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ABSTRACT

The genome-wide association studies (GWAS) designed for next-generation sequencing data
involve testing association of genomic variants, including common, low frequency, and rare
variants. The current strategies for association studies are well developed for identifying
association of common variants with the common diseases, but may be ill-suited when large
amounts of allelic heterogeneity are present in sequence data. Recently, group tests that
analyze their collective frequency differences between cases and controls shift the current
variant-by-variant analysis paradigm for GWAS of common variants to the collective test of
multiple variants in the association analysis of rare variants. However, group tests ignore
differences in genetic effects among SNPs at different genomic locations. As an alternative to
group tests, we developed a novel genome-information content-based statistics for testing
association of the entire allele frequency spectrum of genomic variation with the diseases. To
evaluate the performance of the proposed statistics, we use large-scale simulations based on
whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1
error rates and power of seven alternative statistics: a genome-information content-based
statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method,
individual v2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply
the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4,
ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-
information content-based statistic has significantly improved type 1 error rates and higher
power than the other six statistics in both simulated and empirical datasets.
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INTRODUCTION

There is a consensus that common diseases are caused by an entire allele frequency spectrum of

genetic variations, including common (MAF ‡ 5%), low frequency (1% < MAF £ 5%), and rare var-

iants (MAF £ 1%). Scenarios in which genetic variants influence the development of diseases can be

summarized as follows (Bansal et al., 2010; Bodmer and Bonilla, 2008; Ji et al., 2008; McClellan and King,
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2010; Nejentsev et al., 2009; Pritchard and Cox, 2002; Schork et al., 2009): (1) one or multiple common variants

in a genomic region are associated with a phenotype; (2) multiple rare variants in a region collectively play an

important role in causing disease; and (3) rare variants and common variants jointly influence a phenotype. To

systematically investigate the genetic architecture of common diseases requires full knowledge of the human

DNA sequence variation across the full spectrum of allele frequencies and types of DNA alterations (Durbin

et al., 2010; Manolio et al., 2009). Emerging ‘‘next-generation’’ sequencing technologies enable sequencing

individual genomes and have the potential to discover the entire spectrum of sequence variations in a sample of

well-phenotyped individuals (Collins, 2010; Kim et al., 2010; Kryukov et al., 2009; Li and Leal, 2008; Metzker,

2010; Nielsen, 2010; Shendure and Ji, 2008; Venter, 2010). Advances in sequencing technologies provide great

opportunities to test for association of the entire spectrum of genetic variants with the disease. Despite their

promise, however, these technologies have three defining features: identification of large numbers of rare

variants, a high proportion of sequence errors, and large proportion of missing data. These features raise

challenges for testing the association of entire spectrum of genetic variants with phenotypes of interest.

Traditional statistical methods for GWAS of common diseases have mainly focused on testing associations

of a single common SNP with a disease one at a time (Purcell et al., 2007). Although substantial progress in

GWAS of common diseases has been made, these methods are ill-suited for the large amounts of allelic

heterogeneity present in sequence data. The critical barrier in association analysis of multiple rare variants in a

defined genomic region or set of regions is as follows. First, although an individual rare variant may have a

large genetic effect in causing disease, at the population level, their frequency difference between cases and

controls is too small to detect (Bansal et al., 2010). Second, a gene may harbor multiple causal variants. They

collectively have significant risk effects, but individually make only a small contribution to the development of

the disease (McClellan and King, 2010). Third, new sequence technologies are highly error prone. Due to their

large genotyping errors and low frequencies, the signal of rare alleles may be compatible with genotyping

errors. Unless genotyping errors are properly taken into account, many multi-locus tests will be invalidated.

To overcome these limitations, several authors proposed group tests such as the collapsing methods,

combined multivariate and collapsing (CMC) method, weighted sum statistics (WSS), variable-threshold (VT)

approach, rare cover method, kernel-based adaptive cluster method, and regression and data-mining methods in

which rare variants at different genomic positions are collapsed into multiple frequency bins, and we test their

collective frequency differences between cases and controls (Bhatia et al., 2010; Li and Leal, 2008; Liu and

Leal, 2010; Madsen and Browning, 2009; Morgenthaler and Thilly, 2007; Morris and Zeggini, 2010; Price

et al., 2010). Although in many cases, group tests have higher power than the individual tests, they also suffer

limitations. First, group tests ignore differences in genetic effects among SNPs at different genomic locations.

Second, group tests do not leverage linkage disequilibrium (LD) in the data. Third, since sequence errors are

cumulative when rare variants are grouped, group tests are sensitive to genotyping errors and missing data.

