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ABSTRACT

Inferring the ancestral origin of chromosomal segments in admixed individuals is key for
genetic applications, ranging from analyzing population demographics and history, to
mapping disease genes. Previous methods addressed ancestry inference by using either weak
models of linkage disequilibrium, or large models that make explicit use of ancestral hap-
lotypes. In this paper we introduce ALLOY, an efficient method that incorporates gener-
alized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial
hidden Markov model to capture the parallel process producing the maternal and paternal
admixed haplotypes, and models the background linkage disequilibrium in the ancestral
populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a
broad range of scenarios ranging from recent to ancient admixtures with up to four an-
cestral populations. We show that ALLOY outperforms the previous state of the art, and is
robust to uncertainties in model parameters.
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1. INTRODUCTION

Determining the ancestral origin of chromosomal segments in admixed individuals is a problem that

has been addressed by several methods (Patterson et al., 2004; Tang et al., 2006; Sundquist et al., 2008;

Bercovici and Geiger, 2009; Pasaniuc et al., 2009; Price et al., 2009). The development of these methods was

motivated by various applications, such as studying population migration patterns ( Jakobsson et al., 2008;

Gravel et al., 2011), increasing the statistical power of association studies by accounting for population

structure (Pasaniuc et al., 2011), and enhancing admixture-mapping (Winkler et al., 2010; Seldin et al., 2011)

for both disease-gene mapping as well as personalized drug therapy applications (Baye and Wilke, 2010).

The ability to accurately infer ancestry is important in genome-wide association studies (GWAS). These

studies are based on the premise that a homogenous population sample was collected. Population stratifi-

cation, however, poses a significant challenge in association studies; the existence of different subpopulations

within the examined cases and controls can yield many spurious associations originating from the population

substructure rather than the disease status. Inferred substructure within the population enables the correction

for this effect, consequently improving the statistical power of these studies.
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A second disease-gene mapping technique that benefits from an accurate inference of ancestry is

admixture-mapping (Winkler et al., 2010). This statistically powerful and efficient method identifies ge-

nomic regions containing disease susceptibility genes in recently admixed populations, which are popu-

lations formed from the merging of several distinct ancestral populations (e.g., African-Americans). The

statistical power of admixture-mapping increases as the disease prevalence exhibits a greater difference

between the ancestral populations from which the admixed population was formed. Admixed individuals

carrying such a disease are expected to show an elevated frequency of the ancestral population with the

higher disease risk near the disease gene loci. Hence, the effectiveness of this method relies on the ability to

accurately infer the ancestry along the chromosomes of admixed individuals.

The problem of ancestry inference is commonly viewed at one of two levels: (a) at the global scale,

predicting an individual’s single origin out of several possible homogenous ancestries, or determining an

individual’s ancestral genomic composition; and (b) at the finer local scale, labeling the different ancestries

along the chromosomes of an admixed individual. In the context of local ancestry inference, most previous

methods are based on hidden Markov models (HMM), where the hidden states correspond to ancestral

populations and generate the observed genotypes. The work of Patterson et al. (2004) employed such an

HMM, integrated into a Markov chain Monte Carlo (MCMC), for estimating ancestry along the genome.

The method accounted for uncertainties in model parameters such as number of generation since admixture,

admixture proportions, and ancestral allele frequencies. For simplicity, the work assumed that, given the

ancestry, the sampled markers are in linkage equilibrium (i.e., independent). This assumption was then

relaxed in the work by Tang et al. (2006), applying a Markov hidden Markov model (MHMM) to account

for the dependencies between neighboring markers as exhibited within the ancestral populations. While the

modeled first-order Markovian dependencies accounted for some of the linkage disequilibrium (LD)

between markers, the complex nature of the linkage patterns presented an opportunity for more accurate LD

models that would yield better performance in inferring local ancestry. The explicit use of ancestral

haplotypes, in methods such as HAPAA (Sundquist et al., 2008) and HAPMIX (Price et al., 2009), enabled

a more comprehensive account for background LD (i.e., LD within the ancestral population) over longer

segments. In these methods, the hidden states corresponded to specific ancestral haplotypes, and the

transition between the states corresponded to intra-population mixture and inter-populations admixture

processes. While efficient inference algorithms were applied, the model size grew linearly with the number

of parental individuals, and the time complexity grew quadratically with the numbers of parental indi-

viduals for the case of genotype-based analysis. The time complexity of such an analyses became

prohibitively high with more than a modest number of model individuals.

Other work explored window-based techniques, in which a simple ancestral composition was assumed to

occur within a window (i.e., at most a single admixture event within an examined segment). LAMP (San-

kararaman et al., 2008), and its extension WINPOP (Pasaniuc et al., 2009), used a naı̈ve Bayes approach,

assuming markers within a window are independent given ancestry, applying the inference over a sliding

window. Although LD was not modeled, the methods demonstrated an accuracy superior to methods that did

account for background LD. An additional window-based framework was developed in Bercovici and Geiger

(2009), decoupling the admixture process from the background LD model. Chromosomal ancestral profiles were

efficiently enumerated using a dynamic-programming (DP) technique, enabling the instantiation of various LD

models for the single-ancestry segments from which a profile was composed. Multiple LD models were studied

within the framework, showing that higher-order LD models yield an increase in inference accuracy.

