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ABSTRACT

Regulatory sites that control gene expression are essential to the proper functioning of cells,
and identifying them is critical for modeling regulatory networks. We have developed
Magma (Multiple Aligner of Genomic Multiple Alignments), a software tool for multiple
species, multiple gene motif discovery. Magma identifies putative regulatory sites that are
conserved across multiple species and occur near multiple genes throughout a reference
genome. Magma takes as input multiple alignments that can include gaps. It uses efficient
clustering methods that make it about 70 times faster than PhyloNet, a previous program for
this task, with slightly greater sensitivity. We ran Magma on all non-coding DNA conserved
between Caenorhabditis elegans and five additional species, about 70 Mbp in total, in < 4 h.
We obtained 2,309 motifs with lengths of 6–20 bp, each occurring at least 10 times
throughout the genome, which collectively covered about 566 kbp of the genomes, approx-
imately 0.8% of the input. Predicted sites occurred in all types of non-coding sequence but
were especially enriched in the promoter regions. Comparisons to several experimental
datasets show that Magma motifs correspond to a variety of known regulatory motifs.

Key words: ChIP analysis, cis-regulatory elements, eukaryotic motif-finding, fast motif-finding,

genome-wide motif-finding, motif-expression association, motif redundancy, transcription factor

binding site discovery.

1. INTRODUCTION

Akey area of genomic research is understanding the cis-regulatory network that governs tran-

scriptional regulation. Over the past two decades, many computational approaches have been developed

to discover transcription factor (TF) binding sites in the genome by identifying recurring sequence motifs that

bind a particular factor. Discovering such motifs is challenging, because they are usually short (5–12 bases)

and degenerate.

Traditional algorithms to recognize motifs in genomic DNA take one of two basic approaches. The

multiple gene, single species approach recognizes motifs because they recur with few changes in the

promoters of multiple genes within a single genome (Stormo and Hartzell, 1989; Lawrence et al., 1993;

Hertz and Stormo, 1999; Bailey et al., 2006; Elemento et al., 2007). In contrast, the single gene, multiple
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species—or phylogenetic footprinting—approach recognizes motifs in a single promoter region by their

conservation across species, which is assumed to be greater than that of the surrounding background

sequence (Gelfand, 1999; McGuire et al., 2000; McCue et al., 2001; Panina et al., 2001; Rajewsky et al.,

2002; Frazer et al., 2003; Panina et al., 2003; Marchal et al., 2004). These methods work because binding

sites are typically under selective pressure and therefore mutate more slowly than the surrounding se-

quence. Wang and Stormo (2003) combined these two approaches in their PhyloCon program, which uses

alignments of orthologous promoter regions rather than individual DNA sequences. In this paradigm, a

motif is required both to recur across different promoters and to be conserved across species in each of its

occurrences. Other tools take a conceptually similar approach (Qin et al., 2003; Jensen et al., 2005;

Monsieurs et al., 2006), all of which report results on bacterial promoters.

To scale PhyloCon’s methods to discover motifs across an entire genome, the successor program

PhyloNet (Wang and Stormo, 2005) implemented a BLAST-like seeded alignment algorithm to accelerate

detection of putative motif instances across thousands of promoters. This allowed its application to all

noncoding sequences of the yeast genome, but still at a high cost: > 5 CPU-days on a 2.4-GHz workstation.

The noncoding sequences of a higher eukaryotic genome represent tens to hundreds of times more se-

quences than yeast. Most phylogenetically based motif-finding algorithms scale quadratically with the input

size, so the lengthy times expected for higher eukaryotic promoter analyses are a deterrent to genome-wide

motif discovery.

This work describes Magma (Multiple Aligner of Genomic Multiple Alignments), a new algorithm for

multi-gene, multi-species computational motif discovery. Magma significantly departs from the PhyloNet

pipeline for accelerated operations, most substantially by introducing new algorithms to group putative TF

binding sites into motifs and to reduce redundancy in its output. Magma also operates on gapped genomic

sequence alignments. Using alignments of Saccharomyces promoters, Magma runs almost 70 times faster

than PhyloNet with improved sensitivity. Magma scales to analyses of higher eukaryotes; it can analyze all

proximal promoters in Drosophila in less time than that required by PhyloNet to analyze yeast. Although

Magma’s efficiency allows us to perform whole-genome motif-finding on higher eukaryotes, its motif-

finding methods can sometimes produce many redundant, partially overlapping motifs. We alleviate this

problem with a fast, greedy, set-covering approach (Chvatal, 1979).

