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ABSTRACT

Throughout the 1980s, Simon Tavaré made numerous significant contributions to population
genetics theory. As genetic data, in particular DNA sequence, became more readily available, a
need to connect population-genetic models to data became the central issue. The seminal work
of Griffiths and Tavaré (1994a, 1994b, 1994c) was among the first to develop a likelihood
method to estimate the population-genetic parameters using full DNA sequences. Now, we are
in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré
has led the way to new approaches. However, performing statistical inference under non-
neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of
his work that provides a computationally tractable method for simulating and analyzing data
under a class of non-neutral population-genetic models. Computational methods for approxi-
mating likelihood functions and generating samples under a class of allele-frequency based
non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and
Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from
non-neutral models using neutral models as auxiliary distribution in a rejection algorithm.
However, patterns of allele frequencies produced by neutral models are dissimilar to patterns
of allele frequencies produced by non-neutral models, making the rejection method inefficient.
For example, in some cases the methods in DNJ (2001) require 109 rejections before a sample
from the non-neutral model is accepted. Our method simulates samples directly from the
distribution of non-neutral models, making simulation methods a practical tool to study the
behavior of the likelihood and to perform inference on the strength of selection.
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1. INTRODUCTION

While genetic variation is ultimately resolved by DNA sequencing, much of our under-

standing of natural populations continues to be based on the results of allele-frequency analysis.

Therefore, developing likelihood-based methods to assess the strength of selection using allele-frequency
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data is of interest. However, evaluating likelihood functions and simulating samples under non-neutral

models is computationally difficult, posing challenges in developing likelihood-based inference methods.

In this article, we present computationally efficient methods for approximating likelihood functions and

generating samples under a class of non-neutral models. We consider models that describe the distribution of

allele frequencies in a sample of chromosomes from diploid organisms at a single non-recombining region of

the genome in the following setup. We assume a fixed number of allelic types at a region of the genome. The

frequency of a particular allele is defined as the ratio of the number of chromosomes that are identical to the

given allele over this region to the total number of chromosomes in the population. Alleles are subject to a

random parent-independent mutation process, in which, the type of the new allele from a mutation event is

chosen from the types existing in the population, independently of the type of the parent. Selection acts on a

diploid genotype of two alleles and each genotype in the population is assigned a selection coefficient

representing the relative advantage of that genotype with respect to a fixed arbitrary genotype in the

population. Under these asumptions, the distribution of allele frequencies in a population evolving for a long

time can be obtained as the stationary distribution in the diffusion limit, which is governed by a mutation

parameter and a matrix of selection parameters. Ultimately, we are interested in performing likelihood-based

inference on the strength of selection, given a sample of allele frequencies from the population.

Likelihoods arising from the distribution of the allele frequencies in the class of non-neutral models

described in the previous paragraph have an unknown normalizing constant that depends on the parameters

of the model. Evaluation of likelihood functions and generating samples under the non-neutral models

require approximating this unkown constant, either by direct computation or by a stochastic simulation

approach that bypassess its direct computation. Before describing our method, we briefly discuss the

disadvantages associated with stochastic simulation approaches available to evaluate likelihoods and to

generate samples for the class of non-neutral models we study.

In principle, rejection sampling, importance sampling, and Markov chain Monte Carlo (MCMC)

methods can be used to simulate allele-frequency data from non-neutral models and to approximate the

normalizing constants in non-neutral models. These Monte Carlo methods use an auxiliary distribution

under which simulating the allele frequencies is easy and their computational efficiency increase when the

auxiliary distribution mimics the target non-neutral model closely. However, designing a good auxiliary

distribution for non-neutral models is difficult in practice because of high-dimensional data and potentially

high-dimensional parameter space. When a distribution based on a neutral model is used as the auxiliary

distribution to generate a sample from a non-neutral model by rejection sampling, the acceptance rate

remains low. For example, under the model presented in DNJ (2001), the rejection method with an

auxiliary distribution based on the neutral model in some cases requires 109 trials before a sample from the

distribution under the non-neutral model is accepted. Approximating normalizing constants by importance

sampling, by first expressing them as expectations of neutral distributions and using samples generated

from neutral models, suffers from the same inefficieny. Distributions based on neutral models make poor

auxiliary distributions in stochastic simulation methods targeting non-neutral models, because under ap-

preciable selection, the allele-frequency patterns produced by neutral models differ substantially from the

allele-frequency patterns produced by non-neutral models.