In this work we describe ALLOY, a novel local ancestry inference method that enables the incorporation

of complex models for linkage disequilibrium in the ancestral populations. ALLOY applies a factorial

hidden Markov model (FHMM) to capture the parallel process producing the maternal and paternal ad-

mixed haplotypes. We model background LD in ancestral populations via an inhomogeneous variable-

length Markov chain (VLMC). The states in our model correspond to ancestral haplotype clusters, which

are groups of haplotypes that share local structure within a chromosomal region, as in Browning and

Browning (2007). In our method, each ancestral population is described by a separate LD model that

locally fits the varying LD complexities along the genome. We provide an inference algorithm that is

subcubic in the maximal number of haplotype clusters at any position. This allows ALLOY to scale well

when analyzing admixtures of more than two populations or incorporating more elaborate LD models.

We demonstrate through simulations that ALLOY accurately infers the position-specific ancestry in a

wide range of complex and ancient admixtures. For instance, ALLOY achieves 87% accuracy on a

three-population admixture between individuals sampled from Yoruba in Ibadan, Nigeria; Maasai in
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Kinyawa, Kenya; and northern and western Europe. Our results represent substantial improvements over

previous state of the art. Further, we explore the landscape of background LD models, and find that the

highest performance is achieved by LD models that lie between models that assume independence of

markers and models that explicitly use the reference haplotypes. Finally, our results demonstrate that as

more samples representing the ancestral populations become available, our LD models improve and enable

more accurate local ancestry inference.

2. METHODS

We consider the problem of local ancestry inference, defined as labeling each genotyped position along

the genome of an admixed individual with its ancestry. Here, admixture is assumed to follow the hybrid

isolated model (Long, 1991), in which a single past admixture event mixing K ancestral populations with

proportions p = (p1‚ . . . ‚ pK) is followed by g generations of consecutive random mating. For clarity, we

assume that a set of L bi-allelic single nucleotide polymorphisms (SNPs) was observed along the genome of

an individual; we relax the bi-allelic marker assumption in the Discussion section. Furthermore, at each

position, we define a state space of haplotype clusters Al, each of which represents a collection of ancestral

haplotypes that share a common local structure (i.e., allelic sequence surrounding a particular location). It

immediately follows that each such haplotype cluster al 2 Al at location l is mapped to a single allele,

denoted by e(al) 2 f0‚ 1g. In our model, each of the K populations is represented by a separate mu-

tuallyexclusive subset of haplotype clusters. We denote by anc(al) the ancestry, out of K, of a particular

haplotype cluster al 2 Al. We denote by Hm
l ‚ H

p
l the (hidden) haplotype cluster membership drawn from Al

on the maternal and paternal haplotype at position l, respectively, and by Gl 2 f0‚ 1‚ 2g the genotype

observed at the same marker position, representing the minor allele count. The vectors of haplotype cluster

memberships and genotypes across all L marker positions are denoted by Hfm‚ pg = (H
fm‚ pg
1 ‚

H
fm‚ pg
2 ‚ . . . ‚ H

fm‚ pg
L ) and G = (G1‚ G2‚ . . . ‚ GL), respectively.

We use a factorial hidden Markov model (FHMM) (Ghahramani et al., 1997) to statistically model the

dual mosaic ancestral pattern along the genome of an admixed individual, as depicted in Figure 1. In

factorial HMMs, which are equivalent in expressive power to hidden Markov models (HMM) (Rabiner,

1989), the single chain of hidden variables is replaced by a chain of a hidden vector of independent factors.

In our application, the FHMM representation allows us to naturally decouple the state space into two

parallel dynamic processes generating Hm and Hp, pertaining to the presumably independent maternal and

paternal admixture processes, and producing the single composed admixed offspring G. The decomposition

of the state space into independent processes allows efficient inference by leveraging the structure in the

compound state transition probabilities. In our model, the values of Hl = (Hm
l ‚ H

p
l ) at specific position l are

drawn from the Cartesian product Al · Al, corresponding to the alleles within specific ancestral haplotypes

originating from a restricted prior set of K hypothesized ancestral populations. Note that Al extends the notion

of an allele, which is simply a binary variable, to an allele within an ancestral haplotype; for position l,

multiple states in Al may correspond to the same allele.