We demonstrate Magma’s motif discovery prowess using essentially all of Caenorhabditis elegans non-

coding sequence: a 70-Mbp search space consisting of promoters, Un-Translated Regions (UTRs), introns,

and downstream regions. To the best of our knowledge, this is the most comprehensive motif-finding effort

to date in C. elegans. Furthermore, we show that these motifs and their conserved exemplar sites corre-

spond to many known regulatory sites, are enriched in TF-bound regions, and are correlated with ex-

pression. Magma and all post-processing software and results are available at http://stormo.wustl.edu/

*nihuegbu/Magma/homepage.html.

2. METHODS

Magma computation

Magma takes as input a collection of multiple sequence alignments or profiles such as the Multiple

Alignment Format (MAF) blocks from University of California Santa Cruz (UCSC). These blocks are

alignments of orthologous genomic sequences from different species. Its goal is to discover short motifs,

which are approximate sequence patterns that occur in multiple instances, or exemplar sites, within each

genome and appear distinct from the surrounding sequence. However, because Magma searches profiles

rather than single sequences, each instance of a motif is itself a collection of aligned sequences exhibiting

significant conservation across the species in its profile. Magma compares pairs of profiles using the

average log-likelihood ratio (ALLR) score, a measure of similarity between columns of two multiple

alignments (Wang and Stormo, 2003). The ALLR is well-defined for pairs of columns containing different

total numbers of characters, so it may be applied to columns which have different number of bases due to

gaps. For two motifs of equal length, their total ALLR score is simply the sum of the ALLR scores of their

corresponding columns, ignoring gapped positions.

Magma discovers motifs by comparing one input profile, the query, to a database of all other profiles

considering both possible orientations. Each profile in the input serves as the query in turn, until all profiles

have been compared pairwise. Magma’s search has two phases: generation of high-scoring segment pairs
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(HSPs), which locally align two profiles, and clustering of all HSPs involving a given query to form motifs.

HSP generation is further subdivided into seed matching and extension.

An HSP is a local alignment of the query profile and a database profile, such that the total ALLR score of all

aligned column pairs exceeds a user-defined threshold T. To reduce the computational cost of search, and to

allow identification of multiple HSPs per profile pair, HSP generation uses a seeded alignment approach on a

simplified representation of the input profiles. Each input profile is first quantized into a sequence over an

alphabet of 15 symbols, each of which represents a particular vector of base counts, by mapping each profile

column to the symbol whose vector has the most similar distribution (Wang and Stormo, 2005). The

alignment score for a pair of symbols is the ALLR score for the corresponding pair of vectors. The quantized

query and database profiles are scanned for seed matches, or pairs of fixed-length substrings with at least some

minimum score, using a neighborhood hashing strategy analogous to that used by BLASTP for sequence

alignment. Each seed match between two profiles is extended by dynamic programming into the best HSP

passing through the match, and HSPs with scores exceeding T are retained. Whereas seed matching is done on

the quantized profiles, extension is done in the original profiles using the full ALLR score.

Magma’s clustering algorithm

The clustering phase collects and aligns putative motif instances from the HSPs generated by the

previous phase. A cluster is a collection of HSPs, all of which overlap on a given query profile Pq. A cluster

of n HSPs therefore defines intervals from at most n distinct profiles besides the query, all of which are

aligned to Pq (and hence transitively to each other).

Clustering first groups all HSPs for a query, then reduces each cluster to a single motif, with each interval

possibly contributing one motif instance. A motif may use only a subset of the cluster’s intervals, and each

interval must be adjusted so that all instances of the motif have the same length. Subsetting and length

adjustment are performed so as to maximize the sum of ALLR scores between the instance drawn from Pq

and each other instance in the motif.