MCMC methods have also been used to simulate samples under a variety of non-neutral models. For

example, Fearnhead (2001, 2003), developed methods based on perfect simulation (Propp and Wilson,

1996). MCMC methods based on perfect simulation have the advantage to be applicable to parent-

dependent mutation schemes, in which, the type of a mutant allele may depend on the type of its parent.

Murray et al. (2006) developed a similar approach to sample the posterior distribution of parameters when

the model has an unknown normalizing constant dependent on the parameters (Møller et al., 2006).

However, perfect simulation is computationally feasible only for small values of the selection parameter

and for haploid populations. As the strength of selection increases, one has to look further back in time in

the history of the sample and deeper on the genealogical tree to capture the branches on which selection

events occur on the genealogical tree. Further, MCMC methods produce correlated samples from the target

distribution, which is a disadvantage when independent samples are required. In summary, there is a lack of

efficient computational methods that can operate under a wide range of parameter values and high-

dimensional data and parameter spaces.

We present numerical analysis methods to compute the parameter-dependent unknown constant effi-

ciently and accurately for a sub-class of non-neutral models in which the matrix of selection parameters is

diagonal. In our numerical analysis approach, we break the high-dimensional integral in the normalizing
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constant into a series of one-dimensional iteratively defined integrals. In the end, we compute these

integrals to produce a series of numerical approximations to a sequence of conditional cumulative distri-

bution functions. Using these cumulative distribution functions, we simulate independent samples directly

from distributions of non-neutral models. To simulate samples from non-neutral models with a non-

diagonal matrix of selection parameters, our numerical analysis methods allow the use of distributions in

non-neutral models with a diagonal matrix of selection parameters as auxiliary distributions in a rejection

sampling setup, improving the efficiency of the rejection sampling.

Our method combines the advantages of stochastic approaches with the advantages of numerical ap-

proaches. By taking a numerical analysis approach to compute the normalizing constant, we avoid stochastic

error. Yet, because we can produce a series of conditional cumulative distribution functions, simulating

independent samples directly from the distribution of interest is feasible. Combined with stochastic samplers

such as rejection algorithm or MCMC, our numerical methods provide an efficient algorithm to sample the

joint posterior distribution of the mutation and selection parameters under non-neutral models.

We demonstrate the application of our methods with two examples using a symmetric balancing se-

lection model, which corresponds to the special case where the matrix of selection parameters is diagonal

with equal elements. Balancing selection is a diversity-promoting mode of selection, resulting from a

variety of mechanisms, such as heterozygote advantage and negative-frequency-dependence. Applications

of balancing selection arise in many areas, from plant genetics to environmental genomics. Estimating the

strength of balancing selection and determining whether balancing selection is a prevalent force are key to

understanding evolution in these contexts.

In the first example, we investigate the performance of our inferences on the strength of balancing

selection using our methods in conjunction with approximate Bayesian computation, based on rejection

sampling (Tavaré et al. 1997; Pritchard et al., 1999; Beaumont et al., 2002). Approximate Bayesian

computation performs inference on the posterior distribution of the parameters utilizing the data sets

simulated under a model. In the second example, we focus on the stationary distribution of the r largest

allele frequencies in a population with K total allelic types (Watterson, 1977). Based on this distribution, we

investigate the effect of using an incorrect K-allele model in which small-frequency alleles are missing in

the sample, on the posterior distribution of the selection parameter, using an MCMC approach.

2. MODELS

2.1. Neutral K-allele model

In a population with K allelic types, evolving for a long time under the neutral model with parent-

independent mutation, the stationary distribution of allele frequencies (x1‚ x2‚ . . . xK), where xi denotes the

frequency of the ith allelic type, is given by the Dirichlet distribution (Wright, 1949):

fN(x; h�) =
1

b(h�)
xh�1 - 1

1 xh�2 - 1
2 . . . xh�K - 1

K I
XK

i = 1

xi = 1

( )
: (1)

Here, h = 4Nl is the population-scaled mutation parameter, where N is the effective population size, l is

the mutation rate per gene per generation, �i

PK
i = 1 �i = 1

� �
is the fraction of the mutation rate corresponding

to allele i, and I{A} is the indicator function taking a value of 1 on set A and 0 otherwise. The normalizing

constant b(hm) is a well-known ratio of gamma functions and is given by

b(h�) =
QK

i = 1 G(h�i)

G(h
PK

i = 1 �i)
:

The sampling distribution LN(n) of a sample of size n under the multinomial sampling from distribution

given in equation (1) is given by

LN (n) =
n!(h�1)(n1)(h�2)(n2) � � � (h�K)(nK )

n1!n2! � � � nK !(h)(n)

‚

where, n(n1‚ n2‚ . . . ‚ nK ), ni is the number of copies of ith allele in the sample, n =
PK

i = 1 ni is the sample

size, and z(n) = z(z + 1) � � � (z + n - 1) is the rising factorial. The multinomial sampling probabilities in this
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case are also given by b(hm + n)/b(hm). The Dirichlet distribution is conjugate under multinomial sampling

(Kotz, 2000), meaning that if the prior probabilities on the population frequencies is Dirichlet distributed,

then the posterior probabilities of the population frequencies given a sample is also Dirichlet distributed.