To infer local ancestry, we first compute the posterior marginals given the sampled genotypes

P(Hm
l ‚ Hm

l jG) by applying the forward-backward algorithm

P(Hm
l = al‚ H

p
l = a0ljG) / al(al‚ a0l) � bl(al‚ a0l) (1)

where al(al‚ a0l) = P(G1‚ . . . ‚ Gl‚ Hm
l = al‚ H

p
l = a0l) and bl(al‚ a0l) = P(Gl + 1‚ . . . ‚ GLjHm

l = al‚ H
p
l = a0l). A naive

recursive computation of a and b yields O(jA1j2 +
PL

l = 2 jAl - 1j2 � jAlj2) time complexity as the transition

from each pair of haplotype cluster memberships to each consecutive pair of haplotype cluster member-

ships is explicitly assessed. However, the dependency structure of FHMMs allows for a more efficient

recursive computation of a and b, as described in Ghahramani et al. (1997). Specifically, a is computed in

the forward direction in three steps as follows

am
l - 1(al‚ a0l - 1) =

X
al - 12Al - 1

al - 1(al - 1‚ a0l - 1) � P(Hm
l = aljHm

l - 1 = al - 1) (2)

ap
l - 1(al‚ a0l) =

X
a0

l - 1
2Al - 1

am
l - 1(al‚ a0l - 1) � P(Hp

l = a0ljH
p
l - 1 = a0l - 1)

al(al‚ a0l) = ap
l - 1(al‚ a0l) � P(GljHm

l = al‚ H
p
l = a0l)‚
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namely, advancing on the maternal track, followed by advancing on the paternal track, and finally, in-

corporating the local observation by multiplying by the emission probability P(GljHm
l = al‚ H

p
l = a0l).

Similarly, b is computed in a backward recursion as

be
l (al‚ a0l) = bl(al‚ a0l) � P(GljHm

l = al‚ H
p
l = a0l) (3)

bm
l (al - 1‚ a0l) =

X
al2Al

P(Hm
l = aljHm

l - 1 = al - 1) � be
l (al‚ a0l)

bl - 1(al - 1‚ a0l - 1) =
X
a0

l
2Al

P(Hp
l = a0ljH

p
l - 1 = a0l - 1) � bm

l (al - 1‚ a0l):

To complete the description, we define a1(a1‚ a01) = P(Hm
1 = a1) � P(Hp

1 = a01) � P(G1jHm
1 = a1‚ H

p
1 = a01)

and bL(aL‚ a0L) = 1. When computing b, advancing on the maternal track takes (jAl - 1j � jAlj) � jAlj
time, while advancing on the paternal track takes (jAl - 1j � jAl - 1j) � jAlj time, as determined by the size

of the corresponding composite state space. Similarly, a single forward step al is computed in

jAlj � jAl - 1j � (jAlj + jAl - 1j) time. Hence, the time complexity is now reduced to O(jA1j2 +PL
l = 2 jAlj � jAl - 1j � (jAlj + jAl - 1j)).
To model genotyping error, the emission probability P(GljHm

l ‚ H
p
l ) used in Equations 2 and 3 is defined

as follows

P(GljHm
l = al‚ H

p
l = a0l) =

1 - 2�‚ e(al) + e(a0l) = Gl

�‚ otherwise

8<
: (4)

where e corresponds to the genotyping error rate.

To increase the numerical stability in the forward-backward computation, scaling is applied. Specifically,

al and bl are scaled by sl =
P

al‚ a0
l
al(al‚ a0l) as follows

FIG. 1. A factorial hidden

Markov model capturing the parallel

admixture processes generating the

maternal and paternal haplotypes

and giving rise to the sampled ge-

notypes of the admixed offspring.

(a) A graphical model depicting the

conditional independencies in our

model. Each variable in the hidden

chains H
fm‚ pg
l corresponds to a

haplotype cluster membership, and

Gl corresponds to the observed

genotype at location l. (b) The state

space Al for a particular location l

along the genome. Each ancestry is

modeled by an independent set of

haplotype cluster membership

states and each such state can

emit a single allele. Edges in the

illustration connecting states cor-

respond to intra-population ob-

served transitions, namely, local

haplotypic sequences that were

frequent in the corresponding an-

cestral population. Edges corre-

sponding to admixture transitions,

connecting states of different an-

cestries, are omitted from this il-

lustration for clarity.
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a�l (al‚ a0l) =
al(al‚ a0l)

sl

b�l (al‚ a0l) =
bl(al‚ a0l)

sl

: (5)

Next, the unordered ancestry pair fZ1
l ‚ Z2

l g at location l is called by determining the maximal a posteriori

assignment

fẐ1
l ‚ Ẑ2

l g = arg max
Z1

l
‚ Z2

l

X
al‚ a0

l
s:t:

a�l (al‚ a0l) � b
�
l (al‚ a0l) (6)

fanc(al)‚ anc(a0l)g = fZ1
l ‚ Z2

l g

where, for each fZ1
l ‚ Z2

l g pair, we sum over all (al, al
0) haplotype cluster membership pairs that are con-

sistent in their ancestry with the unordered ancestry pair fZ1
l ‚ Z2

l g.
We proceed by describing the transition probabilities P(HljHl-1). Let Rl be defined as the event in which

at least one post-admixture recombination occurred between position l - 1 and position l since the first

population admixture event, and let �Rl be defined as the complementary event. The transition probability