Magma uses efficient clustering methods that offer strong performance and quality guarantees. Edges of

an HSP overlap graph are determined by overlaps between intervals on the same profile, making this graph

an interval graph. All maximal cliques in such a graph can easily be found in time linear in the number of

HSPs and enumerated in time proportional to their total size (Gupta et al., 1982). Magma therefore uses

interval clique finding to guarantee both maximality and exhaustive enumeration of clusters, with much

better scalability than general clique finding. To avoid building clusters from HSPs that overlap by very

little (e.g., a single base), it is desirable to enforce a minimum overlap of k positions to create an edge in the

overlap graph. Magma enforces this criterion by reducing each interval’s right endpoint by k-1 positions

prior to clique finding.

To simplify conversion of clusters to motifs, Magma uses the following enumerative algorithm. For each

HSP Hj in the cluster, let Pq (the query) and Pj be the profiles that it aligns, and let [lj, rj] and [l’j, r’j] be the

intervals that it aligns from Pq and Pj, respectively. Let dj = l’j - lj be the diagonal of Hj, that is, the offset of

its starting indices in the query and database profiles.

Suppose that the HSPs in a cluster have minj lj = L and maxj rj = R. For each left endpoint ‘ and right

endpoint r, L £ ‘ £ r £ R, we find the best-scoring motif whose instance on Pq is the interval [‘, r]. The

instance corresponding to HSP Hj is then [‘ + dj, r + dj]. (If this instance runs off either end of Pj, then it is

discarded for this choice of endpoints.) We then discard any instance whose ALLR score versus the query

instance is negative and retain the total score s‘,r of the remaining instances. The motif with the highest total

ALLR score for the cluster is the one with endpoints argmax‘,r s‘r in profile Pq. Our enumerative algorithm

requires time Y(m2n), where n is the number of HSPs in the cluster and m = R - L + 1. However, the ALLR

scores for each column of the alignment between each Pj and Pq can be precomputed and stored in total

time Y(mn). Hence, the constant factor associated with the quadratic cost in m is small in practice,

consisting mostly of addition and table lookup. We also note that when the goal is instead to minimize the

statistical p-value defined in (Wang and Stormo, 2005) for the motif, the motif with best p-value for a

cluster can still be found in time Y(m2 n log n).

Reducing redundant motifs

The motifs obtained by HSP finding and clustering may contain many overlapping, partially redundant

motifs. The major source of redundancy is the re-use of overlapping profiles in construction of multiple
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motifs. Since we know the genomic coordinates of all the exemplar sites that were used to construct every

motif, we can re-describe this problem as an NP-complete set-covering problem (Karp, 1972; Vazirani,

2001). Given a universe U of exemplar contigs (i.e., contiguous regions built from overlapping exemplar

sites) and a collection of motifs S, each of which covers a subset of U, a cover is a subset C of S whose

union of exemplar sites covers all of U.

We implement a fast greedy approximation for the set-covering problem to significantly reduce the

motif redundancy in the final output. Greedy algorithms for minimum set-covering achieve a log n

approximation, where n is the size of the largest set (Chvatal, 1979). This means we use at most log n

times the minimum number of motifs needed to cover all instances. Our implementation is similar to other

set-covering solutions but with some slight modifications. At each iteration, we define a cover as the set of

sites from the most occurring motif (m*), as well as sites from any other motif that overlaps m* sites by at

least d sites. Thus, at each iteration, we remove a set of sites u* in U and their associated motifs from the

problem. We continue this recursion as long as ju*j ‡ Mu minimum unique sites (a default value of 10

unique sites per motif ). The redundant motifs in each resulting cover are subsequently resolved by iter-

atively scanning all the sites with each motif (by order of most occurrences) and masking their instances.

This continues until there are fewer than Mu sites left in the cover.

