min_sup and min_sfipf thresholds result in higher amount of

subgraphs. Since lower min_sup and min_sfipf results in larger amounts of subgraphs, any clustering

algorithm can better separate the groups, which results in high quality clusters. Figure 13 also shows that

HAC performs better than the k-means clustering since HAC has higher ASC (0.20) than the ASC of

k-means (0.14) in corresponding bottom-left corners.

4.4. Evaluating storytelling results

We attempted to generate stories for all possible pairs of pathways. But not all pairs have stories—some

pairs do not have any relationship between them or with other pathways. The number of stories and story

lengths vary with branching factor b used in the bidirectional search algorithm for storytelling. Figure 14(a)

shows that a small branching factor has the tendency to generate few stories, and large branching factor

generally generates lots of stories. Figure 14(b) also shows that the total number of generated stories is

larger with high branching factor. Figure 14(c) depicts that large branching factor provides longer stories.

Finally, Figure 14(d) shows the time to generate all possible stories using different branching factors.

Although the bidirectional storytelling algorithm generates longer stories with higher branching factor, the

process becomes slower.

The total number of stories generated by our graph-based algorithm with a branching factor of 3 is 528.

Figure 15(a) shows a histogram of the distribution of these stories in bins of Cohesion Coefficient (with bin

width = 0.05). According to this plot, around 15% of the stories have high cohesion (0.95 to 1.0). The

longest bar in this plot shows that about 22% of the stories have cohesion coefficient between 0.50 to 0.55.

Each point of the plot of Figure 15(b) illustrates the percentage of stories above a certain cohesion

coefficient, h. As seen from this plot, around 62% of the stories have cohesion coefficient greater than 0.5.

However, some other information that these two plots do not specifically display are: the number of stories

with exactly no cohesion (h = 0.0) and the number with complete cohesion (h = 1.0). A total of 43 stories

(8.14%) have no cohesion in their pathway descriptions while 79 of the stories (14.96%) exhibit complete

cohesion.

We do not advocate the myopic view of cohesion in this context as a primary parameter of quality

estimation for a story since cohesion considers only text descriptions provided in the original STKE dataset.

FIG. 13. Contour maps for ASC at 10 clusters showing HAC (left) and k-means clustering (right).

1056 HOSSAIN ET AL.



FIG. 14. Storytelling results. (a) Length of stories as function of story length, (b) total stories generated from all pairs

as function of b, (c) longest story found as function of b, (d) time to generate all possible stories as function of b.

FIG. 15. Evaluation of the stories. (a) Percentage of stories in the range of Cohesion Coefficient (bin width = 0.05).

(b) Percentage of stories above Cohesion Coefficient, h.
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While some descriptions are rich, others lack detailed information. Although a lot of chemical compounds

can be associated with a pathway, its text description can be too short to analyze. For example, the B Cell

Antigen Receptor pathway (CMP_69094) is a large pathway with 34 nodes of various kinds, but its text

description contains only one sentence: ‘‘The B lymphocyte antigen receptor signaling pathway involves

primarily positive signaling.’’ This might result in less cohesion than actually a biologist would discover.

The final set of interesting stories should always be determined by the biologists and validated by formal

experimentation. Our concept of cohesion can, however, assist investigators in narrowing down the set of

automatically mined stories to good candidates.

5. CONCLUSIONS AND FUTURE WORK

In this work, we developed a tool that would help biologists find non-obvious but significant relation-

ships between cellular signaling pathways. These discovered relationships may provide new insights and

new hypotheses to test. We have demonstrated enhanced algorithms in several phases of the work and

given comparisons with traditional data mining approaches.

We addressed the problem of determining pathway relationships through clustering and storytelling

techniques. We decomposed the problem of pathway-relation search into frequent subgraph discovery

problems and provided a graph-based solution that depends on the structural overlaps between the path-

ways. Our tool and methods can help biologists, as well as data mining researchers, analyze the perfor-

mance of different graph mining algorithms. Our tool also provides visualizations concerning the efficiency

and outcomes of the mining algorithms and a quantitative way to evaluate the resulting clusters and stories.

Our mining methods and software framework have potential to be useful to other networks such as

ontologies and semantic networks, social networks and online communities, and sensor networks. In the

future, we hope to apply our methodology to some of these network types and use different corpi in order to

evaluate their performance. In addition to applying our methods to other graph datasets, we are interested in

the scalability of these mining algorithms. For example, future work will include larger networks and the

marshaling of many machines to do the mining. The scalability of the SEG algorithm we have described is

dependent on the machine and the support threshold defined by the analyst. We are also interested in

introducing parallelization into the overall system. While the SEG and FSG approaches might be tough to

parallelize (because each iteration depends on the results of the previous iteration), it is possible to paral-

lelize the candidate generation of each iteration (individually) by distributing all the subgraphs of previous

iterations to all the machines of a distributed network. Once we receive all the promising candidates from all

the machines of the network, we can distribute them again to generate the candidates of the next iteration.

Visual analytics is gaining momentum in many research areas, but applying these visual analysis

techniques to other knowledge bases and large network repositories (especially in biology like genomics,

transcriptomics, proteomics, and metabolomics) remains a challenging and worthy problem.
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