To overcome the limitations of group tests, we propose a genome continuum model for association

studies. As Haldane (1919) and Fisher (1949) recognized in the last century, the genome can be

modeled as a continuum. Specifically, the genome is not purely a collection of independent segregating

sites. Rather, the genome is transmitted not in points, but in segments. Instead of modeling the genome

as a few separated individual variant sites, modeling the genome as a whole will enrich information on

genetic variation across the genome (Altshuler et al., 2008; Frazer et al., 2009; Guo, 1995). Viewing

the genome as a continuum, a genetic variant profile of each individual in which the variants of the

individual at different locations are recorded can be viewed as a realization of the stochastic process in

the genome and modeled as a function of genomic location. Instead of testing association of SNP

individually, we will develop methods for testing association of genome regions. The purpose of this

report is to develop a novel genome information content-based statistic which employs enriched

information on genetic variants in the genomic region and tests association of either common variants

or rare variants or both common and rare variants by comparing difference in genome information

content in the region between cases and controls. This will provide a unified statistic to test association

of the entire allele frequency spectrum of genetic variants in a genomic region. To evaluate its

performance, we use large-scale simulations based on a low coverage pilot dataset in the 1000

Genomes Project to compare type 1 error rates and power of the genome information content-based

statistic with six other existing statistics for testing association of genetic variants. Further comparisons

are carried out for empirical sequencing data from the Dallas Heart Study. A program for im-

plementing the developed statistics can be downloaded from our website (www.sph.uth.tmc.edu/hgc/

faculty/xiong/index.htm).
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METHODS

Genome information content

Let t be the position of a genetic variant along a chromosome or within a genomic region and T be the

length of the genomic region being considered. For convenience, we rescale the region [0,T] to [0,1].

Because the density of genetic variants is high, we can view t as a continuous variable in the interval [0,1].

Assume that nA cases and nG controls are sampled and sequenced.

We define the genotype of the i-th case as

Yi(t) =
2 MM

1 Mm‚ i = 1‚ � � � ‚ nA

0 mm

(
(1)

where M is a minor allele at the genomic position t. We can define a similar function Xi(t)‚ (i = 1‚ � � � ‚ nG)
for the i-th control.

Next we define a haplotype profile. Assume that haplotypes of an individual in the genomic region are

available. We define a haplotype function Yi(t) of the i-th case as

Yi(t) =
1 M

i = 1‚ � � � ‚ 2nA:
0 m

(
(2)

We can similarly define a haplotype function Xi(t) for the i-th control.

The genotypic or haplotypic profiles Yi(t) and Xi(t) contain the information of the genetic variation and its

relative genomic position, which influence the phenotypes. For convenience of discussion, Yi(t) and Xi(t) are

referred to as the information content at the genomic position t. Their integral
R 1

0
Xi(t)dt summarizes the

information content of the genome in the region. It is a useful measure of the genetic variability of a genome

region. By stochastic calculus, we can obtain the variance of the integral of the genome information content:Z 1

0

Z 1

0

Rx(s‚ t)dsdt and

Z 1

0

Z 1

0

Ry(s‚ t)dsdt;

where Rx(s,t) and Ry(s,t) are the covariance functions for X(t) and Y(t) between two loci s and t, respec-

tively. Suppose that at the genomic positions si and tj there are SNPs Mi and Mj. Then, Rx(si,tj) and Ry(si,tj)

are the measure of linkage disequilibrium between Mi and Mj in controls and cases, respectively.

Test statistic

If a segment of the genome is associated with a disease, the genome information content in the region

between cases and controls should be different. Similar to comparing the differences in allele or haplotype

frequencies between cases and controls in the standard association tests, we compare the differences in

genome information content between cases and controls. This motivates us to develop the following

statistic to test for association of a genomic region with disease:

(i) for genotype

TG =
(
R 1

0
X(t)dt -

R 1

0
Y(t)dt)2

1
nA

R 1

0

R 1

0
RX(s‚ t)dsdt + 1

nG

R 1

0

R 1

0
RY (s‚ t)dsdt

(3)

(ii) for haplotype

TH =
(
R 1

0
X(t)dt -

R 1

0
Y(t)dt)2

1
2nA

R 1

0

R 1

0
RX(s‚ t)dsdt + 1

2nG

R 1

0

R 1

0
RY (s‚ t)dsdt

(4)

where nA and nG are the number of sampled cases and controls, respectively, X(t) and Y(t) are the average

of the genomic information content in the controls and cases, respectively, RX(s,t) and RY(s,t) are co-

variance functions between two variant sites s and t in controls and cases, respectively. Under the null
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hypothesis of no association of a genomic region (or gene) with the disease, the statistics TG and TH are

asymptotically distributed as a central v2
(1) distribution. This is intuitively reasoned as follows. For fixed t,

by central limit theorem, X(t) and Y(t) are asymptotically distributed as a normal distribution. By definition,R 1

0
X(t)dt can be approximated by

Z 1

0

X(t)dt �
Xk

j = 1

X(tj)Dtj:

Since X(tj) is asymptotically normal distributed and D(tj) is a constant, X(tj)Dtj is also normally dis-

tributed. Therefore, sum of normally distributed random variables
Pk

j = 1 X(tj)Dtj is also normally distrib-

uted. In the limit,
R 1

0
X(t)dt is asymptotically normally distributed with mean

R 1

0
E[X(t)]dt and variance

1
nA

R 1

0

R 1

0
Rx(s‚ t)dsdt (Henderson and Plaschko, 2006). Similarly,

R 1

0
Y(t)dt is also asymptotically distributed

as a normal variable with mean
R 1

0
E[Y(t)]dt and variance 1

nG

R 1

0

R 1

0
Ry(s‚ t)dsdt. Under the null hypothesis of

no association,
R 1

0
E[X(t)]dt and

R 1

0
E[Y(t)]dt are equal. Therefore,

R 1

0
X(t)dt -

R 1

0
Y(t)dt is asymptotically

distributed as a normal variable with mean zero and variance 1
nA

R 1

0

R 1

0
Rx(s‚ t)dsdt + 1

nG

R 1

0

R 1

0
Ry(s‚ t)dsdt

which implies that

u =
R 1

0
X(t)dt -

R 1

0
Y(t)dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nA

R 1

0

R 1

0
Rx(s‚ t)dsdt + 1

nG

R 1

0

R 1

0
Ry(s‚ t)dsdt

q
is asymptotically distributed as a standard normal variable. Thus, TG = u2 is asymptotically distributed as a

central x2
(1) distribution. Similarly, this will hold for TH.