3. RESULTS

Magma is a fast genome-wide motif-finder with tractable scaling for higher-order eukaryotes

Magma was designed in part to overcome performance limitations in the earlier PhyloNet motif-finding

software. To measure Magma’s performance relative to PhyloNet, we ran both programs to discover

initial motifs in yeast promoters. On a cluster of 2.4-GHz AMD Opteron processors, we observed a

*70-fold speedup. Moreover, Magma’s ability to use gapped profiles, which better aligns motif instances

in different parts of the same profile, allowed it to discover more known motifs than PhyloNet while still

including less of the reference sequence in its output. We also examined how Magma scales when applied

to more complex eukaryotes (Table 1). Running Magma on D. melanogaster’s conserved promoter

regions (an approximately ninefold increase in search space) required about 30-fold more time than the

yeast experiment. The complete C. elegans conserved regulome from six species (*40-fold search space)

required *130-fold more time (*3.5 h). In practice, we implement Magma such that the set of all queries

is distributed across several processors, so that the actual running time for C. elegans was only *0.75 h.

Characteristics of Magma C. elegans motifs

We discovered 2,309 motifs in C. elegans, with lengths of 6–20 bases. These motifs are composed of

65,747 unique, non-coding, conserved exemplar sites covering 566,666 bp (*0.8% of the C. elegans input

sequence). These sites are distributed across all non-coding regions but have the most occurrences in the

promoter regions, as would be expected for regulatory sites (Table 2). We make these motifs available on

our website as position-specific count matrices (PSCMs).

Evaluation of Magma C. elegans motifs

We assessed whether Magma’s motifs are consistent with the known binding sites for the few charac-

terized factors and with other information about regulatory interactions. Because we do not expect

Table 1. Magma (Multiple Aligner of Genomic Multiple Alignments) Scales

to Higher-Order Eukaryotes with Practical Runtime

Organism Search Space (Mbp) Magma-DiscoveryTime (cpu secs)

S. cereviasae 1.74 101

D. melanogaster 15.36 3184

C. elegans 69.56 12915
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Magma’s exemplar sites for each motif to be a comprehensive list of all sites for its associated TF, we scan

each non-coding region in our input with the PWM for each motif to determine if it was significantly

enriched in instances of the motif. The expected number of motif instances arising by chance is determined

by the information content of the motif (Schneider et al., 1986; Hertz and Stormo, 1999), whereas the

observed number is the actual number of sites within each dataset whose score exceeds the information

content of the motif. The score of a putative motif with respect to a given dataset is the log-likelihood ratio

LLR(motif j dataset)¼ observed ln
observed

expected

.

One of the best-characterized TFs in C. elegans is the Nuclear Factor I (NFI). Whittle et al. (2009)

performed ChIP-CHIP for NFI, probing its in vivo targets at 55 regions (*1500 bp each). Magma finds two

motifs that are strongly enriched within those regions, both very similar to the known consensus of

TTGGCAN3TGCCAA (Fig. 1).

The modENCODE consortium identified regions from ChIP-Seq experiments that bound several TFs

(Gerstein et al., 2010). These regions, with average length of 200 bases, were filtered to remove those that

overlapped ubiquitous HOT sites, leaving 74,065 regions from 28 samples that bound a total of 23 different

TFs (PHA-4 was assayed at six different developmental and environmental conditions). For each sample,

we ranked the motifs using the above LLR score. For the three TFs with known motifs, the most significant

Magma motif matches the known consensus (Table 3; for the PHA-4-YA set the second-ranked motif

matches the consensus). Significant motifs were found for each of the remaining ChIP-Seq datasets, but

since the TFs binding these sites have unknown motifs, we could not use them to validate Magma’s

performance.

Table 2. Distribution of Sites in Different Non-Coding Sequence Classes

Location Number of Sites* Coverage (bp) Size of input region (bp) Fraction of input region

2kb 50 Intergenic 34,278 258,322 21,532,733 1.20%

50UTR 2,596 15,411 461,624 3.34%

1st Intron 15,514 73,904 7,918,585 0.93%

Other Intron 27,787 122,333 23,691,626 0.52%

30UTR 4,436 27,111 1,934,557 1.40%

*Note: Some of these sites overlap different regulatory regions of multiple genes.

FIG. 1. Log likelihood ratio un-

covers NPS-like motifs on NPI CNP

peaks.
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We also identified significant motifs for 12 factors with at least 10 promoter binding observations from

the EDGE database of Yeast-One Hybrid (Y1H) experiments (Barrasa et al., 2007), though again the

correct motifs for these sites are not known a priori. The Oreganno database lists 187 different experi-

mentally tested binding sites and cis-regulatory modules in C. elegans (Montgomery et al., 2006; Griffith

et al., 2008), which includes the annotated bound factors for several sites. We find significant matches

among our Magma motifs for 185 of these sites, including motifs whose specificity resembles that of TFs

matching annotated PHA-4, ELT-2, and DAF-19 sites.