P(HljHl - 1), which captures the process in which an admixed haplotype is generated, mixes the event of

intra-ancestral population transition, P(HljHl - 1‚ �Rl), with the event corresponding to the introduction of a

new ancestral haplotype, P(HljHl - 1,Rl), as described by

P(HljHl - 1) = P(Rl) � P(HljHl - 1‚ Rl) + P( �Rl) � P(HljHl - 1‚ �Rl) (7)

= P(Rl) � Panc(Hl)(Hl) + P( �Rl) � Panc(Hl)(HljHl - 1)

where Panc(Hl)(Hl) is the position-specific ancestral haplotype cluster prior, and Panc(Hl)(HljHl - 1) models the

transition within the ancestral population anc(Hl), capturing the background population-specific LD.

Namely, if a post-admixture recombination was introduced (P(Rl)), a haplotype Hl is sampled based on the

local ancestry prior Panc(Hl)(Hl); if no post-admixture recombination was introduced (P( �Rl)), the next marker

is sampled based on the haplotypic structure within population anc(Hl), as defined by Panc(Hl)(HljHl - 1).

Assuming the hybrid-isolated model, the probability of post-admixture recombination P(Rl) is approximated

via the Haldane function (Haldane, 1919)

P(Rl) = 1 - e - /(g�dl) (8)

where dl is the genetic distance, in Morgans (M), between marker l - 1 and l, and g + 1 generations are

assumed to have passed since the first admixture event. We note that u(z) is defined as a function of the

recombination rate g $ dl to enable smoothing; the number of false ancestry changes can be reduced by

controlling the probability for recombination (e.g., /(z) = z
10

), overcoming local inaccuracies in ancestry

inference due to an imperfect ancestral linkage model. The prior probability of the ancestral haplotype

cluster is governed by the mixture proportions p and the intra-population haplotype cluster prior

Panc(Hl)(Hl), as given by

P(Hl) = panc(Hl) � Panc(Hl)(Hl): (9)

Finally, we describe the background model we use to capture the ancestral linkage disequilibrium between

markers. The range of explored background LD models is illustrated in Figure 2. The most basic models used

for ancestry inference assume markers are independent given their corresponding ancestry assignment. An

immediate extension that can be captured by our FHMM model incorporates first-order Markovian depen-

dencies to model LD between neighboring markers. However, the model is not limited to first-order depen-

dencies; to capture longer range dependencies between ancestral alleles, the state space Al from which Hl is

drawn can be enriched so as to track ancestral haplotype clusters over a longer range. Specifically, longer range

dependencies are effectively translated to additional states that map to specific ancestral local haplotype clusters.

Moreover, a different number of states can be introduced at each position, fitting the local ancestral haplotypic

complexity. The higher the local complexity is, the more states are used to track dependencies reaching further

away. In essence, the model is equivalent to an inhomogeneous VLMC in which regions exhibiting complex LD

structures are modeled using longer dependencies (i.e., edges connecting distant nodes in the underlying

graphical model). At one extreme, the state space Al can be constructed assuming a zero-order Markov model

(i.e., markers are independent), while at the other extreme, Al can be extended to have one state per ancestral

haplotype instance used in the training phase.
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An algorithm for fitting inhomogeneous VLMCs was described by Ron et al. (1995), and extended

by Browning and Browning (2007), to model haplotypes. We apply Beagle, an implementation of this

procedure, to empirically model the local haplotypic structure. Specifically, we determine both the

state space of Al as well as the transition probability through the use of a localized haplotype cluster

model described in Browning and Browning (2007). Briefly, given a set of training haplotypes from a

single ancestry, the algorithm processes the markers in chromosomal order. With each additional

marker considered, nodes, representing some history of allele sequences, are split by considering the

subsequent alleles for each such node. Then, nodes at location l are merged based on a Markov

criterion roughly guaranteeing that given the cluster membership at position l, prior cluster mem-

berships are irrelevant for the prediction of subsequent cluster memberships. Namely, given some

parameter t, two clusters at position l are merged if the probabilities of allele sequences at markers

l + 1‚ l + 2‚ . . . ‚ l + t resemble each other. For each population anc, the procedure yields a weighted

directed acyclic graph (DAG), where edges are labeled by alleles, and each training haplotype traces a

path through the graph from a root node to a terminal node, defining the weights. For each edge ei
l at

location l, the weight wi
l is defined as the number of haplotypes in the ancestral population sample that

pass through the ith cluster. In our model, the state space Aanc
l � Al for population anc at location l is

defined so that each edge ei
l in the weighted DAG corresponds to the state aanc‚ i

l . We denote the source

node of each edge ei
l by si

l and its target by ti
l. The prior Panc(Hl) and transition probabilities Panc(HljHl -

1) from Equations 7 and 9, respectively, can be computed as follows

FIG. 2. The state space Al over

three consecutive locations in

different background LD models,

pertaining to the marker depen-

dencies exhibited within a single

ancestral population. (a) Markers

are independent given ancestry.