In practice, the integrals in equations (3) and (4) are approximated by numerical integration. Consider a

sequence of markers in the genomic region: M1‚ M2‚ . . . ‚ Mk located at the genomic positions t1‚ t2‚ . . . ‚ tk.

Let PAi
and PGi

be the frequency of the minor allele at the marker locus Mi in cases and controls,

respectively, DA(si,tj) and DG(si,tj) be the measure of linkage disequilibrium (LD) between the markers Mi

and Mj located at the genomic positions Si and tj in cases and controls, respectively, sAi
and sGi

be the age of

occurrence of LD between the markers Mi and Mi + 1 in cases and controls, respectively, DAi
and DGi

be the

measure of LD between the markers Mi and Mi + 1 in cases and controls, respectively, and D0
Ai

and D0
Gi

be

their initial values. The genetic distance between the markers Mi and Mi + 1 in cases and controls are denoted

by DsA
i and DsG

i , respectively. The statistic TH can be approximated by the numerical integration:

TH �

hP
i

(PAi
DtA

i - PGi
DtG

i )
i2

1
2nA

P
i

P
j

DA(si‚ tj)DsA
i DtA

j + 1
2nG

P
i

P
j

DG(si‚ tj)DsG
i DtG

j

: (5)

The measure of LD between the markers is a function of the physical distance between the markers.

Therefore, it can be shown that the genetic distance can be approximated by

DsA
i �

D0
Ai

- DAi

D0
Ai

sAi

and DsG
i �

D0
Gi

- DGi

D0
Gi

sGi

:

Therefore, TH is a nonlinear function of the allele frequencies and all pair-wise LD between SNPs within

the region of interest. It is also true for TG, but with a more complicated expression than equation (5).

RESULTS

Null distribution of test statistics for both rare and common variants

To examine the validity of the null distribution of the test statistics in testing the association of a set of

rare variants in a genomic region, we performed a series of simulation studies. MS software (Hudson, 2002)

was used to generate a population of 1,000,000 chromosomes with 100 loci under a neutrality model. Forty
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loci with minor allele frequencies (MAF) between 0.0001 and 0.05 were used to calculate the type 1 error

rate. A number of individuals, ranging from 3,000 to 5,000, each consisting of two chromosomes, was

sampled from the population and equally assigned to cases and controls. A total of 5,000 datasets were

generated and the proposed test statistics were performed for each dataset. Table 1 summarizes the type 1

error rates of the genomic information content-based test statistics for testing association of a genomic region

with rare variants. It shows that the estimated type 1 error rates of two statistics for both genotype and

haplotype functions were not appreciably different from the nominal levels a = 0.05, a = 0.01, and a = 0.001.

We also performed simulation studies to examine the validity of the null distribution of the test statistics in

testing the association of a set of common variants in a genomic region. SNaP software (Nothnagel, 2002)

was used to generate a population of 1,000,000 chromosomes with 40 SNPs. These loci all have a minor allele

frequency (MAF) greater than 0.05. Two chromosomes were randomly sampled and assigned to one indi-

vidual, yielding a population of 500,000 individuals. The number of individuals which were sampled for

calculation of type 1 error rates ranged from 1,000 to 3,000, each with two chromosomes, and each individual

was assigned equal probability to being a case or control. Datasets (n = 5,000) were generated, and the

proposed genome information content-based test statistics were performed for each dataset. Table 2 sum-

marizes the type 1 error rates of the test statistics for sample sizes 1,000, 1,500, 2,000 2,500 and 3,000. It

shows that the estimated type 1 error rates of two statistics for both genotype and haplotype functions were

not appreciably different from the nominal levels a = 0.05, a = 0.01, and a = 0.001.

To further evaluate the performance of the genome information content-based statistics for testing

association of a genomic region, we used large-scale simulations based on a low coverage pilot dataset with

60 individuals from a population of European ancestry in Utah (CEU) in the 1000 Genomes Project to

compare its type 1 error rates with five other existing statistics for testing association of a genomic region.

Specifically, the low coverage pilot data with whole genome sequencing of 60 individuals from the CEU in

1000 Genomes Project were used to generate a population of 1,000,000 chromosomes. To calculate type 1

Table 1. Type 1 Error Rates of the Genome Content-Based Statistics for Testing

the Association of the Rare Variants in a Genomic Region with the Disease

Sample size Statistic a = 0.001 a = 0.01 a = 0.05

3,000 TG 0.0014 0.0106 0.0528

TH 0.0014 0.0108 0.0536

3,500 TG 0.0006 0.0098 0.0476

TH 0.0006 0.0096 0.0486

4,000 TG 0.0010 0.0114 0.0476

TH 0.0010 0.0110 0.0476

4,500 TG 0.0016 0.0102 0.0526

TH 0.0016 0.0102 0.0528

5,000 TG 0.0012 0.0098 0.0540

TH 0.0012 0.0106 0.0536

Table 2. Type 1 Error Rates of the Genome Information Content-Based Statistics

for Testing the Association of Common Variants in a Genomic Region with the Disease