The conditional distribution of the population frequencies given a sample n = (n1‚ n2‚ � � � ‚ nK) from the

distribution in equation (1) is Dirichlet with

fNjn(x; h�) =
1

b(h� + n)
xh�1 + n1 - 1

1 xh�2 + n2 - 1
2 . . . xh�K + nK - 1

K I
XK

i = 1

xi = 1

( )
: (2)

2.2. K-allele model with selection

The stationary distribution of allele frequencies in the presence of selection is related to the stationary

distribution under neutrality given in equation (1) in the following way. For a population with allele

frequencies x, we define the mean fitness �r(x) by

�r(x) =
XK

i‚ j = 1

r(Ai‚ Aj)xixj‚

where r(Ai, Aj) denotes the parameter for the strength of selection of a genotype with allelic types Ai and Aj.

We let S be the symmetric matrix whose (i, j)th element is r(Ai, Aj) = rij. Then, the stationary distribution

of allele frequencies in the K-allele model with selection (Wright, 1949) can be expressed as

fS(x;S‚ h�) =
ex0Sx

c(S‚ h�)
xh�1 - 1

1 xh�2 - 1
2 . . . xh�K - 1

K I
XK

i = 1

xi = 1

( )

=
e

PK

i = 1

PK

j = 1
rijxixj

c(S‚ h�)
xh�1 - 1

1 xh�2 - 1
2 . . . xh�K - 1

K I
XK

i = 1

xi = 1

( )
‚ (3)

where c(S, hm) is the normalizing constant and x0 denotes the transpose of the vector x. The normalizing

constant is given by

c(S‚ h�) =
Z

e

PK

i = 1

PK

j = 1
rijxixj xh�1 - 1

1 xh�2 - 1
2 . . . xh�K - 1 - 1

K - 1 xh�K - 1
K dxK � � � dx2dx1‚

subject to
PK

i = 1 xi = 1, where we used the integral sign for multiple integration over the allele-frequency

space. An argument in Joyce (1994) uses equation (2) to show that the relationship between the sampling

distribution of a sample of size n under selection, LS(n), and under neutrality, LN(n), is given by

LS(n) = LN (n)
EN (ex0Sxjn)

EN(ex0Sx)
= LN (n)

c(S‚ h� + n)

c(S‚ h�)

b(h�)

b(h� + n)

=
c(S‚ h� + n)

c(S‚ h�)
‚ (4)

where EN($) is the expectation with respect to the distribution under neutrality given by equation (1) and the

last equality follows by the fact that LN(n) = b(hm + n)/b(hm).

Under non-neutral models we describe, the likelihoods are intractable because the normalizing constants

c(S, hm) and c(S, hm + n) in equation (4) are difficult to compute. Monte Carlo integration, based on

generating many independent copies of xi under the neutral model and approximating the expectation

EN (ex0Sx) in equation (4) by the average

1

M

XM

i = 1

ex0iSxi ð5Þ

is inefficient when selection is strong, because the allele-frequency patterns under the non-neutral model

are substantially different than the allele-frequency patterns under the neutral model. Importance sampling

improves the estimation of EN(ex0Sx) to some extent, although obtaining many such estimates remains

computationally infeasible.
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3. COMPUTING LIKELIHOODS AND SIMULATING DATA

In the last section, we argued that the intractability of likelihoods under non-neutral models is due to

difficulties in obtaining the normalizing constants, which appear as high-dimensional integrals in the form

c(S, hm) and c(S, hm + n). In this section, we present a numerical analysis approach to compute these

constants in the special case where S is a diagonal matrix. The method extends the results presented in

Genz and Joyce (2003) and has some similarities to a method reported by Fearnhead and Meligkotsidou

(2004). Below, we give a brief description of how we implement the numerical methods of Joyce and Genz,

and focus in detail on how these methods can be utilized in performing statistical inference on the strength

of selection. The mathematical properties of the numerical methods we use, such as computational effi-

ciency, algorithmic complexity, accuracy of approximations, and handling of the end-point singularities in

the integrals are described in detail in Joyce and Genz (2003).