The model contains two states per

location, each emitting one of the

two possible alleles matching the

marginal distribution observed in

the ancestral population. (b) First

order Markovian dependency be-

tween adjacent markers. The tran-

sition between the neighboring

states, which correspond to alleles

at specific positions, is derived

from the conditional probability

estimated from the ancestral popu-

lation sample. (c) Generalized

linkage model via haplotype clus-

ters. The number of states at each

position correspond to the number

of haplotype clusters, each emitting

an allele. The local transition

probabilities correspond to the

Markovian property by which

haplotype cluster membership at a

given location l is determined by

the cluster membership at the pre-

vious location l - 1. (d) Explicit

use of ancestral haplotypes. For

each position, the number of states

equals the number of training

haplotypes, each emitting a single

allele observed in the correspond-

ing haplotype.
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Panc(Hl = aanc‚ i
l jHl - 1 = a

anc‚ j
l - 1 ) =

wi
lP

k s:t: tk
l - 1

= si
l

wk
l - 1

‚ if t
j
l - 1 = si

l

0‚ otherwise

8><
>:

(10)

Panc(Hl = aanc‚ i
l ) =

wi
lP

j w
j

l - 1

: (11)

The process is repeated for each ancestry separately, producing the population-specific Panc(al)(Hl = al) and

Panc(al)(Hl = aljHl - 1 = al - 1).

3. RESULTS

Simulation of admixed individuals and training the background LD models. We evaluated the

performance of ALLOY for local ancestry inference. In our experiments, we simulated admixed individuals

and trained ALLOY’s background model using data from six HapMap (Altshuler et al., 2010) populations:

individuals from the Centre d’Etude du Polymorphisme Humain collected in Utah, with ancestry from

northern and western Europe (CEU); Han Chinese in Beijing, China (CHB); Japanese in Tokyo, Japan

( JPT); Yoruba in Ibadan, Nigeria (YRI); Maasai in Kinyawa, Kenya (MKK); and Tuscans in Italy (Toscani

in Italia, TSI). All SNPs present in the HapMap Phase III panel on the first arm of Chromosome 1 were used

to expedite the results. We partitioned the HapMap data such that 100 individuals from each population

were used as training data, and the remainder were used as test data to evaluate the performance of our

method. We used haplotypes from the test set to simulate admixed individuals for six different com-

binations of ancestral populations: YRI-MKK (YM), CHB-JPT (CJ), YRI-MKK-CEU (YMC), CHB-

JPT-CEU (CJC), YRI-MKK-CEU-CHB (YMCC), and CHB-JPT-CEU-YRI (CJCY). Each test data set

contained 100 simulated admixed individuals. In this section, we use gsim and psim to denote the parameters

used for simulation, and g and p, to denote the parameters used for inference. Each simulated admixed

individual was generated by traversing the set of markers in chromosomal order, generating a pair of

admixed maternal and paternal haplotypes in parallel. The initial pair of ancestries and alleles, corre-

sponding to the first marker, was randomly selected based on the prior ancestral admixture proportions psim.

Alleles were then copied from the ancestral reference haplotypes. With each subsequent marker, the

probability for an admixture-related recombination was evaluated via Equation 8. In case of a recombi-

nation, a new ancestral source was selected using the psim admixture proportions and the copying process

continued.

We used the Beagle package (Browning and Browning, 2007) with default parameters, to phase the

training and testing individuals separately. Next, the ancestral background LD model states and parameters

were determined through Equations 10 and 11 by examining Beagle’s DAG output. To build an efficient

background LD model for ALLOY, we selected a subset of ancestry informative markers (AIM), which are

genetic variants that carry a population-specific characterizing allele distribution and can be used to

efficiently distinguish between genetic segments of different origins. In order to select the set of ancestry

informative markers, we used the Shannon Information Content (SIC) criteria (Rosenberg et al., 2003).

Namely, for a given set of markers and their corresponding allele distribution in the ancestral populations,

we measured the mutual information (MI) I(Xl;Z) between ancestry Z and allele Xl at position l. Using the

SIC measurement, we followed the marker selection heuristic presented in Tian et al. (2006), choosing a

constant number of highly informative markers within a window of fixed size. Specifically, in our simu-

lations, we selected the single most informative marker in windows of 0.05 centimorgans. For the YM,

YMC, and YMCC data sets, we used SNPs with the highest MI differentiating the YRI and MKK pop-

ulations; for the CJ, CJC, and CJCY admixture scenarios, we selected markers with the highest MI when

differentiating the CHB and JPT populations. While ALLOY’s background LD model was based on a

subset of SNPs, inference was performed on all SNPs, calling the ancestry of the excluded SNPs using a

nearest marker approach.