Sample size Statistic a = 0.001 a = 0.01 a = 0.05

1,000 TG 0.0010 0.0126 0.0522

TH 0.0010 0.0128 0.0530

1,500 TG 0.0010 0.0114 0.0530

TH 0.0008 0.0114 0.0526

2,000 TG 0.0012 0.0106 0.0506

TH 0.0014 0.0104 0.0500

2,500 TG 0.0008 0.0086 0.0490

TH 0.0008 0.0090 0.0486

3,000 TG 0.0006 0.0104 0.0512

TH 0.0006 0.0100 0.0508
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error rates, we used a moving window of genomic regions along the genome, each region with 50 loci and

1% £ MAF at each locus £ 5%, to simulate the data. A total of 3,000 individuals were sampled. Simu-

lations were repeated 5,000 times. Figure 1 demonstrates the histogram of type 1 error rates of five

statistics: the genome information-based statistic TG, the generalized T2, Collapsing method, CMC method,

and the individual v2 test for testing association of 11,200 genomic regions, with 1% £ MAF at each locus

< 5% (low frequency variants), across the genome at significance level a = 0.05. Next we examine the type 1

error rates of the statistics for testing association of both common and rare variants. Since for the common

FIG. 1. Histogram of type 1 error

rates of the test statistics TG, T2,

collapsing method, CMC method,

and the individual v2 test for testing

association of all genomic regions

(11,200 regions) across the ge-

nome, each region with 50 loci, 1%

£ MAF at each locus £ 5% (low

frequency variants), at significance

level a = 0.05. The red color indi-

cates that type 1 error rates are

within the range of nominal levels.

FIG. 2. Histogram of type 1 error

rates of the test statistics TG, T2,

CMC method, and individual v2

test for testing association of

45,600 genomic regions with both

common and low frequency vari-

ants across the genome, each region

with 50 loci, 1% £ MAF at each

locus £ 5%, at significance level

a = 0.05. The red color indicates

that type 1 error rates are within the

range of nominal levels.
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variants, the percentage of individuals possessing any one of the variants in the collapsed set of variants

could reach 100%, the collapsing method cannot be applied to testing association of both common and rare

variants. Figure 2 shows the histogram of type 1 error rates of the genome information content-based

statistic TG, the generalized T2, CMC method, and the individual v2 test for testing association of the 45,600

genomic regions with both common and rare variants at significance level a = 0.05. The results for testing

association of the genomic regions at significance level a = 0.01 are shown in Supplementary Figures 1 and 2

(Supplementary Material is available online at www.liebertonline.com/cmb). The genome information-

based statistic TH has the similar results (data not shown). These results demonstrate that the estimated type 1

error rates of the statistic TG for testing association across 70% of genomes were not appreciably different from

the nominal levels a = 0.05 and a = 0.01. However, the type 1 error rates of the other six statistics in a large

proportion of the genomic regions were significantly deflated.

Power evaluation

To evaluate the performance of the genome information-based statistics for testing the association of a

genomic region with disease, we used simulated data to estimate their power to detect a true association of

a genomic region. Four disease models were considered: additive, dominant, recessive and multiplicative.

To mimic the distribution of rare variants in a natural population and take the influence of LD structure

among multiple genetic variants into account (Bansal et al., 2010), the low coverage pilot data with whole

genome sequencing of 60 individuals from CEU in the 1000 Genomes Project were used to generate a

population of 1,000,000 chromosomes (www.1000genomes.org/).

An individual’s disease status was determined based on the individual’s genotype and the penetrance for

each locus. Let Ai be a risk allele at the i-th variant site. Let Gki
(k = 0‚ 1‚ 2) be the genotypes aiai, Aiai, and

AiAi, respectively, and fki be the penetrance of genotypes Gki
at the ith locus. The relative risk (RR) at the

i-th variant site is defined as R1i = f1i

f0i
and R2i = f2i

f0i
, where f0i is the baseline penetrance of the wild-type

genotype at the i-th variant site. We assume that for the additive disease model, R2i = 2R1i - 1; for

the dominant disease model, R2i = R1i; for the recessive disease model, R1i = 1; and for the multiplicative

disease model, R2i = R2
1i. The relative risks across all variant sites are assumed to be equal and the variants

were assumed to influence disease susceptibility independently (i.e., no epistasis).

Each individual was assigned to the group of cases or controls depending on their disease status. The

process for sampling individuals from the population of 1,000,000 haplotypes was repeated until the

desired samples of 3,000 cases and 3,000 controls or 5,000 cases and 5,000 controls, or 10,000 cases and

10,000 controls were reached for each disease model. For each genomic region, simulations were repeated

5,000 times. Power is defined as the fraction of 5,000 simulations on which the test met the p-value cut-off.

To select appropriate relative risk for power simulations we studied 1,256 disease susceptibility loci in the

literature. The average value of relative risk for common diseases is 1.5. Thus, in our simulations, we

assumed two relative risks: 1.5 and 2.0. A baseline penetrance was assumed to be equal to 0.01. A moving

window approach was used to simulate the power. Since a genomic region with a fixed size may contain

few rare variants, we do not use the length to define the genomic region. Instead, each genomic region was

defined as the region which has 150 variants, 10% or 20% of which were assumed to be causal variants in

the sense that a causal variant influences disease susceptibility. Since these studies are carried out on model

free, unannotated data, the causal variants were randomly assigned across the genomic region.