The main idea behind our numerical analysis approach is to break the K dimensional integral in the

normalizing constant into K one dimensional iteratively defined integrals. Each one-dimensional integral is

calculated by numerical integration methods, producing an approximation to the value of the normalizing

constant and a series of numerical approximations to a sequence of conditional cumulative distribution

functions. On one hand, computing the constant with this method allows the evaluation of likelihood

functions. On the other hand, using the cumulative distribution functions produced in the process of

computing the normalizing constant, allele frequencies can be simulated directly from the non-neutral

model. Thus, using efficient numerical methods, we approximate the intractable likelihoods under non-

neutral models with a diagonal matrix of selection parameters.

3.1. Computation of the normalizing constant when R is diagonal

We let S be a diagonal matrix with elements r = (r1‚ r2‚ � � � ‚ rK)‚ ri < 0‚ 8i, in the diagonal and 0

elsewhere. We implement the numerical methods with ri < 0 because this type of selection matrix

characterizes balancing selection, a selection scheme of biological importance as we discuss in our ex-

amples in Section 3.2. The normalizing constant for the stationary distribution of allele frequencies under

the non-neutral model under this parameterization is given by

c(r‚ h�) =
Z 1

0

xh�1 - 1
1

Z 1 - x1

0

xh�2 - 1
2 � � �

Z 1 -
PK - 3

i = 1
xi

0

xh�K - 2 - 1
K - 2

Z 1 -
PK - 2

i = 1
xi

0

xh�K - 1 - 1
K - 1

Z 1 -
PK - 1

i = 1
xi

0

xh�K - 1
K

· e -
PK

i = 1
rix

2
i dxK � � � dx2dx1:

The special structure of the integrand allow computing c(r, hm) as a sequence of one-dimensional integrals.

In order to demonstrate this, we first separate the inner exponential term into factors which are distributed

to the respective outer integrals, and we rewrite c(r, hm) as

c(r‚ h�) =
Z 1

0

xa1

1 e - r1x2
1

Z 1 - x1

0

xa2

2 e - r2x2
2 � � �

Z 1 -
PK - 3

i = 1
xi

0

xaK - 2

K - 2e - rK - 2x2
K - 2

Z 1 -
PK - 2

i = 1
xi

0

xaK - 1

K - 1e - rK - 1x2
K - 1 gK 1 -

XK - 1

i = 1

xi

 !
dxK - 1 � � � dx2dx1‚ (6)

where gK(y) � yaKe - rKy2

and ai h hmi - 1. We note that the constant c(r, hm) is expressed as a (K - 1)-

dimensional integral in equation (6). This is possible since the frequency of the Kth allele given the

frequencies x1‚ x2‚ . . . ‚ xK - 1, can be determined using the constraint
PK

i = 1 xi = 1 on the allele frequencies,

which allows us to write xK = 1 -
PK - 1

i = 1 xi. Now we consider the integral with respect to xK - 1 on the right

side of equation (6) which we rewrite as

Z 1 -
PK - 2

i = 1
xi

0

xaK - 1

K - 1e - rK - 1x2
K - 1 gK 1 -

XK - 2

i = 1

xi - xK - 1

 !
dxK - 1‚
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and we note that this last expression depends on the variables x1‚ x2‚ � � � ‚ xK - 2 only through the term

1 -
PK - 2

i = 1 xi. We define yK - 1 = 1 -
PK - 2

i = 1 xi and denote the last integral by the function gK - 1(yK - 1). We

have

gK - 1(yK - 1) =
Z yK - 1

0

xaK - 1

K - 1e - rK - 1x2
K - 1 gK (yK - 1 - xK - 1)dxK - 1: (7)

Substituting the right hand side of equation 7 into equation (6), we get

c(r‚ h�) =
Z 1

0

xa1

1 e - r1x2
1

Z 1 - x1

0

xa2

2 e - r2x2
2 � � �

Z 1 -
PK - 3

i = 1
xi

0

xaK - 2

K - 2e - rK - 2x2
K - 2 gK - 1 1 -

XK - 2

i = 1

xi

 !
dxK - 2 � � � dx2dx1:

Continuing in this manner, we define the successive integrals by

gi(yi) =
Z yi

0

tai e - rit
2

gi + 1(yi - t)dt‚ (8)

for yi = 1 -
Pi - 1

j = 1 xj, y1 = 1, and i = K - 1, K - 2‚ . . . ‚ 1. The required normalizing constant c(r, hm) is given

by g1(1).