Evaluating ALLOY’s accuracy under complex and ancient admixtures. When performing inference,

we modeled the genotyping error rate with e = 0.01, and used /(z) = z
10

as our smoothing function in

Equation 8. We compared the performance of ALLOY to WINPOP (Pasaniuc et al., 2009), a local ancestry

ALLOY: LOCAL ANCESTRY INFERENCE WITH VLMC LINKAGE MODELS 205



inference platform that has been shown to outperform previous state-of-the-art methods such as SABER

(Tang et al., 2006), HAPAA (Sundquist et al., 2008), and HAPMIX (Price et al., 2009). We measured the

accuracy of ALLOY and WINPOP when inferring local ancestry of simulated admixed individuals under

increasingly complex admixtures, and with a varying number of generations since the first admixture event,

ranging from recent admixture (g = 7) to more ancient admixture (g = 100). Accuracy was conservatively

measured as the average fraction of SNPs for which the correct ancestry was inferred. As depicted in Figure

3, our results show that ALLOY’s accuracy is greater than WINPOP’s in nearly all tested scenarios. Our

experiments show that applying WINPOP over the full set of markers achieves a higher performance in

comparison to analyzing only a subset of ancestry information markers. WINPOP performs SNP selection

prior to inference to confirm with their model assumptions, and hence benefits from the larger initial set of

markers. We therefore reported WINPOP results corresponding to an analysis applied on the entire Hap-

Map Phase III set of SNPs rather than the SNP subsets used for training ALLOY.

Exploring background LD models. As previously described, the background LD models in ALLOY

can capture a wide range of complexities, from simpler models such as those used in AncestryMap

(Patterson et al., 2004) and SABER, which model zero- and first-order dependencies between markers,

respectively, to more complex explicit haplotype models as used by HAPAA and HAPMIX. More im-

portantly, ALLOY is able to capture models of intermediate complexity. We explored the performance of

ALLOY using a range of background LD models with varying complexities. Background models of

different complexities were generated by applying Beagle on our training data using different values for

Beagle’s scale parameter, which controls the complexity of the generated DAG underlying ALLOY’s

model. As scale approaches 0, the model approaches the explicit model used in HAPAA, and as the value

of scale grows, the generated model approaches a zero-order model similar to the one used by Ances-

tryMap. The results, shown in Figure 4, illustrate that the models of intermediate complexity outperform

both the more complex as well as the simpler models used by previous methods.

Measuring robustness to inaccuracies in model parameters. Our method assumes that the admixture

parameters, such as the number of generations g and the admixture proportions p are given. When applied

on real data, however, the true values for these parameters are unknown. We examined the robustness of

ALLOY to inaccuracies in model parameters. Specifically, we measured the impact of misspecified ad-

mixture proportion p on the accuracy of inference. To test for robustness, we simulated a YM mixture with

psim = (0.5,0.5) and gsim = 30, and evaluated ALLOY’s performance varying p between (0.05,0.95) and

(0.95,0.05) during inference. Our results indicate that ALLOY’s performance is robust to inaccuracies in p,

yielding the highest accuracy when p = psim, slightly reducing the accuracy by 0.0029 to its lowest value at

the two extremes [i.e., p = (0.95,0.05) and p = (0.05, 0.95)]. We further evaluated ALLOY’s performance

when g was misspecified. A YM mixture was simulated with gsim = 20, psim = (0.5,0.5). When g = gsim,

ALLOY achieved 73.77% accuracy; for misspecified values of g between 10 and 40, accuracy ranged from

73.41% to 73.88%, respectively.

FIG. 3. (a) The performance of ALLOY based on the number of generations since admixture gsim for various

admixture configurations with equal ancestral proportions. ALLOY was run with g = gsim and p = psim, and the accuracy

was conservatively measured as the fraction of markers for which the exact ancestry pair was inferred. (b) For the same

experiments, ALLOY was compared to WINPOP by measuring the accuracy ratio between them ( ALLOY0s accuracy
WINPOP0s accuracy

). The

results clearly demonstrate ALLOY’s superior accuracy in the vast majority of tested admixture configurations, with an

increase in performance in more than 86% of the tests.
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Additionally, we explored the sensitivity of ALLOY’s performance to different genotyping error rates e.

When simulating a YM mixture with gsim = 20,psim = (0.5,0.5) as above, and performing inference with

values of e £ 0.025, ALLOY’s accuracy was at least 73.20%. Assuming a 5% genotyping error rate

(e = 0.05), the accuracy decreased by less than 1%.