Figure 3 plots the histogram of power of the genome information content-based statistic TG, the gen-

eralized T2, collapsing method, CMC method (variants with frequencies £ 0.01 were collapsed), weighted

sum statistic (WSS), and variable threshold (VT) statistic for testing association of 11,200 genomic regions,

each region with 150 variants and 1% £ MAF for each variant £ 5%, 10% of which were randomly selected

as risk increasing variants with relative risk of 2, and individual v2 test for testing association of a single

rare SNP under additive, dominant, multiplicative and recessive disease models, respectively, at a nominal

p-value cut-off of 0.05, assuming that 5,000 cases and 5,000 controls were sampled. Throughout this

article, the number d in x axis indicates that the power is in the interval [d, d + 0.1]. To further compare the

power of the seven statistics, we present Table 3 (Supplementary Tables 1–3) where the number in each cell

represents the percentage of the genome regions in which the power of the statistic in the column is higher

than that of statistic in the row under the dominant model (the additive, multiplicative, and recessive

models). In the tables, we assume that the parameters are the same as in the Figure 3. These statistics are

ranked in power by TG, VT, WSS, CMC, the generalized T2, collapsing method, and the individual v2 test.
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The results for testing association of rare variants with relative risks of 1.5 and 5,000 cases and 5,000

controls, and relative risks of 2 and 3,000 cases and 3,000 controls are shown in Supplementary Figures 3

and 4, respectively. These results demonstrate that the power distribution of the genome information

content-based statistic TG is shifted toward power of 1, which implies that in most genomic regions the

statistic TG has higher power than that of other statistics (Table 3 and Supplementary Tables 1–3). From

these figures, we also can see that the individual v2 statistic, collapsing and CMC methods have little power

to detect association in most genomic regions. However, the statistic TG can reach power greater than 50%

in the majority region of the genome and even can reach more than 70% power in the half of the genome

under the dominant model.

Now we assess the power of the tests at the genome-wide level. Since the total number of genomic

regions for testing association of rare variants is 11,200, the p-value cut-off for declaring genome-wide

significance after the Bonferroni correction is P < 4.5 · 10 - 6. The total number of rare variants is

1,680,000, and hence the p-value cut-off of the individual v2 statistic for declaring genome-wide signifi-

cance is 3 · 10 - 8. If we consider significance at the genome-wide level, then for most genomic regions the

power of all test statistics was poor (Supplementary Figure 5). To increase the power of the tests, we

assumed that 20% of the 150 rare variants were causal and increased the sample sizes to 10,000. The power

of seven statistics for testing association of a genomic region at the genome-wide level is shown in Figure 4.

Three features can be observed from these figures. First, the individual v2 test, collapsing, and CMC

methods have little power to detect association of low frequency variants at the genome-wide level of 0.05

in more than 95% of the genome. Second, the proportion of the genome in which the WSS and VT statistics

have higher than 50% power to detect association of low frequency variants at the genome-wide level of

0.05 was less than 1%. Third, the genome information content-based statistic has 60% or higher power to

detect association of low frequency variants at the genome-wide level of 0.05 in about 10% of the genome

under the assumed conditions and sample sizes.

Table 3. Pair-Wise Power Comparison of Seven Statistics for Testing Association of Rare

Variants Under Dominant Model

Test statistic Collapsing T2 CMC WSS VT TG

Chi square 76.54 82.48 90.04 92.54 94.77 98.72

Collapsing 76.43 63.43 86.22 91.54 95.47

T2 57.48 81.46 86.92 92.64

CMC 71.68 76.55 84.36

WSS 66.31 79.83

VT 76.54

FIG. 3. Histogram of power of the

genome information content-based

statistic TG, generalized T2, col-

lapsing method, CMC method, WSS

and VT statistics for testing associ-

ation of 11,200 genomic regions,

each region with 150 rare variant

loci, and 1% £ MAF for each vari-

ant £ 5%, 10% of which were ran-

domly selected as risk increasing

variants with relative risk of 2, and

the individual v2 test for testing as-

sociation of a single low frequency

SNP under additive, dominant,

multiplicative, and recessive disease

models at the significance level

a = 0.05, assuming that 5,000 cases

and 5,000 controls were sampled.
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Next we evaluate their power for testing association of both common and rare variants. Figure 5 shows

the histogram of power of the genome information content-based statistic TG, the generalized T2, CMC

method (variants with frequencies £ 0.05 were collapsed), WSS, and VT statistic for testing association of

45,600 genomic regions, each region has 150 variants without restriction on the MAF, 10% of which were

randomly selected as risk increasing variants with relative risk of 1.5, and the individual v2 test for testing

the association of a single SNP under the additive, dominant, multiplicative, and recessive disease models,

respectively, at the significance level a = 0.05, assuming that 5,000 cases and 5,000 controls were sampled.