For numerical computations, we introduce the same mesh k/m, for k = 0‚ 1‚ . . . ‚ m, for each of the yi

variables. Then the gi(yi) values on this mesh are approximated using a trapezoidal integration rule, and

g1(1) is approximated by computing gi(yi) mesh approximations for i = K - 1, K - 2‚ . . . ‚ 2. The resulting

g1(1) approximation can be accurately and efficiently computed in O(m2) time (Genz and Joyce, 2003),

except in some cases, where the ai values produce end-point singularities for the gi(yi) integrals. In those

cases, we use standard numerical methods for ‘‘subtracting out the singularities’’ (David and Rabinowitz,

1984), to eliminate the singular integrand behaviors and produce rapidly converging approximations to

g1(1).

3.2. Generating samples when R is a diagonal matrix

We define the cumulative distribution functions Fi($; z) with parameter z, for i = 1‚ 2‚ � � � ‚ K as

Fi(y; z) =

0 yp0R y

0
tai exp ( - rit

2)gi + 1(z - t)dt

gi(z) 0pypz

1 y > z

8>>>><
>>>>:

where gi(y) is defined by equation (8). We note that P(XipyjXi - 1‚ � � � ‚ X1) = Fi(y; 1 - X1 - � � � - Xi - 1).
Since Fi($;z) is a strictly increasing function for 0 < y < z, it has a well-defined inverse that we denote by

F - 1
i (�; z). Given these definitions, we now generate a sequence of random variables X = (X1‚ X2‚ � � � ‚ XK )

with joint probability density function given by equation (3) when the matrix of selection parameters is

diagonal. The method, which is an application of inversion sampling (i.e., ‘‘the CDF method’’) is as

follows. We let U1 be a uniformly distributed random number on [0, 1]. That is, U1 *UNIF[0, 1]. We

define X1 = F - 1
1 (U1‚ 1). Now we define iteratively

1. Generate Ui * UNIF [0‚ 1 - X1 - X2 - � � � - Xi - 1],
2. Define Xi = F - 1

i (Ui; 1 - X1 - X2 - � � � - Xi - 1).

If the normalizing constant is calculated using the method described in Section 3.1, then approximations for

the gi(y) functions have also been computed, and we can generate independent random vectors of allele

frequencies using the above algorithm. Each vector X is a realization of the (random) population allele

frequencies under selection. To simulate a sample of size n with allele counts given by n and distribution

given by equation (3), it is sufficient to draw a multinomial sample conditional on the given population

frequencies X.
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4. APPLICATIONS OF THE NUMERICAL METHOD
FOR INFERENCE UNDER NON-NEUTRAL MODELS

Computation of the normalizing constant c(r, hm) by methods of Section 4.1 allows us to approximate the

intractable likelihoods and to perform inference on the strength of selection under non-neutral models. For

comparison purposes, we provide percent error estimates when the normalizing constant c(r, hm) is ob-

tained by naive Monte Carlo integration using equation (5), with a diagonal matrix of selection parameters,

where we assume that c(r, hm) computed using our numerical methods is the true value (Fig. 1). Accuracy

of our numerical methods has been studied in Genz and Joyce (2003). In practice, the normalizing constants

can be computed only once on a grid and stored in a lookup table for repeated use. In our tests, computing

an approximate likelihood surface with 1000 · 1000 evaluations for a non-neutral model with K = 10

alleles and a diagonal matrix of selection parameters took on average less than minute on a decent desktop

computer.

The maximum likelihood estimates for the strength of selection can be obtained by standard maximi-

zation methods of likelihood surfaces, computed by our numerical methods. Alternatively, the joint pos-

terior distribution of selection and mutation parameters can be sampled combining our numerical methods

with MCMC (Buzbas et al., 2009, 2011).

4.1. Bayesian inference under non-neutral models

By Bayes’ Theorem, under the non-neutral model with diagonal matrix of selection parameters,

S = diag(r‚ r‚ . . . ‚ r), the joint posterior distribution of selection and mutation parameters can be written as

p(r‚ h�jx) =
f (xjr‚ h�)p(r‚ h�)R R

f (xjr‚ h�)p(r‚ h�)drdh�
‚ (9)

where f (xjr, hm) is the likelihood and p(r, hm) is the joint prior. For simplicity, we assume that

mutation is non-preferential among the K alleles and we fix � = (1=K‚ 1=K‚ . . . 1=K) although use of

other schemes does not add difficulty to the analysis. Further, we assume the prior independence of

selection and mutation parameters and write p(r, hm) = p(r)p(hm). When sampling the joint posterior

distribution in equation (9), the normalizing constant in the denominator need not be computed, since

most stochastic samplers require the posterior distribution to be known up to a constant free of

parameters. However, this is not the normalizing constant computed by our methods in Section 3.1. In

equation (9), the parameter-dependent normalizing constant computed by our methods is hidden in the

likelihood f (xjr, hm). We let, xo = (x1o‚ x2o‚ . . . ‚ xK o) and no to denote the observed population fre-

quencies and sample frequencies respectively. If the sample frequencies are taken as proxy to