Evaluating model accuracy under varying amounts of training data. Currently, the amount of

available genotype data is limited by the number of individuals genotyped and the density of SNPs

measured. However, the number of genotyped individuals and the SNP density of genotyping technologies

are expected to greatly increase in the near future. To evaluate the effect of training set size on ALLOY’s

performance, we trained our background LD model on sets of individuals with increasing size. Specifically,

we derived a model for the YRI and MKK ancestral populations using subsets of the individuals of varying

size and evaluated the inference accuracy. The results, shown in Figure 5a, emphasize the importance of

training set size to the improved performance, suggesting that as more samples are collected and geno-

typed, more accurate background models could be derived, yielding a higher level of accuracy.

We further evaluated the performance of ALLOY with respect to the number of SNPs used during

training. We generated subsets of informative SNPs of various sizes by using different window sizes during

the AIM selection phase. To evaluate the importance of using AIMs, we also selected random SNP subsets

of matching sizes. We simulated individuals from a YM admixed population with gsim = 30 generations of

admixture, evaluating ALLOY’s accuracy when trained using the different SNP subset. Figure 5b shows

FIG. 5. (a) Local ancestry inference accuracy as a function of training set size. A various number of individuals were

used as representatives of the ancestral populations in the computation of the background LD model, demonstrating an

increased performance as more samples are used in the training phase. (b) The accuracy of inferring ancestry as a

function of the number of markers used. The plot illustrates the significance of using ancestry-informative markers in

comparison to a randomly chosen set, as for all tested resolutions, the use of the informative set yielded an improved

performance. The results also indicate that the addition of noninformative markers reduces performance (demonstrated

by the right-most data point) as these are assumed to interfere with the construction of an effective background LD

model.

FIG. 4. Ancestry inference accuracy as a

function of model complexity, as measured by

the average number of haplotype clusters under a

certain background LD model. The models range

from a simplistic assumption of independence

on the left, to more explicit models on the right.

The plot illustrates that both oversimplification,

corresponding to the LD models used in Ancse-

tryMap and SABER, and overspecification, cor-

responding to the models leaning toward those

used in HAPAA and HAPMIX, yield reduced

performance in comparison with a more gener-

alizing local haplotypic model.
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that ALLOY’s accuracy increases as more SNPs are used. The results further demonstrate that ALLOY’s

performance is significantly higher with informative SNPs compared to random ones. The rightmost point

in Figure 5b corresponds to ALLOY’s performance when all SNPs are used. These results indicate that

using excessive uninformative markers can reduce accuracy in comparison to a model based on informative

markers.

4. DISCUSSION

ALLOY represents the LD structure of each population with a highly expressive model that lies between

the simpler first-order Markov hidden Markov model in SABER, and the explicit-haplotype model in

HAPAA and HAPMIX. The first advantage of this approach is its improved accuracy compared to either

extreme, as shown in Figure 4. Additionally, our inference algorithm has higher computational efficiency

than explicit-haplotype models. In this work, we derive the population-specific LD structures by generating

haplotype clusters through the Beagle package. We translate the produced DAG into prior and transition

probabilities that define the parameters of our factorial hidden Markov model. In future work, alternatives

to Beagle can be used for modeling LD; for instance, one can develop ancestry-aware methods that produce

LD models that emphasize the structural differences between ancestral populations.

In our experiments, we assumed a hybrid isolated (HI) model (Long, 1991) for simulating admixed

individuals. However, other models, such as the continuous gene flow (CGF) model (Long, 1991), may

better correspond with population migration and admixture patterns, and as such will more accurately fit the

ancestral mosaic patterns observed in admixed populations. ALLOY assumes an HI admixture model. To

evaluate the robustness of ALLOY to misspecification of admixture models, we measured ALLOY’s

accuracy under the scenario where the admixed individuals were simulated using a CGF model. ALLOY

achieved 86.0% accuracy on a YM mixture with p = (0.5,0.5), g = 10, and a generational donor contri-

bution rate a = 0.01 from both ancestries. These results indicate an approximately 8% increase in accuracy

compared to the results achieved when inferring the local ancestry of simulated admixed individuals

generated using the HI model and the same values for g and p. The increase in accuracy can be attributed to

the fact that CGF generates longer ancestral tracts in comparison to the HI model with the same admixture

parameters, and the fact that longer tracts are easier to predict correctly. To explore our model under a more

challenging scenario, we further simulated admixed individuals from a YM mixture using the CGF model

with an adjusted g such that the average ancestral tract length was equal to the average length under an HI

model with the same parameters. ALLOY achieved 81.0% accuracy, which is comparable to our previous

result for the HI model (79.6% accuracy). We concluded that ALLOY is robust to such differences in the

underlying admixture model and can support more realistic admixture models.

ALLOY assumes that the admixture parameters are given. In particular, the number of generations since

admixture g, and the relative proportions of the ancestral populations p, are required. We showed through

simulations that our method is robust to inaccuracies in the estimation of the admixture proportion.

Nonetheless, p can be estimated by direct examination of the sampled individuals’ genotype likelihood.

Alternatively, given a set of individuals representing a particular admixed population, demographic

parameters such as admixture time g and ancestral proportions p can be derived as a post-processing step.