Hunt-Newbury et al. (2007) built promoter/GFP fusion libraries for approximately 2,000 C. elegans

genes and cataloged the temporal and spatial expression of the green fluorescent protein. Dupuy et al.

(2007) conducted similar studies that monitored the tempo-spatial expression of promoter reporter con-

structs. Chikina et al. (2009) used support vector machines (SVMs) to predict other genes from C. elegans

with similar expression profiles to these experimental results and achieved 90% precision for all of the

major tissues (intestine, hypodermis, muscle, neurons, pharynx) except germ-line. Using this SVM pre-

dicted dataset, we identified enriched motifs by computing an occupancy score for each motif and each

promoter in each tissue-specific gene set (Granek and Clarke, 2005). We recovered several known cis-

regulatory elements that regulate or establish tissue expression. For instance, ELT-2 is a zinc finger

protein that is known to bind to GATA cis-based elements to regulate transcription in C. elegans

Table 3. Magma (Multiple Aligner of Genomic Multiple Alignments)

Motifs in modENCODE ChIP Peaks

ChIP-Seq Sample Class TF Known Specificity Magma Motif LOGO LLR Rank

HLH1_EMB bHLH HLH-1 E-Box (CANNTG) 1

PHA4_EMB Forkhead PHA-4 TRTTKRY 1

PHA4_L1 1

PHA4_L2 1

PHA-4- 1

Late_Emb

PHA-4- 1

Starved_L1

PHA-4-YA 2

ELT3_L1 GATA-Zn Finger ELT-3 GATA-site 1

FIG. 2. Enrichments of three GATA-like

motifs in different tissues. All three motifs are

enriched in promoter regions of intestinal

genes. Alternative motifs are enriched in a few

other tissues.
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intestines (McGhee et al., 2007). Figure 2 shows three GATA motifs and their tissue enrichments (log

p-values). Although GATA elements are mostly enriched in the promoters of intestine-expressed genes,

we also found it enriched in the introns (especially the first intron) of neuronal and muscle tissue-types

such as pharynx, uterus, and vulva, consistent with previous developmental studies highlighting the broad

role of GATA factors in development (Spencer et al., 2011). We re-discovered other known cis-acting

elements that endow tissue-specific expression, such as PHA-4- and PHA-4-variant-like motifs enriched

in the pharynx.

We further analyzed 88 C. elegans ChIP and expression microarray series data sets from the GEO

Omnibus database, including 1,362 total samples. Similarly to the previous section, we analyzed the

occupancy scores for our discovered motifs to uncover significant enrichments with the differentially

regulated genes from each expression sample. We identified significant motifs for 991 different

samples. We found that a motif matching the known specificity of DAF-16 (GTTGTTTAC) is

significantly enriched in daf-2/daf-16 mutant experiments (McElwee et al., 2004). DAF-16 has also

been shown to be involved in starvation response in C. elegans (Henderson and Johnson, 2001), and

samples from starvation experiments (Baugh et al., 2009) are significantly enriched for the same

motif.

4. DISCUSSION

We have described Magma, a program that identifies motifs that are conserved across species and occur

in several locations within the reference genome. In a comparison to the PhyloNet program on the yeast

genome, we found slightly higher sensitivity with greatly increased speed, about 70 · faster. The entire

non-coding conserved genome of C. elegans, about 70 Mbp, can be analyzed in < 4 h on a single CPU. We

observed that Magma scales sub-quadratically with its input size, due to lower density of strongly con-

served regions hence less HSP extensions per seed. Although the lack of extensive knowledge about

regulatory motifs in C. elegans hinders a comprehensive evaluation of Magma’s specificity, comparison to

known motifs from a variety of experimental datasets show that its motifs are generally consistent with

existing knowledge. Finally, we posit that these motifs likely represent specificities for TFs involved

in various regulatory networks controlling gene expression in different conditions and developmental

processes.
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