FIG. 1. Percent error in normalizing constant c(S, hm)

obtained by Monte Carlo integration using samples sim-

ulated under the neutral model when the selection matrix

in the non-neutral model is diagonal and all values

of selection parameters are equal. Monte Carlo averages

in calculating the normalizing constants are based on

103,104,105, and 106 samples drawn from the neutral

model, illustrated from dark to light color respectively.

The true value of c(S, hm) is assumed to be the value

computed by numerical analysis methods. As the strength

of selection (given by parameter r = (20, 40, 60, 80,

100)) increases, the relative error in c(S, hm) obtained by

Monte Carlo integration increases on average because of

substantial difference between allele frequency patterns

in the non-neutral model and allele frequency patterns in

the neutral model. Percent error values larger than 10%

are given at the top of the corresponding bar numerically.
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population frequencies and the population distribution is used, the likelihood f (xojr, hm) can be ex-

plicitly written as

f (xojr‚ h�) =
e - r

PK

i = 1
xio

2

c(r‚ h�)
x1o

h=K - 1x2o
h=K - 1 . . . xK o

h=K - 1‚ (10)

and if the sampling distribution is used, it can be written as

f (nojr‚ h�) = LN(no)
c(r‚ h� + no)

c(r‚ h�)

b(h�)

b(h� + no)
=

c(r‚ h� + no)

c(r‚ h�)
: (11)

We now define the statistics

F =
XK

i = 1

x2
i ‚ G = -

XK

i = 1

log xi (12)

and express the density of the non-neutral model with diagonal matrix of selection parameters as

f (xjr‚ h�) =
e - r

PK

i = 1
xi

2

c(r‚ h�)
x1

h=K - 1x2
h=K - 1 . . . xK

h=K - 1

=
e - rF

c(r‚ h�)
e - log

QK

i = 1
x
h=K - 1

i

=
e - rF + (h=K - 1)G

c(r‚ h�)
:

The right-hand side of the last equality depends on the allele frequencies x only through the functions of F

and G, and the Fisher-Neyman factorization theorem implies that F and G are jointly sufficient for the

parameters r and h. To sample the joint posterior distribution of the selection and mutation parameters we

use an approximate Bayesian computation algorithm with the likelihood based on equation (10):

Algorithm–ABC (with rejection):

1. Simulate a value h* from the prior distribution p(h) and a value r* from the prior distribution p(r)

2. Simulate a vector of population allele-frequencies x* from the non-neutral model with parameters h*,

r* using the numerical methods of Section 4.

3. Compute the statistics F*, G* by equation (12) using x*.

4. Accept h*, r* as a sample from the posterior distribution if

jj(F�‚ G�) - (Fo‚ Go)jj < d‚

where Fo and Go are the statistics computed from the observed data, jj $ jj is the Euclidean distance, and d is

a suitable tolerance parameter. The posterior sample obtained by Algorithm–ABC is from the correct

posterior distribution as d approaches zero. We also note that, since the summary statistics are sufficient for

the parameters under this non-neutral model, there is no approximation associated with reducing the full-

data likelihood to a likelihood based on the summary statistics. An example for the performance of

inference on the joint distribution of the parameters is given in Figure 2, using the likelihood based on the

population frequencies (i.e., equation (10)). We simulated the ‘‘true’’ population frequencies used as test

data, from a model with 10 replications, from a locus with K = 10 alleles, under a selection parameter

r = 10 and a mutation parameter h = 2. We generated 105 data sets under the model with 105 parameter

values (r, h), drawn from their prior distribution (Step 2 in Algorithm-ABC above), and 1% of the

parameters which generated the summary statistics (F*, G*) closest to the observed summary statistics (Fo,

Go) in the Euclidean sense, are taken as a sample from the posterior distribution.