Similar to testing association of rare variants, to further compare the power of seven statistuics for testing

association of both common and rare variants, we present Table 4 (Supplementary Tables 4–6) where the

number in each cell represents the percentage of genome regions in which the power of the statistic in the

column is higher than that of statistic in the row under dominant model (the additive, multiplicative, and

recessive models), assuming the same parameters as that in Figure 5. These results clearly demonstrate that

the genome information content-based statistics have the best performance, followed by VT and WSS

statistics. There is a clear gain in power for all statistics when jointly testing association of the entire allele

spectrum of genomic variants. The genome information content-based statistics can reach at least 80%

FIG. 4. Histogram of power of the

genome information content-based

statistic TG, the generalized T2,

collapsing method, CMC method,

WSS and VT statistics for testing

association of 11,200 genomic re-

gions, each region with 150 rare

variant loci, and 1% £ MAF for

each variant £ 5%, 20% of which

were randomly selected as risk in-

creasing variants with relative risk

of 2, and the individual v2 test for

testing association of a single low

frequency SNP under additive,

dominant, multiplicative, and re-

cessive disease models at the

genome-wide level a = 0.05, as-

suming 10,000 cases and 10,000

controls.

FIG. 5. Histogram of power of the

genome information content-based

statistic, the generalized T2, col-

lapsing method, CMC method, WSS

and VT statistics for testing associ-

ation of 45,600 genomic regions,

each region with 150 variants with

no restriction on the MAF, 10% of

which were randomly selected as

risk increasing variants with relative

risk of 1.5, and the individual v2 test

for testing association of a single

SNP with any MAF under additive,

dominant, multiplicative and reces-

sive disease models at the signifi-

cance level a = 0.05, assuming

5,000 cases and 5,000 controls.
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power at the significance level of 0.05 in more than 15% of the genome for the recessive disease models,

and in about 40% of the genome for the dominant and multiplicative models. The results for testing

association of both common and rare variants with relative risks of 2 and 3,000 cases and 3,000 controls,

and 5,000 cases and 5,000 controls are summarized in Supplementary Figures 6 and 7, respectively.

Next we investigate the power of the previous six statistics for testing association of genomic variants

with any MAF at the genome-wide significance level. The total number of genomic regions for testing

association of all genomic variants with any MAF is 45,600. Hence, the p-value cut-off of the statistics

except for the individual v2 statistic for declaring genome-wide significance after the Bonferroni cor-

rection is P < 1.1 · 10 - 6. The total number of SNPs across the genome is 6,840,000. The p-value cut-off

of the individual v2 statistic for declaring genome-wide significance after the Bonferroni correction is

P < 7.3 · 10 - 9. The power of the test at the genome-wide significance level of 0.05 is defined as the

fraction of 5,000 simulations on which the test met the p-value cut-off. The power of six statistics for

testing association of all variants in the genomic region at the genome-wide level of 0.05, assuming 10%

of 150 variants with relative risk of 2 to be causal variants, and 5,000 cases and 5,000 controls, is plotted

in Figure 6. Our results highlight several features. First, in general, the genome information content-

based statistics outperform other statistics. Second, even at the genome-wide level of 0.05, the genome

information content-based statistics can reach at least 60% power and 70% power in 40% of the genome

for additive, multiplicative and recessive disease models and almost half of the genome for dominant

models, respectively. Third, the difference in power between the genome information content-based

statistic and several group tests is most noticeable when the disease model is dominant and power was in

the interval [60%, 90%]. We can observe the similar power pattern for other parameters. The results for

the variants with relative risk of 2, and 3,000 cases and 3,000 controls are shown in Supplementary

Figure 8.

Table 4. Pair-Wise Power Comparison of Seven Statistics for Testing Association

of Both Common and Rare Variants Under Dominant Model

Test statistic T2 CMC VT WSS TG

Chi square 76.54 86.2 87.72 89.31 93.23

T2 58.95 83.92 87.46 88.64

CMC 77.37 81.57 89.36

VT 59.69 80.51

WSS 84.83

FIG. 6. Histogram of power of the

genome information content-based

statistic, the generalized T2, col-

lapsing method, CMC method, WSS

and VT statistics for testing associ-

ation of 45,600 genomic regions,

each region with 150 variants with

no restriction on the MAF, 10% of

which were randomly selected as

risk increasing variants with relative

risk of 2, and the individual v2 test

for testing association of a single

SNP with any MAF under additive,

dominant, multiplicative, and re-

cessive disease models at the

genome-wide level a = 0.05, assum-

ing 5,000 cases and 5,000 controls.
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Application to a real data example

To further evaluate their performance the seven statistics were applied to the ANGPTL3, 4, 5, and 6

sequence and phenotype data from the Dallas Heart Study (Romeo et al., 2007; Romeo et al., 2009). The

total numbers of low frequency and rare variants with a minor allele frequency below 0.05 in the

ANGPTL3, 4, 5, and 6 genes which were identified from 3,553 individuals were 49, 83, 91, and 66,

respectively. To examine the phenotypic effects of the low frequency and rare variants in the ANGPTL3, 4,

5, and 6 genes, two groups of individuals with the lowest and highest quartiles of the six traits related to

lipid metabolism were selected. The individuals with plasma triglyceride (Trig) levels less than or equal to

the 25th percentile were classified as the lowest quartiles of the Trig and the individuals with plasma Trig

greater than or equal to the 75th percentile were grouped as the highest quartiles of the Trig. We can

similarly classify the individuals as the lowest and highest quartiles of high density lipoprotein cholesterol