For instance, as suggested in Pool and Nielsen (2009) and Henn et al. (2012), the length of ancestral tracts

can be used to infer changes in migration patterns. In particular, as our method has been shown to be robust

to inaccuracies in p and g, as well as to misspecified admixture models, we can first apply ALLOY to

accurately infer the individuals’ ancestral mosaic. Then, statistics over the inferred ancestral tracts, such as

their length and number, can be sequentially used in combination with a variety of admixture models to

compute the maximum likelihood estimate for parameters such as the time of migration and nature of

admixture. To infer these parameters, the method presented in Pool and Nielsen (2009) examined the

distribution of tracts larger than a given threshold, as shorter tracts cannot be reliably inferred. By

leveraging the structure stemming from the ancestral linkage disequilibrium, ALLOY can accurately infer

shorter ancestral tracts, enabling the observation of more distant admixture events and historical changes in

migration rate. We also note that the flexibility of our FHMM enables different admixture times and

proportions to be incorporated separately for the maternal and paternal haplotypes. Hence, pedigrees

exhibiting very recent complex admixture at the grandparental level can be explicitly modeled. For ex-

ample, the parameters of our method can be tuned to accurately infer the ancestry of an admixed individual
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that has one African-American and one Chinese parent. Finally, our model assumes a single genetic map is

given, capturing the genetic distance between neighboring SNPs that is shared between all ancestral

populations. Previous work showed that more accurate recombination rates can be inferred using admixed

populations by observing the ancestral switch points among admixed individuals (Hinch et al., 2011;

Wegmann et al., 2011). As with the methods used to infer admixture parameters, the ancestral mosaic of

admixed individuals is first inferred; then, the rate of ancestral switches per position is estimated. While

such methods can be used to infer more accurate maps, our experiments have shown that inaccuracies in the

estimation of these recombination rates do not have a significant effect on ALLOY’s ability to infer local

ancestry under the examined scenarios.

In the Methods section, we described an inference algorithm with a time complexity that depends on the

local ancestral LD structure rather than the number of ancestral haplotypes used when training the back-

ground model. Specifically, the algorithm’s time complexity is O(L $ C3), where C is an upper bound on the

number of states in a single position (i.e., C = maxljAlj). In our implementation of ALLOY, we reduced the

time complexity by rearranging the calculations corresponding to the transition probabilities in the forward

and backward computations, described by Equations 2 and 3, respectively. In particular, transitioning

between states corresponding to an admixture recombination event can be collapsed into a single term. For

instance, when transitioning between states corresponding to different ancestries in the forward iteration,

Equation 7 is reduced to the term P(Rl) $ P(Hl). Hence, am
l - 1(al‚ a0l - 1) can be rewritten as

am
l - 1(al‚ a0l - 1) = P(Rl) � P(al) + P( �Rl) �

X

al - 12A
anc(al)

l - 1

Panc(al)(aljal - 1):

When such an optimization is applied, the time complexity is reduced to O(L $ C2 $ CK), where CK is an

upper bound on the number of states corresponding to a single population (i.e., CK = maxl‚ k jAk
l j). We note

that this implementation of ALLOY has a practical running time, completing a single experiment as

described in the Results section in approximately one minute.

Our simulations experimented with SNP markers that were found to be polymorphic in 1,184 individuals

sampled from 11 populations in the third phase of the HapMap project (Altshuler et al., 2010). However,

additional variation exists in these populations beyond the SNPs assayed in this data set. In particular, rare

SNPs, which have been found to exhibit little sharing among diverged populations (Gravel et al., 2011) and

can therefore act as highly informative markers for ancestry inference, are likely to be missing from the panel.

Therefore, as additional rare SNPs are discovered and sampled, we expect the accuracy of ALLOY to

improve. We further note that the spectrum of human genetic variation ranges beyond SNPs. For instance,

copy-number variations (CNV) and other structural variations constitute a large fraction of the total human

genomic variation (Alkan et al., 2011). As with SNPs, rare CNVs are useful for separating ancestries and have

been shown to be more abundant than rare SNPs ( Jakobsson et al., 2008). Our model is not limited to bi-

allelic SNPs and supports the incorporation of markers of higher variability, such as CNVs, by adjusting

Equation 4. The construction of the variable-length Markov chain linkage-models, either through Beagle or

other methods, can be extended to take such additional genetic variation into account.

ALLOY is a novel method for inferring the local ancestry of admixed individuals, which is an essential

task for various applications in human genetics. We have shown that our approach has higher accuracy than

the previous state of the art and that its VLMC-based LD model plays a crucial role in its superior

performance. Our method is applicable to ancient and complex admixtures and is capable of separately

modeling the maternal and paternal histories. We expect that as the genetic variation of worldwide pop-

ulations is extensively sampled, ALLOY will be able to better characterize the particular histories of

examined individuals. ALLOY is publicly and freely available online.
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