4.2. The distribution of the r-largest allele frequencies

In models considered thus far, we assumed that all the allelic types present in the population are observed

in the sample, treating K as fixed and known. In many practical problems, this assumption might not be

reasonable. For example, in highly-polymorphic immune system genes in humans such as Human
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Leukocyte Antigen (HLA), some of the low-frequency alleles in the population will likely be missing in the

sample. The stationary distribution of allele frequencies for a diagonal matrix of selection parameters for

various cases of missing data and when K is unkown is studied in detail by Watterson (1977). Here, we

consider the distribution of the r-largest allele frequencies in a population with K total alleles (r < K), to

investigate the effect of missing low-frequency alleles in the sample when performing inference on the

strength of balancing selection.

The distribution of the r-largest allele frequencies x = (x1‚ x2‚ . . . ‚ xr)‚ x1 > x2 > � � � > xr > � � � > xK ,

in a population of K total types can be written as (Watterson, 1977),

f
(K‚ r)
S (x; r‚ h�) =

K!

(K - r)!
· e - r

Pr

i = 1
x2

i xh�1 - 1
1 xh�2 - 1

2 . . . xh�r - 1
r ·

c(K‚ r)(r‚ h�)

c(r‚ h�)
‚ (13)

where

c(K‚ r)(r‚ h�) =
Z 1 -

Pr

i = 1
xi

0

xh�r + 1 - 1
r + 1

Z 1 -
Pr + 1

i = 1
xi

0

xh�r + 2 - 1
r + 2 � � � (14)

Z 1 -
PK - 3

i = 1
xi

0

xh�K - 2 + nK - 2 - 1
K - 2

Z 1 -
PK - 2

i = 1
xi

0

xh�K - 1 + nK - 1 - 1
K - 1 (15)

Z 1 -
PK - 1

i = 1
xi

0

xh�K + nK - 1
K · e - r

PK

i = r + 1
x2

i dxK � � � dx2dxr + 1: (16)

The distribution of the r-largest allele frequencies has a normalizing constant that is a ratio of two

integrals. The first integral, which appears in the denominator of equation (13) is the normalizing

constant of the full model with K-alleles. The second integral, which appears in the numerator of

equation (13) is a (K - r)-dimensional integral and is a sum over the frequencies of unobserved alleles.

The methods of Section 3.1 can be modified to compute the integral in the numerator and hence the

normalizing constant in equation (13). Application of our numerical methods, once for the integral in the

numerator and once for the integral in the denominator, allows us to evaluate likelihoods in r-largest

allele frequencies based on equation (13).

To demonstrate the use of the distribution of r-largest allele frequencies, we consider the following

idealized example, where sample frequencies are reasonable proxy for population frequencies. We simulate

FIG. 2. Posterior distributions

(top) and boxplots (bottom) of se-

lection and mutation parameters.

The ‘‘true’’ population frequencies

are simulated under a K = 10 allele

model with 10 replicates (e.g., 10

loci) and a diagonal selection matrix

where all elements are equal (i.e.,

symmetric balancing selection

model). The ‘‘true’’ selection pa-

rameter is r = 10 and the mutation

parameter is h = 2. Top left and right

histograms are posterior samples of

selection and mutation parameters

respectively, both obtained by ap-

proximate Bayesian computation as

explained in Algorithm-ABC in the

text. Bottom left and right series of

box plots are from posterior samples

for 30 independent runs of ‘‘true’’

population frequencies, obtained by

the same procedure as above.
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a vector of population frequencies under the model with K = 10, r = 100, and h = 5 to represent the ‘‘true’’

state of the population at a locus. We now consider three analyses. First, we assume that r = 7 largest-

frequency alleles are observed in a sample with the true frequencies as in the population and analyze these

frequencies using a K = 7 allele model. This is a case where three alleles are missing in the data set, since

the true K is 10, and we are unaware that we are missing the three smallest-frequency alleles, using a model

with K = 7 to analyze the data. Second, we assume that r = 7 largest-frequency alleles are observed in a

sample with the true frequencies as in the population and analyze these data using equation (13) where

K = 10. This is a case where again three alleles are missing in the data set, since the true K is 10, but this

time we know that we are missing the three smallest-frequency alleles and use a model with K = 10 to

analyze the data. Third, we assume all K = 10 alleles are observed in a sample with the true frequencies as

in the population and analyze these data with a model with K = 10 alleles. The posterior distribution

obtained from the third analysis represents the ideal situation, in which there are no missing alleles in the

sample and the sample frequencies are proxy for the population frequencies. Therefore, the posterior

distribution obtained from the third procedure is the gold standard for the posterior distributions obtained

from the first and second analyses. We obtain posterior samples for all three scenarios using an MCMC

approach with 100,000 iterations and 10,000 burn in steps.