(HDL), low density lipoprotein cholesterol (LDL), total cholesterol, very low density lipoprotein choles-

terol (VLDL), and body mass index (BMI). The p-values from the seven statistics for testing association of

low frequency and rare variants in the ANGPTL3, 4, 5, and 6 genes with the six traits are summarized in

Table 5, where for the CMC method, variants with an allele frequency below 0.005 were collapsed and the

1010 permutations for WSS and VT were carried out. The p-values for the individual v2 test to declare

association of the variants in the ANGPTL3, 4, 5, and 6 genes after the Bonferroni correction for multiple

tests were p < 0.001, p < 6.02 · 10 - 4, P < 5.49 · 10 - 4 and P < 7.60 · 10 - 4, respectively. Table 5

clearly shows that the strong association of the ANGPTL3 with Trig and VLDL levels, the ANGPTL4 with

BMI, Trig, VLDL, LDL and HDL levels, the ANGPTL5 with LDL levels were identified by the statistics

TG, CMC (except for association of ANGPTL5 with LDL levels), WSS, and VT. We also observed that the

individual v2 test and T2 test identified strong association of the ANGPTL4 with Trig, VLDL and LDL

levels. However, the P-values for the statistic TG were smaller than that of the other six statistics for all

scenarios. In addition, we observed that all three statistics: TG, WSS and VT identified weak association of

the ANGPTL4 with cholesterol, the ANGPTL5 with BMI, Trig, and VLDL levels; the ANGPTL6 with Trig,

Table 5. The p-Values of Statistics for Testing Association of Rare Variants in the

ANGPTL3, 4, 5, and 6 Genes with Six Traits in the Dallas Heart Study

Test statistics

Phenotype Gene name Chi-square T2 Collapsing CMC WSS VT TG

BMI ANGPTL3 4.26E-02 2.16E-01 1.95E-01 1.80E-01 1.34E-01 2.12E-01 7.38E-02

ANGPTL4 2.70E-03 7.30E-03 2.84E-01 1.31E-05 2.38E-06 1.87E-06 7.55E-08

ANGPTL5 1.65E-02 1.58E-02 3.47E-01 1.03E-01 5.90E-03 9.80E-03 5.30E-03

ANGPTL6 8.32E-02 2.88E-01 7.06E-01 5.94E-01 1.38E-01 7.58E-02 4.35E-01

Cholesterol ANGPTL3 4.37E-02 3.07E-01 5.40E-03 1.28E-01 4.05E-01 2.76E-01 2.60E-01

ANGPTL4 1.60E-04 9.43E-02 3.99E-02 3.73E-02 4.09E-02 2.31E-02 9.60E-03

ANGPTL5 8.00E-03 3.10E-03 7.77E-01 8.74E-02 6.92E-02 3.26E-01 3.05E-02

ANGPTL6 5.07E-02 2.70E-01 7.42E-01 8.32E-02 9.70E-02 1.48E-01 1.08E-01

Trig ANGPTL3 5.18E-07 1.40E-03 1.10E-01 1.48E-05 4.00E-04 2.00E-05 2.65E-06

ANGPTL4 4.65E-08 5.60E-11 1.12E-02 5.33E-12 8.82E-09 3.87E-09 1.11E-13

ANGPTL5 1.40E-03 6.73E-04 6.88E-01 1.27E-03 3.20E-04 4.00E-04 1.58E-04

ANGPTL6 3.01E-02 1.47E-01 4.83E-01 1.71E-01 7.00E-03 2.02E-02 1.15E-02

VLDL ANGPTL3 6.21E-07 1.60E-03 1.13E-01 1.94E-05 5.00E-04 5.00E-05 3.45E-06

ANGPTL4 1.32E-07 5.40E-10 9.83E-02 6.89E-14 < 1.0E-10 < 1.0E-10 1.11E-15

ANGPTL5 2.34E-04 5.10E-03 8.96E-01 8.65E-03 5.42E-04 5.06E-04 4.00E-03

ANGPTL6 4.08E-02 1.28E-01 6.90E-01 1.63E-01 8.40E-03 3.16E-02 1.84E-02

LDL ANGPTL3 8.54E-02 6.17E-01 3.88E-01 4.61E-01 2.47E-01 2.47E-01 3.67E-01

ANGPTL4 1.07E-07 2.96E-10 1.46E-01 3.79E-14 < 1.0E-10 < 1.0E-10 7.77E-16

ANGPTL5 7.30E-03 4.41E-02 1.85E-02 7.00E-03 2.60E-04 3.00E-04 7.39E-06

ANGPTL6 1.97E-02 5.21E-01 7.56E-01 3.32E-01 5.70E-02 9.06E-02 5.86E-02

HDL ANGPTL3 7.80E-03 1.85E-01 9.40E-01 2.37E-02 2.37E-01 9.95E-02 6.22E-02

ANGPTL4 6.43E-05 5.32E-04 5.90E-03 4.36E-06 2.00E-04 5.43E-06 3.63E-09

ANGPTL5 8.58E-04 1.44E-01 3.31E-01 9.30E-03 2.37E-01 3.31E-01 4.99E-02

ANGPTL6 3.90E-03 8.96E-02 3.45E-01 2.06E-02 7.00E-03 2.97E-02 2.35E-02
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VLDL and HDL levels; and that the CMC method detected weak association of the ANGPTL5 with Trig

and VLDL levels; and the ANGPTL6 with HDL levels, but their p-values were in the same magnitude. The

collapsing method failed to detect associations in most scenarios.