The posterior distribution of the selection and mutation parameters obtained using the first analysis

results in biased estimates for selection and mutation parameters (Fig. 3). Low-frequency alleles carry

valuable information on mutation and consequently the posterior distribution of the mutation parameter is

substantially affected. Using the distribution of the r-largest allele frequencies results in improved esti-

mation, as the model compensates the missing alleles. However, a good estimate of K is required in this

case, close to its true value. These results suggest that in a K-allele balancing selection model, it might be

important to capture the low-frequency alleles in the sample to obtain good estimates of the strength of

selection, especially when K is unknown and no good estimates for K exist.

FIG. 3. Kernel density estimates of posterior distri-

butions of selection (top) and mutation (bottom) pa-

rameters obtained analyzing allele-frequencies under

three non-neutral models. The models differ in their

assumptions on the number of allelic types in the pop-

ulation, K. The ‘‘true’’ population has K = 10 alleles

but only 7 largest-frequency alleles are observed in the

sample. Green plots are obtained by analyzing these 7

frequencies under the assumption that r = 7 largest-

frequency alleles out of K = 10 total alleles are ob-

served in the data. Red plots are obtained by analyzing

the 7 frequencies under the assumption that these are all

the existing allelic types in the population. Hence, the

second model corresponds to using a K = 7 allele

model, whereas the frequencies are actually generated

under a model with K = 10. Using the second model,

the mutation parameter is overestimated (bottom, red

plot) because of missing three small-frequency alleles.

Consequently, estimates for the selection parameter are

not accurate. Blue plots are obtained by assuming ideal

conditions where all 10 allelic types are observed and

the sample frequencies are proxy for the population

frequencies. Hence, the blue plots are obtained under

the correct model when there is no missing data and

inference in this case is the gold standard for the other

two models.
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5. CONCLUSION

Both likelihood and Bayesian statistical approaches provide powerful tools for modeling and analyzing

genetic polymorphism. However, as we are now well into the genomics era, the argument for or against

statistical methods is now more practical than philosophical. The central question is whether statistical

methods, especially those that involve averaging over a large amount of missing data, scale appropriately to

handle large genomic data sets. Some have argued that the exponential increase in computing power, that

we have enjoyed over the past two decades, will continue and effectively solve the problem of scalability of

statistical methods for genomic data sets. We now know that increased computing power per se is not

enough to provide methods that scale up to handle immense amount of data pouring out of tech-powered

wet labs. Therefore, modelers and statisticians have taken two conceptual approaches to address the

problem of scalability, both of which aim to maintain benefits of statistical modeling while keeping the

methods practical for genomic data sets. The first approach is to abandon the likelihood analysis based on

the full-data and settle for an approximate method. Examples include composite likelihood methods and

likelihood methods based on summary statistics (Hudson, 2001; Marchini, 2004). While these approaches

are suboptimal from a statistical perspective, the increase in algorithmic speed often more than makes up

for the slight loss of information. The second approach is to settle for an approximate mechanistic de-

scription of the natural system and build a statistical model on which an analysis based on full-data

likelihood can be performed (Li and Stephens, 2003). Thus, the first approach uses a simplified statistical

method whereas the second approach uses a simplified statistical model. For example, our assumption of

using a parent-independent mutation scheme in non-neutral models used in this paper, is a simplification of

a more realistic mutation model and therefore an example to the second approach. On the other hand, in our

first application in Section 5, we performed inference using an approximate Bayesian computation ap-

proach based on the likelihood of summary statistics and not the likelihood of the full-data. Hence, our

analysis in that application is in principle an example to the first approach, although in our case summary

statistics were sufficient and there was no information loss.

Using a parent-independent mutation model may limit the application of non-neutral models considered

in this article when a more realistic mutation model is desired. However, when our numerical methods are

embedded in likelihood-based statistical methods, they are scalable to genomic data sets and may provide a

reasonable approximate method for detecting selection when the parent-independent mutation assumption

is violated.
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Tavaré, S., Balding, D.J., Griffiths, R.C., et al. 1997. Inferring coalescence times from DNA sequence data. Genetics

145, 505–518.

Watterson, G.A. 1977. Heterosis or neutrality? Genetics 85, 789–814.

Wright, S. 1949. Adaptation and selection, 365–389. In Jepson, G.L., Simpson, G.G., and Mayr, E., eds. Genetics,

Palaeontology, and Evolution. Princeton University Press, Princeton, NJ.

Address correspondence to:

Dr. Erkan Ozge Buzbas

Department of Biology

Stanford University

371 Serra Mall

Stanford, CA 94305

E-mail: buzbas@stanford.edu

LIKELIHOOD METHODS FOR NON-NEUTRAL MODELS 661