DISCUSSION

Common diseases are caused by entire allele-frequency spectrums. Bansal et al. (2010) summarized that

the common diseases are caused by (1) common variants; (2) rare variants independently of one another;

(3) rare variants and common variants jointly (additively or synergistically); and (4) a set of variants

located in the functional elements. Most statistical methods except for the CMC method are designed to

separately test association of either common variants or rare variants rather than to jointly test for asso-

ciation of both common and rare variants. The purpose of this report is to develop a unified statistical

framework which allows one to jointly test the entire allele-frequency spectrum of variants.

Several published statistical methods for testing association of rare variants with common disease are based

on the notion of collapsing multiple rare variants within and across genes into groups to overcome the power

issues due to testing rare variants individually. The basic component for these methods is to test the collective

frequency differences of the grouped rare variants between cases and controls. These methods have proven to

be powerful for testing association of multiple rare variants. However, the group tests also have their

limitations. In general, these tests do not consider the general sequence background within which genetic

variants function (Bansal et al., 2010) and ignore LD among the variants. As an alternative to the collapsing

approach, we proposed genome information content-based statistics which test association of the genomic

region by comparing differences in genome information content between cases and controls and hence there

is no need to collapse the variants into a group. These statistics have several merits.

First, the genome information content-based statistics explored difference in genomic information be-

tween cases and controls. The genomic information comprehensively characterizes the contribution of all

genomic variants to disease. Therefore, the genome information content-based statistics can be used to

jointly test association of both common and rare variants.

Second, the genome information content-based statistics are simple to calculate. These statistics have

nice asymptotical properties and consequently there is no need to resort permutations to calculate p-values.

Therefore, computation using the genome information content-based statistics for genome-wide sequence-

based association studies is very rapid.

Third, to provide insight into the advantages and limitations of various methods for association analysis,

we assessed their null distributions by large-scale simulations. To take into account the genetic background

and LD structure among multiple common and rare variants within or across genes, our simulations are

based on real sequence data obtained from low coverage pilot data in the 1000 Genomes Project. Our

results showed that the type 1 error rates of the genome information content-based statistics for testing

association of both common and rare variants were, in general, not appreciably different from the expected

nominal levels. However, the type 1 error rates of the group test and individual v2 statistic for testing

association of rare variants in a large proportion of the genomic regions were significantly deviated from

the nominal levels. These statistics were anticonservative. Their type 1 error rates were largely deflated.

Fourth, to further evaluate the performance of the genome information content-based statistics, we compared

their power with several group tests by large-scale simulations. As Bansal et al. (2010) pointed out, the majority

of published power studies simulated data by assuming population genetic models. However, many evolu-

tionary forces shape the population history. It is unknown if such assumptions are appropriate. Therefore, we

used the low coverage pilot data for the CEU from the 1000 Genomes Project to simulate power calculations.

The power of group tests and individual v2 statistic for testing association of rare variants, and both common and

rare variants were extensively simulated against four disease models, two relative risks, and various sample

sizes. Our results showed that the individual v2 test has no power to detect association of low frequency and rare

variants at the genome-wide level of 0.05 in more than 99% of the genome. We also observed that the collapsing

and CMC methods have improved power to detect association of low frequency and rare variants, but their

power improvement is still limited in more than 95% of the genome. Our results clearly demonstrated that the

power of the genome information content-based statistics which can recognize information contained in the

physical location of the genetic variants and their genetic context is much higher than that of several collapsing

tests in most genome regions. Their application to empirical data also showed that the genome information

content-based statistics outperform several group and single marker tests.
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Fifth, the genome information content-based statistics have flexible strategies for testing association of

genomic variants. We can use different quantities such as entropy to measure genome content. We can

measure only the genome content of functional variants and ignore non-functional variants.

The genome information content-based statistics also have limitations. First, these statistics do not take

into account the possible direction of the rare variant effects. Presence of opposite directions of the rare

variant effect will compromise the power of the tests. The genome information content-based statistics that

take the direction of genetic variant effects into account will be developed in the near future. Second, the

genome information content-based statistics do not design device to filter sequence errors. Third, although

in about 10% of the genome, the genome information content-based statistics have 60% or higher power to

detect association of low frequency and rare variants, they still do not have enough power to detect

association of low frequency and rare variants in the majority of the genomic regions. Therefore, detecting

association of low frequency and rare variants across the genome remains a great challenge to us.

Sequencing technologies are evolving rapidly and will soon produce the entire spectrum of nucleotide

and structural variation for an individual in a timely and cost-effective manner. Developing statistical

methods for testing association of the entire allele frequency spectrum of the genetic variants is essential to

dissect complex genetic structures of common diseases in future genetic studies. Although our results are

preliminary due to limitations of available next-generation sequence data from large samples of well-

phenotyped individuals, the concepts and methods described in this report are expected to emerge as an

alternative analytic framework for genetic studies of complex diseases and should stimulate further dis-

cussions regarding challenges raised by novel sequencing technologies.

WEB RESOURCES

The URLs for data presented herein are as follows:

1000 Genomes Project: http://www.1000genomes.org/

GICT (Genome Information Content-Based Tests): http://www.sph.uth.tmc.edu/hgc/faculty/xiong/

index.htm

Additional information is available Online at the Journal of Computational Biology website (www

.liebertonline.com/cmb).
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